
Exchange interactions in europium monochalcogenide magnetic semiconductors
and their dependence on hydrostatic strain

W. Söllinger,1 W. Heiss,1 R. T. Lechner,1 K. Rumpf,2 P. Granitzer,2 H. Krenn,2 and G. Springholz1,*
1Institute of Semiconductor and Solid State Physics, Johannes Kepler University, Altenbergerstrasse 69, A-4040 Linz, Austria

2Institute of Physics, Experimental Physics Div., Karl-Franzens-University, Universitätsplatz 5, A-8010 Graz, Austria
�Received 27 July 2009; revised manuscript received 15 March 2010; published 23 April 2010�

The classical Heisenberg model is applied in a Monte Carlo study to investigate the distance dependence of
the indirect nearest-neighbor �NN� exchange and next-nearest-neighbor �NNN� superexchange interaction in
EuO, EuS, EuSe, and EuTe. For this purpose, first, the dependence of the magnetic ordering temperature, i.e.,
Curie, respectively, Néel temperature for ferromagnetic and antiferromagnetic ordering on the exchange con-
stants was determined. This was then employed for the analysis of experimental data of hydrostatic pressure
experiments. It is shown that all experimental findings, i.e., the strong increase in the critical temperatures as
well as the transition from antiferromagnetic to ferromagnetic ordering for EuTe and EuSe with decreasing
lattice parameter are well described by the magnetic Grüneisen law in which the exchange constants depend on
the interatomic distances of the Eu ions in the form of a power law. According to these calculations, the indirect
NN exchange is characterized by a Grüneisen exponent of approximately 20 and the NNN superexchange by
an exponent of about 10 for all four europium monochalcogenides. The latter agrees with Bloch’s empirical
10/3 law for the volume dependence of superexchange interactions in insulating magnetic materials. The
Monte Carlo calculations also yield significantly revised exchange constants for unstrained bulk material
because spin fluctuations at nonzero temperatures are taken into account. The strong increase in the exchange
constants with decreasing lattice parameter provides room for increasing the Curie temperatures in strained
epitaxial structures, which is important for device applications.
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I. INTRODUCTION

The europium monochalcogenides �EuX, with X=O, S,
Se, or Te� are wide band-gap magnetic semiconductors with
cubic rock salt crystal structure and increasing lattice con-
stant as X changes from O to Te.1–3 They are considered to be
model substances for Heisenberg magnets with spin ordering
dominated by indirect nearest-neighbor �NN� exchange J1
and next-nearest-neighbor �NNN� superexchange J2 acting
between the S=7 /2 localized magnetic moments of the Eu2+

ions with half-filled 4f shells.4 Depending on the sign and
magnitude of the exchange integrals J1 and J2, the EuX’s
exhibit different magnetic phases below the critical ordering
temperature.5 EuO �Ref. 6� and EuS �Ref. 7� are ferromag-
nets �FMs� and EuTe �Ref. 8� is an antiferromagnet �AFM�.
EuSe is at the borderline between ferromagnetic and antifer-
romagnetic ordering. Thus, it shows metamagnetic
behavior,9–11 which is influenced by additional contributions
from dipolar interactions and crystalline field anisotropies.

The EuX’s show several outstanding properties, which
makes them an interesting class of materials, both academi-
cally and for device applications. In external magnetic fields
they exhibit a giant spin splitting of the conduction band and,
consequently, extraordinary large magneto-optical effects.
EuSe shows the largest effective g factor12 of up to 18 000
and EuTe the largest magnetic field induced energy shifts of
the interband transitions13 observed in semiconducting mate-
rials. Potential applications are spin-filter devices based on
EuO,14–16 EuS,17–24 or EuSe �Ref. 25� tunnel junctions,
which provide spin-polarized electrons due to different bar-
rier heights for electrons in different spin states. Also, a huge
Faraday rotation is observed in EuX’s �Refs. 26–29� due to

the spin splitting of the bands, which results in different re-
fractive indices for left and right circular polarized light.
Therefore, EuS /EuF2 and EuSe films have been used for
high-resolution magneto-optical imaging of the flux distribu-
tion in superconductors.30 Recent work has also demon-
strated that EuO can be epitaxially grown on silicon31,32 and
GaN,32 which opens new possibilities for device realization.
Since the Curie temperature of the EuX’s can be drastically
enhanced by doping,32–34 EuO might even become a candi-
date for practical spintronic device applications.

Introducing strain, either omniaxially through hydrostatic
pressure35–48 or biaxially through heteroepitaxial
growth11,49–53 leads to drastic changes in the ordering tem-
peratures in the EuX compounds and in some cases even to
transitions to different kinds of magnetic ordering. For EuO,
hydrostatic pressure was found to increase the ferromagnetic
ordering temperature TC from 69 to above 200 K �Ref. 45�
and for EuS from 16 to almost 180 K.48 Metamagnetic EuSe
is transformed to a stable ferromagnet already at moderate
hydrostatic pressures above 0.5 GPa �Ref. 40� and at higher
pressures TC increases from 4.7 to 70 K at 15 GPa.48 EuTe
remains antiferromagnetic up to 9 GPa with nearly constant
Néel temperature TN�10 K but then becomes ferromag-
netic with a TC increasing up to 28 K when reaching 17
GPa.46

The variations in the magnetic properties of the EuX com-
pounds are obviously related to the dependence of the ex-
change integrals J1 and J2 on the interatomic distances in the
crystal lattice. Already by early theoretical work, the basic
trend of the EuX compounds from antiferromagnetic �EuTe�
to ferromagnetic ordering �EuS and EuO� was attributed to a
strong increase in the ferromagnetic NN exchange J1 with
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decreasing lattice constant from a0=6.598 Å for EuTe to
5.144 Å for EuO. For the latter, the magnetic ordering is
thus dominated by the positive NN exchange J1, whereas for
antiferromagnetic EuTe the negative NNN exchange J2
dominates. Application of hydrostatic pressures p up to 20
GPa produces similar changes in the lattice parameter of up
to 8% compared to the normal bulk values. As a result, large
changes in the ordering temperatures are induced as
well.35–48

To derive the dependence of the exchange integrals J1 and
J2 on the interatomic distances from hydrostatic pressure ex-
periments, previous works have employed the mean-field ap-
proximation �MFA� for analysis.46,48,54 Based on the obser-
vation that the Néel temperature TN of antiferromagnetic
EuTe does not change appreciably under applied pressure, it
was reasoned that the NNN exchange J2 is constant in all
EuX compounds. Therefore, the changes in the magnetic
properties were attributed solely to changes in the NN ex-
change J1 and, from the simple mean-field expressions, a
distance dependence of J1�a� was deduced from the observed
changes in TC�p�. However, it is well known that the mean-
field approximation is exact only at zero temperature, i.e., for
prediction of the ground state of the system. In particular, the
mean-field model vastly overestimates the magnetic ordering
temperatures due to neglection of spin fluctuations at finite
temperatures. As a result, the mean-field approximation not
only predicts false critical exponents at the phase transition
but also much underrated exchange constants.

In the present work, we have employed the Monte Carlo
�MC� method to calculate the magnetic phase diagrams and
ordering temperatures of the EuX compounds as a function
of the exchange interactions. The MC method takes the mu-
tual interactions between all spins into account and allows
for spin fluctuations at T above zero. Using finite-size scaling
techniques, MC correctly predicts the transition temperatures
and the behavior of the order parameters at criticality for a
given model Hamiltonian.55 Moreover, due to the spin fluc-
tuations near the transition temperature, the Néel point of
antiferromagnetic ordering has been found to depend on both
exchange constants56 J1 and J2—in contrast to the mean-field
approximation, where the Néel point depends on J2 only.
Thus, the basic assumption of the previous analyses46,48,54

does not hold. In the present work, we therefore reexamine
the experimental data for EuX’s under hydrostatic pressure
by Monte Carlo calculations considering magnetic Grüneisen
power laws57 for the distance dependence of the NN and
NNN exchange constants. We show that for the whole family
of EuX compounds, the distance dependence of the exchange
interactions J1�r1� and J2�r2� can be consistently described
by unique Grüneisen exponents of n1�20 and n2�10 by
which the whole set of available experimental data of the
EuX compounds under hydrostatic pressure can well be ex-
plained. The obtained exponent of n2�10 for J2 is also con-
sistent with Bloch’s empirical 10/3 law57 for the volume de-
pendence of the superexchange interaction J�V−10/3

observed for a wide variety of insulating magnetic material
systems.57

The paper is organized as follows: In Sec. II, we present
the model Hamiltonian and briefly discuss the technical de-
tails of the Monte Carlo calculations. In Sec. III, the method

is applied to bulk EuTe under ambient pressure, demonstrat-
ing that the whole magnetic phase diagram can be well de-
scribed and that the exchange constants J1 and J2 obtained
from Monte Carlo calculations strongly differ from literature
values derived by the mean-field approximation. In Sec. IV,
the method for determination of the distance dependence of
the exchange constants is described and applied to EuTe.
Due to the pressure-induced transition between antiferro-
magnetic and ferromagnetic ordering, accurate dependencies
for both J1�r1� and J2�r2� are derived. The approach is then
extended to EuO, EuS, and EuSe in Secs. V and VI, reveal-
ing that the same functional behavior, i.e., the same Grü-
neisen exponents provide an excellent description of the ex-
perimental data for all EuX compounds. In Sec. VII, the
results are compared in detail and the applicability of other
types of functional dependence of J1�r1� and J2�r2�
discussed.

II. DETAILS OF THE CALCULATION

For the calculation of the magnetic properties of the
EuX’s we employed the classical Heisenberg model with
nearest and next-nearest-neighbor exchange interactions
taken into account. The corresponding model Hamiltonian
reads as

H = − �
i�j

JijSiS j − g�BH�
i

Si, �1�

where H denotes the external magnetic field and Jij +Jji is
the total exchange interaction between two spins located at
lattice sites i and j, where

Jij = �J1: i is NN of j

J2: i is NNN of j

0: else.
� �2�

In the Monte Carlo calculations, we consider rhombohedral
fcc clusters of classical spins, where all cluster boundaries
are �111� lattice planes. This is a convenient choice of geom-
etry since antiferromagnetic and ferrimagnetic �FiM� order-
ing in EuSe and EuTe is comprised of ferromagnetic �111�
planes and epitaxial EuTe and EuSe samples are usually
grown in �111� orientation.11–13,58 The choice of geometry
has, however, no influence on the results of our calculations.
Clusters of up to 323 spins with periodic boundary conditions
were employed. During a single Monte Carlo step, random
orientations are generated for every single spin, which are
then accepted or rejected according to the Metropolis
criterion.59 Observables like the total energy, the overall
magnetization, the magnetization in the direction of the ex-
ternal field, the transverse magnetization, and the corre-
sponding staggered magnetic moments are computed after
every Monte Carlo step. Simulations were performed with up
to N=105 iterations and additional Monte Carlo steps for
equilibration at the beginning of every run. For a single
simulation, the temperature T, the external magnetic field H
and the number of spins are constant.

The expectation value for the total energy is given by
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�H	 �
�
i=1

N

Hi exp�− �Hi�

�
i=1

N

exp�− �Hi�

, �3�

where �=1 /kBT. The Metropolis algorithm causes the total
energy to be distributed according to Boltzmann’s law.
Hence, the expectation values for the total energy and for the
magnetic moment become arithmetic mean values in the
simulation

�H	 =
1

N
�
i=1

N

Hi, �4�

�M	 =
1

N
�
i=1

N

Mi. �5�

To determine the critical ordering temperatures, the fourth-
order cumulant of the corresponding order parameter is used,
which for ferromagnetic ordering at zero external field is
defined as55

U = 1 −
�M4	

3�M2	2 , �6�

where �M2	 and �M4	 denote the second- and fourth-order
moments of the probability distribution of the magnetization.
The fourth-order cumulants show universal values at the
critical temperature. Thus, during the simulations U is gen-
erated as a function of temperature and recorded for various
cluster sizes. The U�T� curves for different cluster sizes cross
in a single point at the critical temperature, as shown in
detail in Sec. III. The transition temperatures obtained from
our calculations were compared to theoretical predictions
from high-temperature series expansions.60 For classical
spins on a fcc lattice and ferromagnetic nearest-neighbor ex-
change only, i.e., J1�0 and J2=0, we obtain a critical tem-
perature TC defined by 2J1S2 / �kBTC�=0.3149�0.0008 in 2
�105 Monte Carlo steps. The prefactor of 2 stems from the
fact that according to the definition of Eq. �1�, the exchange
interaction between pairs of spins is always added twice.
Despite the simplicity of our approach compared to more
sophisticated Monte Carlo routines,61,62 this result is in ex-
cellent agreement with the theoretically predicted and gener-
ally accepted value of Ritchie and Fisher60 of
0.3147�0.0001 for this relation.

If the NNN exchange interaction is antiferromagnetic and

J2
�J1, the simulation generates a classical Néel state with
eight ferromagnetically ordered sublattices as the ground
state.63 This is a consequence of the antiferromagnetic order-
ing degenerating into the four equivalent �111� directions52 in
the simulation. In this case, four pairs of antiferromagneti-
cally aligned sublattices can rotate freely and the fourth-
order cumulants are defined as63

Ust =
5

2
−

3

2

��Mst�4	
��Mst�2	2 �7�

for zero field and

U�
st = 2 −

��M�
st �4	

��M�
st �2	2 �8�

for nonzero external field. Here, Mst and M�
st denote the stag-

gered �transverse� magnetization, with transverse referring to
the component of the magnetization perpendicular to the ex-
ternal field,

Mst = �
i=1

8


M�i�
 , �9�

M�
st = �

i=1

8


M�
�i�
 . �10�

Equations �9� and �10� are sums of the absolute values of the
�transverse� magnetization over the eight possible sublat-
tices. Due to additional anisotropies and/or dipolar cou-
plings, this degenerate AFM state is not observed experimen-
tally but only domains with completely ferromagnetically
ordered Eu �111� planes, which is one possible case in our
MC simulations. Here it should also be noted that in a
quantum-mechanical treatment it has been shown64 that a
classical Néel state is not an eigenstate of the system. How-
ever, Anderson65 showed that the upper limit of the error
introduced by utilizing the classical Heisenberg model is
1 / �ZS�, where Z is the number of nearest neighbors. Since
the Eu ions carry a relatively large spin of S=7 /2, the error
in the ground-state energy is smaller than 2.4%. Thus, a clas-
sical treatment considering continuously rotating spin vec-
tors is well justified.

III. EXCHANGE INTERACTIONS IN EuTe AT
AMBIENT PRESSURE

In our Monte Carlo study of the exchange interactions,
EuTe is chosen as test material. This is because detailed ex-
perimental data is available for the H-T phase diagram,8

which allows a direct determination of the NN and NNN
exchange interactions J1 and J2 based on the antiferromag-
netic ordering temperature TN and the critical field at zero
temperature HC�T=0�. In addition, the ferromagnetic �J1�
and the antiferromagnetic exchange �J2� are relatively bal-
anced in EuTe. Therefore, pronounced changes in magnetic
ordering occur when hydrostatic pressure is applied.

A. Experimental results

The magnetic properties of EuTe were determined using
dc and ac superconducting quantum interference device
�SQUID� magnetometry measurements of high quality
4-�m-thick �111�-oriented epitaxial layers grown by
molecular-beam epitaxy on BaF2 substrates.13,66,67 As a re-
sult, the magnetization and ac susceptibility was obtained as
a function of both temperature and external magnetic field up
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to 7 T. The external field direction was applied in the �111�
growth plane, which is also the easy plane of the magnetiza-
tion.

Experimental magnetization curves M�T� at different ap-
plied external fields from 5.5 to 7 T are shown in Fig. 1�a�.
The magnetization curves exhibit clear peaks at the phase
transition between the antiferromagnetic and the paramag-
netic phase. High magnetic fields were applied in order to
obtain information about the critical field at zero temperature
HC�T=0�. Field-dependent ac susceptibility curves were also
measured. As shown in Fig. 1�b�, for T=5 K the suscepti-
bility is essentially constant below the critical field, corre-
sponding to a linear increase in the magnetization. This

arises from the continuous reduction in the relative angle
between the spins in the adjacent �111� lattice planes from
180° in the AFM II state at zero field to almost zero at the
critical field HC, as illustrated schematically by the arrows in
Fig. 1�e�. Thereby, the spin orientation changes from initially
perpendicular to the external field to finally parallel to the
external field direction when H reaches the critical field. The
critical field is thus given by the discontinuous drop in the
susceptibility at this point �see Fig. 1�b��.

Figure 1�c� displays the measured susceptibility as a func-
tion of temperature at zero external field, showing a broad
peak with a maximum slightly above 10 K. However, the
phase transition from antiferromagnetic to paramagnetic cor-
responds to the peak in the specific heat, which according to
Fisher’s rule68 coincides with the maximum slope, i.e., the
inclination point in the ac susceptibility. As indicated by the
arrow in Fig. 1�c�, the phase transition thus occurs at TN
=9.85�0.05 K.

Figure 1�d� shows the phase diagram of EuTe compiled
from the experimental data �symbols and solid line�, where
the thick solid line indicates the experimentally determined
HC�T� phase boundary. A T3/2 curve, which according to
spin-wave theory is the low-temperature behavior of the
critical field, was fitted to the experimental critical points
between 2 and 6 K, yielding

HC�T� = HC�0��1 − ��T/TN�3/2� . �11�

Extrapolation of the measured HC�T� to T=0 thus yields the
critical field at zero temperature of HC�0�=7.56�0.02 K.
The dashed line in Fig. 1�e� represents Eq. �11� with the
coefficient �=0.50�0.01. The experimental data as well as
TN, HC�0�, and � are in excellent agreement with previous
results of Oliveira et al.8

B. Exchange constants and phase diagram from MC
calculations

In most previous studies,1,2,8,69 the mean-field analysis
was used to determine the exchange integrals in EuTe be-
cause it provides simple analytic expressions for the critical
field at zero temperature HC�0�, the Néel temperature TN, as
well as the paramagnetic Curie temperature �C as a function
of J1 and J2. For type II-antiferromagnetic ordering in an fcc
lattice with NN and NNN exchange interactions, the MFA
yields

HC
MFA�0� = − 4S�6J1 + 6J2�/�g�B� , �12�

TN
MFA =

2

3
S�S + 1��− 6J2�/kB, �13�

and

�C
MFA =

2

3
S�S + 1��12J1 + 6J2�/kB, �14�

where g=2 and S=7 /2 for the magnetic moment of the Eu2+

ions. Inserting our experimental values for HC�0� and TN into
Eqs. �12� and �13� and solving for J1 and J2 yields for
J1

MFA /kB=0.035 K and for J2
MFA /kB=−0.156 K. As shown
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FIG. 1. Magnetic properties of bulk EuTe at normal pressure
derived from SQUID and Monte Carlo simulations. �a� Measured
temperature-dependent magnetization M�T� for various in-plane ex-
ternal magnetic field values from 5.5 to 7 T. �b� ac susceptibility vs
external magnetic field at 5 K, indicating the critical field as dis-
continuity at B�6.2 T. �c� ac susceptibility � measured as a func-
tion of temperature at zero external field. The inclination point in-
dicated by the arrow yields a Néel temperature of 9.85�0.05 K.
�d� Determination of the Néel temperature from Monte Carlo data
using the fourth-order cumulant of the staggered magnetization
U�Mst� for different system sizes. The curves show a common in-
tersection at the Néel temperature. �e� Magnetic phase diagram of
EuTe: symbols with error bars correspond to maxima or inflection
points in the experimental M�T� for high, respectively, small exter-
nal fields; squares to the discontinuity in ��H� or the inflection point
in ��T�. The solid line indicates the experimental HC�T� phase
boundary and the dashed-dotted line represents the boundary ob-
tained by the Monte Carlo calculations. The T3/2 extrapolation
�dashed line� of the experimental data toward T=0 yields a critical
field of HC=7.56 T.
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in Table I, the values are consistent with previous mean-field
studies,1,2,8,69 especially those, which applied the same analy-
sis of the experimental HC�0� and TN based on MFA Eqs.
�12� and �13�.

In the Monte Carlo calculations, the transition tempera-
ture TN�0� �TN�H�0�� is deduced from the temperature de-
pendence of the fourth-order cumulants of the staggered
�transverse� magnetization U���

st . As described in Sec. II,
these cumulants show universal values at the critical tem-
perature TN independent of cluster size. This is demonstrated
in Fig. 1�d� for the case of H=0. Using the exchange con-
stants J1

MFA and J2
MFA derived from the mean-field analysis,

the Monte Carlo calculations yield a Néel temperature of
5.45 K at zero external field, which is in strong disagreement
with the experimental value of 9.85 K. This clearly demon-
strates that the neglection of spin fluctuations in MFA leads
to a vast underestimation of the exchange constants, an effect
that has been already noted in previous theoretical
studies.56,63 In the MC calculations, moreover, the critical
Néel temperature TN is found to depend significantly not
only on the antiferromagnetic exchange constant J2 but also
on the ferromagnetic NN exchange constant J1, in contrast to
the MFA approximation, where TN

MFA depends only on the
antiferromagnetic exchange—see Eq. �13�. This is due to the
fact that in the mean-field approximation, for type II antifer-
romagnetic ordering the J1 exchange between the six NN
Eu2+ ions within the ferromagnetic �111� planes exactly can-
cels with the J1 exchange to the six NN Eu2+ ions within the
antiferromagnetically coupled neighboring �111� lattice
planes. This does not apply for the MC calculations because
of the nonperfect antiferromagnetic spin alignment at non-
zero temperatures that results from spin fluctuations.

In order to determine the exchange constants from the
Monte Carlo calculations, we have systematically calculated
the Néel temperature as a function of both exchange con-
stants J1 and J2. As a boundary condition, we take advantage
of the fact that in the limit of T=0, the critical field HC, the
Monte Carlo calculations converges exactly to the mean-field
value of Eq. �12�. This is because spin fluctuations are absent
at T=0 and thus the MFA represents the exact ground state of
the system. Therefore, the experimental value of HC

=7.56 T at T=0 and Eq. �12� determine the sum of the ex-
change constants as

�J1 + J2�/kB = − 0.121 K �15�

in EuTe. This eliminates one independent variable, i.e., with
this condition, only J2 must be varied for the calculation of
TN. The resulting dependence is plotted in Fig. 2 �squares
and solid line�. Evidently, TN varies almost perfectly linearly
and can be represented by the relation

TN
MC
�J1+J2�/kB=−0.121 K = 1.22 – 27.57J2/kB �16�

within the range −0.35 K	J2 /kB	−0.15 K. Solving Eq.
�16� for J2 and inserting the experimental Néel point of bulk
EuTe TN=9.85 K �horizontal dashed-dotted line in Fig. 2�
yields J2

MC /kB=−0.313 K and hence J1
MC /kB=0.192 K from

Eq. �15� as the intrinsic exchange constants of bulk EuTe. It
is noted that calculating TN without the constraint of Eq. �15�
yields a function TN�J1 ,J2� that depends nonlinearly on J1
and J2, in contrast to the MFA Eq. �13�, which predicts only
a linear dependence on J2—see Sec. IV for further details.
From the MC calculations, the Néel temperature as a func-
tion of J1 and J2 is found to be well described by

TN
MC � �− 15.3J1 − 40.8J2�/kB

=
2

3
S�S + 1��− 1.46J1 − 3.89J2�/kB �17�

in a linear approximation in the vicinity of the intrinsic EuTe
exchange constants, demonstrating that the Néel temperature
indeed depends strongly on both exchange constants.

As demonstrated by Table I, which compares our derived
set of exchange constants with previously published ones,
our values are nearly twice as large as those derived from
mean-field analysis. Thus, by neglection of spin fluctuations
the exchange parameters are vastly underestimated. Remark-
ably, the exchange constants derived from our Monte Carlo

TABLE I. Comparison of the exchange constants J1 /kB and
J2 /kB of EuTe determined by the analysis of experimental data for
the Néel temperature TN, the critical field HC, or the paramagnetic
Curie temperature �C using the MFA �Refs. 1, 2, 8, and 69� or the
MC method �present work�. Also listed are the exchange constants
derived by Kuneš et al. �Ref. 70� from ab initio calculations.

Reference Measurement/analysis
J1 /kB

�K�
J2 /kB

�K�

Oliveira �Ref. 8� HC, �/MFA 0.100 −0.215

Zinn �Ref. 1� HC, �/MFA 0.060 −0.200

Wachter �Ref. 2� HC, TN/MFA 0.043 −0.150

Köbler �Ref. 69� HC, TN/MFA 0.060 −0.160

Kuneš �Ref. 70� Ab initio LDA+U �U=6 eV� 0.110 −0.320

Our study HC, TN/MFA 0.035 −0.156

HC, TN/MC 0.192 −0.313
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FIG. 2. Néel temperature of EuTe �squares� calculated as a func-
tion of the next-nearest-neighbor exchange constant J2 under the
constraint �J1+J2� /kB=−0.121 K, which is a consequence of evalu-
ating the experimental critical field at zero temperature
HC�T=0�—see in the text for details. A linear function is obtained
by the Monte Carlo calculations �squares and solid line�, which is
shown in comparison with the corresponding mean-field relation
�dashed line�. At J2 /kB=−0.313 K �J1 /kB=0.192 K� the Monte
Carlo curve reaches the experimental Néel point of 9.85 K.
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calculations are in good agreement with recent ab initio cal-
culations of Kuneš et al.70 using the local-density-
approximation method including strong Coulomb repulsion
within the 4f shells �LDA+U�. In particular, our NNN ex-
change constant J2, which in Ref. 70 of Kuneš et al. depends
very weakly on the Coulomb parameter U matches the ab
initio result very well.

With the new exchange parameters, we can now calculate
the whole magnetic phase diagram of EuTe using the fourth-
order cumulants of the staggered �transverse� magnetization
for various external magnetic fields and cluster sizes. The
resulting phase boundary TN�H� is depicted as dashed-dotted
line in Fig. 1�e�. As expected, the calculated HC�T� ap-
proaches the experimental value of 7.56 T in the limit of T
→0 and nearly follows the experimental HC�T� boundary.
The fact that at T�0 the calculated HC�T� values are slightly
lower than the measured ones and that at low temperatures,
the calculated critical field varies linearly with temperature
instead of obeying a T3/2 behavior is a well-known conse-
quence of applying a classical �S=
� instead of the
quantum-mechanical S=7 /2 model in our calculations. As
already noted in Sec. II, the error in the ground-state energy
introduced by this simplification is on the order of less than
2.4% for our type of system.

IV. DISTANCE DEPENDENCE OF EXCHANGE
INTERACTIONS IN EuTe

Using hydrostatic pressure, the EuTe lattice constant can
be compressed from its normal bulk value of a0=6.589 Å to
about 6.15 Å at a pressure reaching 17 GPa.46 This corre-
sponds to a 7% reduction in the lattice constant and of the
interatomic distances of the Eu2+ ions in the crystal, where in
the fcc lattice of EuTe the NN Eu2+ distance r1=a /
2 and
the NNN distance r2=a. The resulting changes in the mag-
netic ordering temperatures obtained by such
experiments38,46,47 are compiled in Fig. 3, where the open
and full symbols represent the measured TN, respectively, TC
values plotted as a function of EuTe lattice constant. Since at
ambient pressure, the antiferromagnetic exchange J2 of EuTe
is larger than the ferromagnetic exchange J1, a type II anti-
ferromagnetic ordering5 occurs below the Néel point of TN
=9.85 K. As shown in Fig. 3, with increasing pressure, i.e.,
decreasing lattice constant, the Néel temperature remains
practically constant at TN�10 K but at �9 GPa or 5%
compressive strain EuTe becomes ferromagnetic46,47 with
rapidly increasing Curie temperature TC that rises up to 28 K
at 17 GPa.46 The observed phase transition from antiferro-
magnetism to ferromagnetism at a=6.29 Å implies that at
smaller atom distances, the NN exchange J1 becomes the
dominating exchange mechanism.

The influence of the interatomic distances ri on exchange
constants has been a subject of many theoretical
studies.1,4,54,71–73 However, indirect and superexchange
mechanisms involve complex integrals such that up to now
no general analytic expressions for their distance dependence
have been derived theoretically. An empirical power-law de-
pendence, referred to as the magnetic Grüneisen law, has
been proposed by Bloch,57 i.e.,

J�r� = J0� r

r0
�−n

, �18�

where J0=J�r0� and r0 are the exchange interaction and in-
teratomic distance at normal pressure and n is the scaling
exponent. As shown in Ref. 57, this dependence well de-
scribes the observations for many magnetic semiconductors
or insulators such as the Mn and Gd chalcogenides or iron
oxides, for which the power-law exponent n shows a univer-
sal value of around 10 for the magnetic superexchange.57

This also yields the empirical 10/3 law for the volume de-
pendence of superexchange57 of J�V�=J0�V /V0�−10/3.

To test if the Grüneisen dependence of Eq. �18� ad-
equately describes the atomic distance dependence of the ex-
change integrals in EuTe, we have performed a series of
Monte Carlo calculations of the Néel and Curie temperature
as a function of the exchange integrals in order to fit the
experimental TN�a� and TC�a� data of Fig. 3 using indepen-
dent power-law exponents n1 and n2 for the NN and NNN
exchange interactions J1 and J2 as free parameters. In these
calculations, the ferromagnetic NN exchange J1��0� and the
antiferromagnetic NNN exchange J2��0� were varied inde-
pendently in the range of 0.190	J1 /kB	0.73 and
0.315 K	−J2 /kB	0.615 K and the corresponding critical
temperatures were derived as described in detail in Secs. II
and III. For all 
J1
� 
J2
, the MC calculations yield AFM II
ordering, whereas FM ordering results for all 
J1
� 
J2
. Fig-
ures 4�a� and 4�b� show the calculated TN and TC values
�open symbols� as a function of J1 and J2, respectively. Since
we are interested in the hydrostatic pressure effect, the small-
est values of J1 and J2 were chosen close to the exchange
parameters of bulk EuTe at ambient pressure �filled symbols�
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and the maximum values correspond to hydrostatic pressures
of about 17 GPa.

As shown by Fig. 4, the Monte Carlo calculations yield a
strongly nonlinear dependence of TN on J1. Hence, the cal-
culated data points were approximated by second degree
polynomials for TN�J1 ,J2� and TC�J1 ,J2� of the general form

T�J1,J2� = A + BJ1 + CJ2 + DJ1
2 + EJ1J2 + FJ2

2. �19�

These approximations fit the Monte Carlo data with better
than �0.1 K accuracy and are represented as solid lines in
Figs. 4�a� and 4�b�.

Using the normal pressure exchange constants J1,0
=0.192 K and J2,0=−0.313 K determined in Sec. III, the
two branches of hydrostatic pressure data sets for the antifer-
romagnetic TN�a� and ferromagnetic TC�a� of Fig. 3 were
fitted using Eqs. �18� and �19� with common exponents n1
and n2 and r1=a /
2 and r2=a. All experimental data points
are weighted equally in the least-square fit routine, which
was performed on a logarithmic scale since equal weights
may cause one branch to dominate if there is a difference in
the magnitude of the dependent variable.

From this modeling, a Grüneisen exponent of n1
=20.6�0.4 for the NN exchange J1 and of n2=10.4�0.5 for
the NNN exchange J2 was obtained. As demonstrated by the
solid lines in Fig. 3, with these parameters the whole body of
experimental findings, i.e., the approximately constant Néel
temperature TN at small hydrostatic strain, the transition from
antiferromagnetic to ferromagnetic ordering at a=6.29 Å
and the steep superlinear increase in the Curie temperature at
small lattice constants and high hydrostatic pressures, are
exactly reproduced. Moreover, the obtained power-law expo-
nent n2 for J2�r2� is in excellent agreement with Bloch’s
�Ref. 57� 10/3 law for the volume dependence of superex-
change.

Such obtained dependence of the NN and NNN exchange
integrals J1�a� and J2�a� as a function of lattice parameter a
is presented in Fig. 3 as dashed and dashed-dotted line, re-
spectively. Evidently, both exchange constants strongly in-
crease with decreasing lattice constant. However, J1�a� in-
creases much more rapidly than J2�a� due to the two times
larger power-law exponent. Therefore, the two curves inter-

sect at a=6.29 Å, where J1 /kB=−J2 /kB=0.51 K, and at
smaller a, the ferromagnetic J1 becomes the dominating ex-
change mechanism. For fcc lattices with competing ferro-
magnetic NN exchange and antiferromagnetic NNN ex-
change interactions, this is exactly the condition for the
material to become ferromagnetic.5

Our results are in severe contrast to the previous mean-
field analysis of Goncharenko and Mirebeau,46 who con-
cluded from the negligible variation in TN in the antiferro-
magnetic state with changing lattice constant that the NNN
exchange J2 in EuX should not depend on the lattice param-
eter. Consequently, the whole variation in TC�a� was attrib-
uted solely to changes in J1�a� using the mean-field expres-
sion for the Curie temperature of

TC
MFA =

2

3
S�S + 1��12J1 + 6J2�/kB �20�

with constant J2 for data analysis. On the contrary, our cal-
culations show that the broad plateau of TN�a� for lattice
constants around a=6.42 Å just results from the fact that in
the antiferromagnetic phase the ferromagnetic exchange
drops faster than the antiferromagnetic exchange as the lat-
tice constant increases.

V. EXCHANGE INTERACTIONS IN EuO AND EuS

As shown in the previous sections, the exchange constants
obtained by Monte Carlo calculations strongly differ from
previously published values. Therefore, to evaluate the dis-
tance dependence of the exchange constants of EuO and
EuS, first the bulk values under ambient pressure have to be
re-examined by the Monte Carlo method.

A. Exchange constants at ambient pressure

EuO and EuS are low-temperature ferromagnets with Cu-
rie temperatures TC of 69.15 K �Ref. 74� and 16.6 K,74,75

respectively. The magnetic properties are determined mainly
by the dominant ferromagnetic NN exchange interaction J1
in both materials. Compared to the case of antiferromagnetic
EuTe, where only the Néel temperature and the critical field
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at T=0 K are needed to deduce the exchange constants, the
determination of J1 and J2 for ferromagnetic EuO and EuS is
much more involved. As a result, there exists a substantial
variation in the reported exchange constants for bulk EuO
and EuS deduced from different experimental techniques
such as inelastic neutron scattering,74–76 specific heat,77–80

nuclear magnetic resonance80–83 �NMR�, and spin-wave
resonance measurements84 �see, e.g., Passell et al.74 for a
review�. Especially the values for the NNN exchange con-
stant J2 in EuO and EuS differ by up to a factor of 2 in
literature74,76,83 and whether J2 is ferromagnetic or antiferro-
magnetic in EuO is still a matter of debate. The most recent
results based on inelastic neutron-scattering studies on single
crystals of EuO �Ref. 76� and EuS �Ref. 75� yielded
�J1,0

EuO /kB ,J2,0
EuO /kB�= �0.625 K,0.125 K� and �J1,0

EuS /kB ,J2,0
EuS

/kB�= �0.221 K,−0.100 K�, respectively, consistent with
Passell et al.’s �Ref. 74� analysis on powdered samples. No-
tably, a ferromagnetic NNN exchange interaction was ob-
tained for EuO.

In all studies, the sum of J=J1+J2 has been more reliably
determined than the individual NN and NNN exchange in-
teractions, and this sum is quite consistent among the various
studies. For EuO single crystals, JEuO /kB=0.755 K was ob-
tained by Comment et al.83 from NMR measurements, in
agreement with neutron-scattering studies by Mook et al.,76

and this value also agrees with the results obtained by
neutron-scattering74 and specific-heat measurements80 on
powdered samples. A very good agreement for J1+J2 also
exist among respective studies for EuS,74,75,80,81 from which
we calculate JEuS /kB=0.121�0.003 K as mean value.

To determine the exchange constants by the Monte Carlo
method, we again performed a series of calculations for the
model Heisenberg Hamiltonian of Eq. �1� with the NN and
NNN exchange interactions J1 and J2 varied independently
over a wide range of 0.5 K	J1 /kB	2.5 K and −0.8 K
	J2 /kB	+0.4 K. We find ferromagnetic ordering for all
combinations of J1�−J2 and the corresponding critical or-
dering temperature determined as a function of J1 and J2 are
depicted in Figs. 5�a� and 5�b�, respectively. Evidently, TC
increases linearly with increasing NN exchange constant J1,
but decreases when the antiferromagnetic J2 exchange in-
creases. As shown by the solid lines in Fig. 5, in the range of
studied exchange constants the dependence of TC on the ex-
change constants can be well described by the relation

TC
MC = 79.0J1/kB + 55.9J2/kB

= 0.627
2

3
S�S + 1�12�J1 + 0.708J2�/kB, �21�

which differs considerably compared to the mean-field ex-
pression of Eq. �20�. Yet, the critical coupling J1 / �kBTC�
closely resembles the theoretical predictions from high-
temperature series expansion.60 Inserting the EuO and EuS
exchange values of Mook76 and Bohn et al.75 in our Monte
Carlo relation of Eq. �21� yields Curie temperatures of only
56 and 12 K, respectively, which is much lower than the
measured experimental values. This shows that, like for
EuTe, the exchange constants have been considerably under-
estimated in both materials.

Using the experimental values for J=J1+J2 quoted above,
the critical Curie temperature TC can be calculated as a func-
tion of the exchange constant J1 using Eq. �21� and J2=J
−J1. The results are plotted as solid lines in Figs. 6�a� and
6�b� for EuO �JEuO=0.755 K� and EuS �JEuS=0.121 K�, re-
spectively. From the intersection of these lines with the re-
spective experimental TC values of 69.15 �Ref. 74� and 16.6
K �Refs. 74 and 75� �horizontal dashed lines in Fig. 6�, the
bulk exchange constants of J1

EuO=1.169 K and J2
EuO /kB

=−0.414 K are obtained for EuO and of J1
EuS /kB=0.427 K

and J2
EuS /kB=−0.306 K for EuS. In Fig. 6, also plotted are

the TC values expected from the mean-field approximation
�dashed-dotted line, Eq. �20�� as well as from a series expan-
sion estimate proposed by Passell et al.74 �dashed line� given
by

TC
SE,est. = 0.790

2

3
S�S + 1�12�J1 + 0.619J2�/kB. �22�

Evidently, in both cases, much higher critical temperatures
are predicted for a given set of exchange constants, i.e., from
the observed transition temperatures, the exchange integrals
are strongly underestimated. Moreover, a ferromagnetic
NNN exchange would be suggested for EuO. Our Monte
Carlo calculations rule out such a ferromagnetic NNN ex-
change under the condition that JEuO /kB=0.755 K. In par-
ticular, a negative J2 is retained even if JEuO is increased by
as much as 15%. Thus, as already found for the EuTe case,
our Monte Carlo calculations greatly revise the bulk
exchange constants.
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B. Distance dependence of EuO and EuS exchange constants

Under hydrostatic pressure, the Curie temperature TC of
EuO and EuS strongly increases with decreasing lattice con-
stant. This is illustrated by Figs. 7 and 8, where the experi-
mentally determined TC values of EuO �Refs. 35, 44, and 45�
and EuS �Ref. 48� are plotted as a function of the lattice
constant. At hydrostatic pressures around 20 GPa, corre-
sponding to a 6–8 % reduction in the lattice constant, TC is
as high as 200 �Ref. 45� and 180 K �Ref. 48� for EuO and
EuS, respectively. For EuO, the experimental data TC�a� of
Fig. 7 is compiled from three independent
investigations,35,44,45 with McWhan et al.’s data combined
with the pressure-volume relation taken from Ref. 85. For
EuS, the data are taken from Ref. 48. For EuO, experiments
at even higher hydrostatic pressures up to 31 GPa �Ref. 45�
have revealed that the ferromagnetic ground state becomes

unstable at around 23 GPa and that the Curie temperature
drops sharply afterward instead of further increasing. In Ref.
45 this behavior was attributed to sf hybridization competing
with sf exchange in this pressure range, whereas in Ref. 86
an Eu2+→Eu3+ valence transition and insulator to metal tran-
sition was proposed to occur. Therefore, we restrict our
analysis to the 0–20 GPa range, i.e., lattice constants above
4.9 Å, where such effects seem not to be of importance.

To determine the interatomic distance dependence of the
exchange constants, we proceed in the same manner as de-
scribed in Sec. IV by fitting the calculated TC

MC�J1 ,J2� depen-
dence of Eq. �21� obtained by the Monte Carlo calculations
to the data of the hydrostatic pressure experiments, applying
the magnetic Grüneisen law �Eq. �18�� as functional depen-
dence for the NN and NNN exchange constants. As input
parameters we use the bulk exchange constants J1,0

MC and J2,0
MC

determined in the previous section and treat the power-law
exponents n1 and n2 in Eq. �18� as adjustable parameters. It
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turns out that because the NN exchange J1 in EuO and EuS is
always much larger than the NNN exchange J2, the TC�a�
dependence is quite insensitive to the variation in J2 as a
function of lattice constant, i.e., the fit yields only unreliable
values for n2. Because for EuTe we have already confirmed
Bloch’s 10/3 law for the volume dependence of the NNN
superexchange integral J2, we have therefore chosen to fix
the distance dependence of J2�a� proportional to r2

−10 for EuO
and EuS as well. From the fit, we then obtain n1

EuO

=19.6�0.4 and n1
EuS=22.4�0.3 as the Grüneisen exponents

for the NN exchange interaction J1�a�. The resulting lattice-
constant dependence of the Curie temperatures TC�a� and
exchange interactions J1�a� and J2�a� are plotted in Fig. 7 for
EuO and Fig. 8 for EuS as solid, dashed, and dashed-dotted
lines, respectively. Evidently, an excellent fit with the experi-
mental data is obtained over the whole lattice parameter
range for both materials. This is an indication that the choice
of n2=10 is a reasonable assumption. It is also noted that due
to the about a factor of 2 larger Grüneisen exponent of J1
compared to that of J2, at high hydrostatic pressures �small
lattice constants�, the NN exchange J1 is as much as five
times larger than the NNN exchange J2. Thus, the ferromag-
netic NN exchange completely dominates the magnetic be-
havior of both materials.

VI. EXCHANGE INTERACTION IN EuSe

Unlike EuO, EuS, and EuTe, which exhibit stable mag-
netic low-temperature phases, EuSe is a metamagnet with at
least four different known ordered magnetic phases, i.e., two
antiferromagnetic phases of type I �AFM I� and type II
�AFM II�, a FiM phase, and a FM phase. Figure 9 shows the
H-T phase diagram of unstrained EuSe derived from suscep-
tibility measurements on several micrometer thick epitaxial
layers,11 with the corresponding different spin configurations
illustrated by the arrows. The phase boundaries shown in
Fig. 9 are in good agreement with earlier publications.9,10 In
particular, the AFM I Néel point of TN,AFM I=4.7 K and the
critical field of HC,3�0�=0.05 T for the transition from AFM
II to FiM obtained by linear extrapolation of the experimen-
tal AFM II to FiM phase boundary are in excellent agree-
ment with those of Refs. 9 and 10.

The metamagnetic behavior of EuSe at ambient pressure
shows similarities to the situation in EuTe at the AFM II to
FM transition, occurring at a hydrostatic pressure of 9 GPa
�see Fig. 3� where J1�
J2
. The observation of an AFM I
phase at this pressure that accompanies the AFM II to FM
phase transition46 shows that at this pressure EuTe is meta-
magnetic too. Thus, in both materials a metamagnetic behav-
ior occurs when J1 and 
J2
 are approximately equal and can-
cel each other. Then, otherwise negligible additional
interactions come into play. As shown by Fig. 10, when ap-
plying a hydrostatic pressure above 0.5 GPa �Ref. 40� EuSe
becomes a stable ferromagnet and with increasing pressure
up to 15 GPa, i.e., 6% reduction in the lattice constant, the
ferromagnetic ordering temperature TC increases from 4.7 to
above 70 K.48 The corresponding experimental TC�a� data of
EuSe is displayed as filled symbols in Fig. 10. Lechner et
al.11 also showed that the introduction of only little biaxial
strain in EuSe drastically expands the boundaries of the AFM
II phase and causes the AFM I phase to disappear com-
pletely. Thus, an AFM II to paramagnetic Néel point
TN,AFM II is observed in strained EuSe, which is again similar
to the situation in EuTe.

The magnetic phase diagram of unstrained EuSe and its
metastability for already small lattice deformations11 cannot
be described by isotropic NN and NNN Heisenberg ex-
change interactions alone. Especially, the ferrimagnetic and
the AFM I phases, which show a magnetic structure with a
periodicity of three, respectively, four atomic layers require
further distant exchange interactions and/or other types of
magnetic interactions such as long-range dipolar
interactions.10 Using MFA and a Hamiltonian, which in-
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SÖLLINGER et al. PHYSICAL REVIEW B 81, 155213 �2010�

155213-10



cludes the exchange interaction up to the third-nearest neigh-
bor �J3� and dipolar interactions, Fukuma et al.10 showed that
the critical field HC,3 at T=0 is independent of J3 and de-
pends only on the sum �J1+J2� as well as the dipolar cou-
pling strength D. Therefore, a good estimate of �J1+J2� can
be obtained using the relation10

2�J1,0 + J2,0� = −
1

3S
g�BHC,3�0�

− �Dxx�QL� −
1

9
Dxx�0� −

8

9
Dxx�2

3
QL�� ,

�23�

where Dxx�QL�, Dxx�0�, and Dxx�2QL /3� correspond to the
dipole coupling strength for spins lying in the �111� plane
�see Ref. 10 for exact definitions�. Inserting the measured
HC,3�0�=0.05 T and the calculated values of Dxx given in
Ref. 10, we obtain �J1+J2� /kB=−5.2 mK. Unlike for the
other EuX compounds, we were not able to derive any fur-
ther reliable condition that would allow to determine J1 and
J2 independently of the high-pressure data in EuSe.

Since our Heisenberg spin model can only generate FM
and AFM II orderings, we can only calculate the behavior of
TC as a function of lattice constant in the strain-induced fer-
romagnetic phase of EuSe at pressures above 0.5 GPa. In this
region, third-nearest-neighbor exchange and dipolar interac-
tions are not expected to contribute significantly to the fer-
romagnetic ordering. The corresponding ferromagnetic or-
dering temperatures calculated as a function of the NN and
NNN Heisenberg exchange interactions in the range 0.2 K
	J1 /kB	1.0 K and −0.175 K�J2 /kB�−0.4 K with J1
� 
J2
 are shown in Fig. 11. Evidently, TC�J1 ,J2� is slightly
nonlinear in both J1 and J2 but approaches the relation given
in Eq. �21� for J1
−J2. We also simulated the AFM II to
paramagnetic transitions for J1� 
J2
 in the interval 0.13 K
	J1 /kB	0.18 K and −0.15 K�J2 /kB�−0.2 K. The cal-
culated critical temperature TN as a function of the exchange
constants J1 and J2 are shown in Figs. 11�a� and 11�b� as
open squares. As in the case of EuTe, TN�J1 ,J2� is strongly
nonlinear and both TC�J1 ,J2� and TN�J1 ,J2� were approxi-
mated by second-order polynomials as given in Eq. �19�.

Inserting the magnetic Grüneisen law of Eq. �18� for
J1�r1� and J2�r2� into the obtained TC�J1 ,J2� dependence, the
distance dependence of the EuSe exchange constants Ji�a�
was again obtained by fitting the calculated TC�a� to the
experimental Curie points of EuSe under hydrostatic pres-
sure represented by the filled symbols. Other than in the
preceding sections, not only the Grüneisen exponents n1 and
n2 but also the ambient pressure exchange constants J1,0 and
J2,0 were used as adjustable parameters in the fit routine,
only restricted by the condition �J1,0+J2,0� /kB=−5.2 mK, as
obtained from the critical field HC,3�0� as described above.
Unlike the situation in EuO and EuS, the behavior of J2�a�
influences the magnetic ordering considerably in the region
close to a0. Eventually, J1,0 /kB=0.223�0.016 K, J2,0 /kB
=−0.228�0.016 K, n1=24.9�1.8, and n2=12.2�6.0 are
obtained by the fit. As is demonstrated by the solid line in
Fig. 10, with these parameters the experimental TC�a� data
are precisely reproduced. The resulting dependence of J1 and
J2 versus lattice constant are depicted as dashed, respec-
tively, dashed-dotted lines in Fig. 10. At the bulk EuSe lattice
constant of a0=6.191 Å, the calculated J2 is slightly larger
in absolute value than J1. This changes drastically as the
lattice constant is reduced, with J1 crossing J2 already at low
hydrostatic strain and J1 becoming the dominant exchange
interaction for a�6.15 Å. The Grüneisen exponents for the
NN and the NNN exchange interactions are again in reason-
able agreement with the results obtained for EuTe, EuO, and
EuS.

To further justify our results on EuSe, we substituted the
obtained J1�a� and J2�a� into the theoretical TN�J1 ,J2� AFM
II to paramagnetic Néel function, obtained from the fit of Eq.
�19� to the squares in Fig. 11. Extrapolating TN�J1�a� ,J2�a��
to the bulk lattice constant a0=6.191 Å of EuSe, we ob-
tained TN,AFM II

MC �a0�=4.5 K, which is, as expected, above the
experimentally observed AFM II to FiM transition tempera-
ture of around 2 K �Refs. 9 and 11� but below the AFM I
Néel point of 4.7�0.1 K �Refs. 9, 11, and 40� �open symbol
in Fig. 10�. That the calculated AFM II to paramagnetic tran-
sition temperature of TN,AFM II

MC �a0� is very close to the experi-
mentally observed AFM I to paramagnetic TN,AFM I is also
expected in mean-field theory, where

TN,AFM I
MFA �J1,J2� = 4S�S + 1�J1, �24�
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TN,AFM II
MFA �J1,J2� = − 4S�S + 1�J2. �25�

Thus, TN,AFM I and TN,AFM II are nearly equal when J1 and J2
are almost equal in strength. Moreover, it can easily be
shown that taking third-nearest neighbor or biquadratic ex-
change terms into account would not favor either of the two
antiferromagnetic ordering types �at least in the mean-field
approximation� and the influence of dipolar interactions on
the ordering temperatures is typically on the order of less
than one Kelvin �see, e.g., Chap. 4 of Ref. 87�. In addition,
Lechner et al.’s �Ref. 11� results on biaxially strained EuSe
indicate that the AFM I ordering observed in unstrained
EuSe with TN,AFM I�4.7 K is energetically only slightly
lower than the Néel point TN,AFM II of the AFM II ordering
and a small biaxial strain already induces a transition from
one to the other.

VII. DISCUSSION

The exchange constants of all four EuX compounds and
their dependence on the lattice parameter obtained by our
MC analysis are summarized in Table II and Fig. 12. Evi-
dently, in all cases, the bulk exchange constants J1,0 and J2,0
are almost a factor of 2 larger compared to the values re-
ported in previous works, which in their analysis did not take
spin fluctuations into account. More importantly, we have
found that the magnetic properties and critical phase-
transition temperatures of all EuX compounds as a function
of hydrostatic strain, i.e., lattice parameter can be consis-
tently described by the magnetic Grüneisen power-law de-
pendence Ji�ri�=Ji,0�ri /ri,0�−ni with characteristic power-law
exponents of n1�10 for the NN exchange J1 and of n2
�20 for the NNN exchange J2 as indicated in Table II.

The corresponding dependence of the exchange interac-
tions on the lattice constant J1�a� and J2�a� for all com-
pounds is represented as dashed lines in Fig. 12. Evidently,
neither J1�a� nor J2�a� are continuous functions over differ-

ent members of the EuX family. Therefore, the effect of the
substitution of the anion elements cannot be simplified to a
variation in the lattice constant alone, as was already noted in
the previous work of Goncharenko et al.54 In fact, as shown
by Fig. 12, for a fixed lattice constant the absolute values of
the exchange constants J1 and J2 are always much larger for
the compound with larger anion element, i.e.,


Ji
EuTe�a�
 
 
Ji

EuSe�a�
 
 
Ji
EuS�a�
 
 
Ji

EuO�a�
 . �26�

For this reason, at a given lattice parameter the ordering
temperature is always significantly larger in EuTe compared
to EuSe, EuS, and EuO. This is consistent with the extrapo-
lation of the TC�a� data obtained from experiments.

Apart from the empirical magnetic Grüneisen law of Eq.
�18� as the interatomic distance dependence of the exchange
interactions in the EuX’s, we have also explored, whether
different functional dependencies might reproduce the ex-
perimental ordering temperatures as functions of the lattice
constant as well. Due to the strong superlinear increase in the
ferromagnetic ordering temperature with decreasing lattice
constant and the fact that TC�J1 ,J2� behaves very close to
linear in all EuX compounds, a linear distance dependence of
the exchange interactions can be categorically ruled out. One
other empirical form of J�r�, which could be expected from
the nature of quantum-mechanical two-electron multicenter
integrals, e.g., the Heitler-London approach to solve the
Schrödinger equation for the hydrogen molecule,88 is a
simple exponential distance law of the form

J�r� = J0 exp�− ��r − r0�� , �27�

=J0 exp�− �r0�r/r0 − 1�� , �28�

where J�r0�=J0 is again the exchange constant under normal
condition. Applying this exponential law in the simulated
critical temperatures TN�J1 ,J2� and TC�J1 ,J2� and fitting the
experimental critical points of the EuX’s as functions of the
lattice constant, it turns out, that the results for J1�a� and
J2�a� are practically indistinguishable from those received by
employing the Grüneisen power law. In essence, the calcu-
lated TN�a� and TC�a� curves as well as the J1�a� and J2�a�
distance dependencies of the exchange interactions coincide

TABLE II. Distance dependence of nearest �subscript 1� and
next-nearest-neighbor �subscript 2� exchange interactions of eu-
ropium chalcogenides under hydrostatic pressure as obtained in our
Monte Carlo study. For hydrostatic strains of typically less than
�10%, the exchange interactions can equally well be described by
either magnetic Grüneisen laws, Ji=Ji,0�ri /r0,i�−ni or by simple ex-
ponential laws, Ji=Ji,0 exp�−�i�ri−r0,i��—values labeled by *� are
assumptions.

EuTe EuSe EuS EuO

a0 �Å� 6.598 6.191 5.956 5.144

TN�a0� �K� 9.85 4.7

TC�a0� �K� 16.6 69.15

J1,0 /kB �K� 0.192 0.223 0.427 1.169

n1 20.6 24.9 22.4 19.6

�1 �Å−1� 4.56 5.99 5.47 5.44

J2,0 /kB �K� −0.313 −0.228 −0.306 −0.414

n2 10.4 12.2 10*� 10*�
�2 �Å−1� 1.63 2.31 1.68*� 1.94*�
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almost exactly with those depicted in Fig. 12. The reason for
this unambiguity is that the variations in the interatomic dis-
tances achievable by hydrostatic pressure experiments are
too small �	8%� to be able to definitely single out between
the two functional dependencies. However, while the dis-
tance dependence of the exchange interactions for the differ-
ent members of the EuX family show consistent and univer-
sal Grüneisen exponents ni for the NN as well as the NNN
exchange interactions, such a similarity cannot be found for
the scaling factors �i in the simple exponential description.
This is illustrated by Table II, where the �i, ni, and J0,i of all
EuX compounds derived in this work are listed, showing that
�1 varies in the range of 4.5–6 Å−1 and �2 from
1.6–2.3 Å−1. This difference follows from the fact that only
the magnetic Grüneisen law of Eq. �18� is defined in terms of
relative changes in the lattice parameter r /r0. For a better
comparison, the exponential distance law of Eq. �27� must be
therefore rewritten as a function of r /r0 as represented by
Eq. �28�. Then �r0 represents a dimensionless scaling factor
that can be compared for the different members of the EuX
family. As it turns out, the values for �ir0 are approximately
equal to the respective ni’s for all EuX compounds. This
observation becomes clear from a mathematical point of
view because the relation89

� = −

dJ

dr
�r�

J�r�
�29�

and the requirement that both J�r� and its derivative with
respect to r have to match at r0 yields the relation n=�r0.
Thus, for small deviations of r from r0 the power law and the
exponential dependence are practically equivalent when � is
chosen as �=n /r0.

The theoretical derivation of analytic scaling laws for the
distance dependence of the exchange interactions is far from
trivial and estimates can only be obtained as far as the ex-
change mechanisms are understood. According to Kasuya4

the most important contribution to the NN exchange interac-
tion consists of a virtual excitation of a Eu2+ 4f electron to
the 5d state of a NN cation and a subsequent intra-atomic d-f
exchange. For this type of exchange, a distance dependence
J1�r1��exp�−8r1 /r0� is considered. The NNN exchange may
consist of several competing components, which are consid-
ered to involve excitations of the anion p electrons to neigh-
boring cation 5d states. Kasuya did not give an estimate for
the distance dependence of the NNN superexchange. Lee and
Liu,71 on the other hand, proposed interband exchange
mechanisms for both J1 and J2 where the exchange of the
localized 4f moments is mediated by virtual excitations of
chalcogenide-valence-band p electrons into the empty
Eu2+ 5d conduction bands, together with a subsequent inter-
band exchange of the d electron �p hole� with the localized
4f electrons. In this semiconductor analog of the Ruderman-
Kittel-Kasuya-Yosida interaction J�r��r−4 is considered for

the distance dependencies of the NN and NNN exchange
interactions. Both estimates for the distance dependence of
the exchange interactions more or less support the
picture1–3,90 of the exchange interactions being continuous
functions across different members of the EuX family. Our
analysis clearly shows that the exchange interactions vary
much stronger as a function of the interatomic distances than
previously assumed. With a Grüneisen exponent of n1�20,
there is a particularly strong dependence of the NN exchange
J1 on the interatomic distances and the exponent n2�10 for
the NNN interaction J2 agrees exactly with Bloch’s �Ref. 57�
empirical 10/3 law for the volume dependence of the super-
exchange in magnetic solids. The conclusion from Fig. 12
that the differences in the magnetic ordering temperatures
between the EuX compounds cannot be attributed solely to
the differences in the lattice parameters is supported by re-
cent spectroscopic x-ray absorption experiments and ab ini-
tio calculations by Souza-Neto et al.91 that showed that the
substitution of the anion elements not only changes the mag-
nitude of Eu f-d intermixing but also affects the f-d-p hy-
bridization via the anion p states. This partially counteracts
the increase in the ordering temperatures otherwise expected
from the decrease in lattice constant when going from EuTe
to EuO.

The possibility to integrate EuO with Si and GaN �Refs.
31 and 32� together with the fact that TC can be increased by
doping33,34 and hydrostatic strain44,45,92 to temperatures up to
200 K led to a renewed interest in the ferromagnetic eu-
ropium monochalcogenides as possible materials for spin-
tronic devices. As hydrostatic pressure is not an option for
practical applications, epitaxial strain has been suggested as
an alternative way to increase the ferromagnetic ordering
temperature in EuO.93 Ingle and Elfimov showed in their ab
initio study that biaxial compressive strain increases TC in
EuO similarly to the situation in EuSe �Ref. 11� and
EuTe,52,53 where the antiferromagnetic ordering temperature
was shown to increase with reduction in in-plane lattice con-
stant of strained epilayers. This increase can be easily repro-
duced by Monte Carlo calculations with proper adjustment
of the exchange constants and in this way the magnetic be-
havior even of ultrathin EuTe layers can be precisely
described.53

VIII. CONCLUSION

In summary, we have applied the Monte Carlo method to
determine the exchange integrals in the EuX compounds. To
this end, we have determined the general dependences of the
magnetic ordering temperatures, i.e., ferromagnetic
TC�J1 ,J2� and antiferromagnetic TN�J1 ,J2� as a function of
the NN and NNN exchange interactions of a system of clas-
sical Heisenberg spins at the sites of an fcc lattice. This was
subsequently applied to determine the dependence of the NN
and NNN exchange interactions J1 and J1 on the interatomic
distances ri between the Eu ions from hydrostatic pressure
experiments using the magnetic Grüneisen law57 Ji�ri��ri

−ni.
For all members of the EuX family, the experimental data
can be consistently described by universal Grüneisen expo-
nents n1�20 and n2�10. The latter conforms exactly with
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Bloch’s empirical 10/3 law for the volume dependence of the
superexchange interaction.57 Although an exponential dis-
tance dependence can also be fitted to the experimental data,
no universal scaling behavior is found in this case. Compar-
ing the different EuX compounds, it is also found that the
interaction constants change discontinuously when the anion
elements change from X=Te, Se, S, to O because the differ-
ent anion electron affinity changes the hybridization and
mixing of the electronic bands responsible for the coupling
of the magnetic moments. Thus, the differences in the ex-
change constants cannot be merely attributed to the differ-
ence in the lattice constants in this case. On the other hand,
the strong increase in the exchange constants with decreasing
lattice parameter provides ample room for increasing the

magnetic ordering temperatures in strained heteroepitaxial
structures, which is an important prerequisite for device
applications.

ACKNOWLEDGMENTS

This work was supported by the Austrian Science Funds
FWF, the FONE-Program of the ESF �SPINTRA�, the Ge-
sellschaft fuer Mikro- and Nanoelektronik, Vienna, and the
Austrian NANO Initiative �NSI�. The authors would like to
thank Reinhard Folk for useful hints and valuable discus-
sions and Daniel Gruber and Johann Messner for technical
assistance.

*Author to whom correspondence should be addressed;
gunther.springholz@jku.at
1 W. Zinn, J. Magn. Magn. Mater. 3, 23 �1976�.
2 P. Wachter, in Handbook on the Physics and Chemistry of the

Rare Earths, edited by K. A. Gschneidner, Jr. and L. Eyring
�Elsevier, North-Holland, Amsterdam, 1979�, Vol. 2, p. 507.

3 A. Mauger and C. Godart, Phys. Rep. 141, 51 �1986�.
4 T. Kasuya, IBM J. Res. Dev. 14, 214 �1970�.
5 M. S. Seehra and T. M. Giebultowicz, Phys. Rev. B 38, 11898

�1988�.
6 B. T. Matthias, R. M. Bozorth, and J. H. Van Vleck, Phys. Rev.

Lett. 7, 160 �1961�.
7 T. R. McGuire, B. E. Argyle, M. W. Shafer, and J. S. Smart,

Appl. Phys. Lett. 1, 17 �1962�.
8 N. F. Oliveira, Jr., S. Foner, Y. Shapira, and T. B. Reed, Phys.

Rev. B 5, 2634 �1972�.
9 R. Griessen, M. Landolt, and H. R. Ott, Solid State Commun. 9,

2219 �1971�.
10 H. Fukuma, T. Komatsubara, T. Suzuki, E. Kaldis, and T. Ka-

suya, J. Phys. Soc. Jpn. 54, 3067 �1985�.
11 R. T. Lechner, G. Springholz, T. U. Schülli, J. Stangl, T.

Schwarzl, and G. Bauer, Phys. Rev. Lett. 94, 157201 �2005�.
12 R. Kirchschlager, W. Heiss, R. T. Lechner, G. Bauer, and G.

Springholz, Appl. Phys. Lett. 85, 67 �2004�.
13 W. Heiss, G. Prechtl, and G. Springholz, Phys. Rev. B 63,

165323 �2001�.
14 P. G. Steeneken, L. H. Tjeng, I. Elfimov, G. A. Sawatzky, G.

Ghiringhelli, N. B. Brookes, and D.-J. Huang, Phys. Rev. Lett.
88, 047201 �2002�.

15 T. S. Santos and J. S. Moodera, Phys. Rev. B 69, 241203�R�
�2004�.

16 T. S. Santos, J. S. Moodera, K. V. Raman, E. Negusse, J. Hol-
royd, J. Dvorak, M. Liberati, Y. U. Idzerda, and E. Arenholz,
Phys. Rev. Lett. 101, 147201 �2008�.

17 J. S. Moodera, X. Hao, G. A. Gibson, and R. Meservey, Phys.
Rev. Lett. 61, 637 �1988�.

18 X. Hao, J. S. Moodera, and R. Meservey, Phys. Rev. B 42, 8235
�1990�.

19 A. T. Filip, P. LeClair, C. J. P. Smits, J. T. Kohlhepp, H. J. M.
Swagten, B. Koopmans, and W. J. M. de Jonge, Appl. Phys.
Lett. 81, 1815 �2002�.

20 P. LeClair, J. K. Ha, H. J. M. Swagten, J. T. Kohlhepp, C. H. van
de Vin, and W. J. M. de Jonge, Appl. Phys. Lett. 80, 625 �2002�.

21 C. J. P. Smits, A. T. Filip, J. T. Kohlhepp, H. J. M. Swagten, B.
Koopmans, and W. J. M. de Jonge, J. Appl. Phys. 95, 7405
�2004�.

22 J. Trbovic, C. Ren, P. Xiong, and S. von Molnár, Appl. Phys.
Lett. 87, 082101 �2005�.

23 T. Nagahama, T. S. Santos, and J. S. Moodera, Phys. Rev. Lett.
99, 016602 �2007�.

24 C. Ren, J. Trbovic, R. L. Kallaher, J. G. Braden, J. S. Parker, S.
von Molnár, and P. Xiong, Phys. Rev. B 75, 205208 �2007�.

25 J. S. Moodera, R. Meservey, and X. Hao, Phys. Rev. Lett. 70,
853 �1993�.

26 G. Busch, J. Schoenes, and P. Wachter, Solid State Commun. 8,
1841 �1970�.

27 J. Schoenes and P. Wachter, Physica B & C 86-88, 125 �1977�.
28 M. Suekane, G. Kido, N. Miura, and S. Chikazumi, J. Magn.

Magn. Mater. 31-34, 589 �1983�.
29 H. Hori, R. Akimoto, M. Kobayashi, S. Miyamoto, M. Furusawa,

N. Kreines, A. Yamagishi, and M. Date, Physica B 201, 438
�1994�.

30 M. R. Koblischka and R. J. Wijngaarden, Supercond. Sci. Tech-
nol. 8, 199 �1995�.

31 J. Lettieri, V. Vaithyanathan, S. K. Eah, J. Stephens, V. Sih, D. D.
Awschalom, J. Levy, and D. G. Schlom, Appl. Phys. Lett. 83,
975 �2003�.

32 A. Schmehl et al., Nature Mater. 6, 882 �2007�.
33 T. J. Konno, N. Ogawa, K. Wakoh, K. Sumiyama, and K. Su-

zuki, Jpn. J. Appl. Phys. 35, 6052 �1996�.
34 H. Ott, S. J. Heise, R. Sutarto, Z. Hu, C. F. Chang, H. H. Hsieh,

H.-J. Lin, C. T. Chen, and L. H. Tjeng, Phys. Rev. B 73, 094407
�2006�.

35 D. B. McWhan, P. C. Souers, and G. Jura, Phys. Rev. 143, 385
�1966�.

36 V. C. Srivastava and R. Stevenson, Can. J. Phys. 46, 2703
�1968�.

37 U. F. Klein, G. Wortmann, and G. M. Kalvius, J. Magn. Magn.
Mater. 3, 50 �1976�.

38 U. F. Klein, J. Moser, G. Wortmann, and G. M. Kalvius, Physica
B 86-88, 118 �1977�.

39 J. Moser, G. Wortmann, N. Bykovetz, and G. M. Kalvius, J.

SÖLLINGER et al. PHYSICAL REVIEW B 81, 155213 �2010�

155213-14

http://dx.doi.org/10.1016/0304-8853(76)90007-X
http://dx.doi.org/10.1016/0370-1573(86)90139-0
http://dx.doi.org/10.1147/rd.143.0214
http://dx.doi.org/10.1103/PhysRevB.38.11898
http://dx.doi.org/10.1103/PhysRevB.38.11898
http://dx.doi.org/10.1103/PhysRevLett.7.160
http://dx.doi.org/10.1103/PhysRevLett.7.160
http://dx.doi.org/10.1063/1.1777353
http://dx.doi.org/10.1103/PhysRevB.5.2634
http://dx.doi.org/10.1103/PhysRevB.5.2634
http://dx.doi.org/10.1016/0038-1098(71)90634-X
http://dx.doi.org/10.1016/0038-1098(71)90634-X
http://dx.doi.org/10.1143/JPSJ.54.3067
http://dx.doi.org/10.1103/PhysRevLett.94.157201
http://dx.doi.org/10.1063/1.1771454
http://dx.doi.org/10.1103/PhysRevB.63.165323
http://dx.doi.org/10.1103/PhysRevB.63.165323
http://dx.doi.org/10.1103/PhysRevLett.88.047201
http://dx.doi.org/10.1103/PhysRevLett.88.047201
http://dx.doi.org/10.1103/PhysRevB.69.241203
http://dx.doi.org/10.1103/PhysRevB.69.241203
http://dx.doi.org/10.1103/PhysRevLett.101.147201
http://dx.doi.org/10.1103/PhysRevLett.61.637
http://dx.doi.org/10.1103/PhysRevLett.61.637
http://dx.doi.org/10.1103/PhysRevB.42.8235
http://dx.doi.org/10.1103/PhysRevB.42.8235
http://dx.doi.org/10.1063/1.1503406
http://dx.doi.org/10.1063/1.1503406
http://dx.doi.org/10.1063/1.1436284
http://dx.doi.org/10.1063/1.1682931
http://dx.doi.org/10.1063/1.1682931
http://dx.doi.org/10.1063/1.2034089
http://dx.doi.org/10.1063/1.2034089
http://dx.doi.org/10.1103/PhysRevLett.99.016602
http://dx.doi.org/10.1103/PhysRevLett.99.016602
http://dx.doi.org/10.1103/PhysRevB.75.205208
http://dx.doi.org/10.1103/PhysRevLett.70.853
http://dx.doi.org/10.1103/PhysRevLett.70.853
http://dx.doi.org/10.1016/0038-1098(70)90330-3
http://dx.doi.org/10.1016/0038-1098(70)90330-3
http://dx.doi.org/10.1016/0378-4363(77)90255-8
http://dx.doi.org/10.1016/0304-8853(83)90591-7
http://dx.doi.org/10.1016/0304-8853(83)90591-7
http://dx.doi.org/10.1016/0921-4526(94)91133-9
http://dx.doi.org/10.1016/0921-4526(94)91133-9
http://dx.doi.org/10.1088/0953-2048/8/4/002
http://dx.doi.org/10.1088/0953-2048/8/4/002
http://dx.doi.org/10.1063/1.1593832
http://dx.doi.org/10.1063/1.1593832
http://dx.doi.org/10.1038/nmat2012
http://dx.doi.org/10.1143/JJAP.35.6052
http://dx.doi.org/10.1103/PhysRevB.73.094407
http://dx.doi.org/10.1103/PhysRevB.73.094407
http://dx.doi.org/10.1103/PhysRev.143.385
http://dx.doi.org/10.1103/PhysRev.143.385
http://dx.doi.org/10.1016/0304-8853(76)90010-X
http://dx.doi.org/10.1016/0304-8853(76)90010-X
http://dx.doi.org/10.1016/0378-4363(77)90252-2
http://dx.doi.org/10.1016/0378-4363(77)90252-2
http://dx.doi.org/10.1016/0304-8853(79)90335-4


Magn. Magn. Mater. 12, 77 �1979�.
40 H. Fujiwara, H. Kadomatsu, M. Kurisu, T. Hihara, K. Kojima,

and T. Kamigaichi, Solid State Commun. 42, 509 �1982�.
41 C. Sauer, A. Zaker, and W. Zinn, J. Magn. Magn. Mater. 31-34,

423 �1983�.
42 T. Hihara, K. Hiraoka, K. Kojima, T. Kamigaichi, and T. Kino, J.

Magn. Magn. Mater. 52, 443 �1985�.
43 V. G. Tissen and E. G. Ponyatovskii, JETP Lett. 46, 361 �1987�.
44 J. Moser, G. M. Kalvius, and W. Zinn, Hyperfine Interact. 41,

499 �1988�.
45 M. M. Abd-Elmeguid and R. D. Taylor, Phys. Rev. B 42, 1048

�1990�.
46 I. N. Goncharenko and I. Mirebeau, Europhys. Lett. 37, 633

�1997�.
47 M. Ishizuka, Y. Kai, R. Akimoto, M. Kobayashi, K. Amaya, and

S. Endo, J. Magn. Magn. Mater. 166, 211 �1997�.
48 I. N. Goncharenko and I. Mirebeau, Phys. Rev. Lett. 80, 1082

�1998�.
49 G. Springholz and G. Bauer, Phys. Rev. B 48, 10998 �1993�.
50 N. Frank, G. Springholz, and G. Bauer, Phys. Rev. Lett. 73,

2236 �1994�.
51 A. Stachow-Wójcik et al., Phys. Rev. B 60, 15220 �1999�.
52 H. KJpa, G. Springholz, T. M. Giebultowicz, K. I. Goldman, C.

F. Majkrzak, P. Kacman, J. Blinowski, S. Holl, H. Krenn, and G.
Bauer, Phys. Rev. B 68, 024419 �2003�.

53 E. Schierle, E. Weschke, A. Gottberg, W. Söllinger, W. Heiss, G.
Springholz, and G. Kaindl, Phys. Rev. Lett. 101, 267202 �2008�.

54 I. N. Goncharenko, I. Mirebeau, and A. Ochiai, Hyperfine Inter-
act. 128, 225 �2000�.

55 D. P. Landau and K. Binder, A Guide to Monte Carlo Simula-
tions in Statistical Physics �Cambridge University Press, Cam-
bridge, England, 2000�.

56 S. M. Scott and T. M. Giebultowicz, J. Appl. Phys. 91, 8724
�2002�.

57 D. Bloch, J. Phys. Chem. Solids 27, 881 �1966�.
58 G. Springholz and G. Bauer, Appl. Phys. Lett. 62, 2399 �1993�.
59 N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.

Teller, and E. Teller, J. Chem. Phys. 21, 1087 �1953�.
60 D. S. Ritchie and M. E. Fisher, Phys. Rev. B 5, 2668 �1972�.
61 P. Peczak, A. M. Ferrenberg, and D. P. Landau, Phys. Rev. B 43,

6087 �1991�.
62 K. Chen, A. M. Ferrenberg, and D. P. Landau, Phys. Rev. B 48,

3249 �1993�.
63 R. M. Nowotny and K. Binder, Z. Phys. B: Condens. Matter 77,

287 �1989�.
64 W. Nolting, Quantentheorie des Magnetismus �B. G. Teubner,

Stuttgart, 1986�, Vol. 2.
65 P. W. Anderson, Phys. Rev. 83, 1260 �1951�.
66 W. Heiss, G. Prechtl, and G. Springholz, Appl. Phys. Lett. 78,

3484 �2001�.

67 W. Heiss, R. Kirchschlager, G. Springholz, Z. Chen, M. Deb-
nath, and Y. Oka, Phys. Rev. B 70, 035209 �2004�.

68 M. E. Fisher, Philos. Mag. 7, 1731 �1962�.
69 U. Köbler, I. Apfelstedt, K. Fischer, W. Zinn, E. Scheer, J. Wos-

nitza, H. v. Löhneysen, and T. Brückel, Z. Phys. B: Condens.
Matter 92, 475 �1993�.

70 J. Kunes, W. Ku, and W. E. Picket, J. Phys. Soc. Jpn. 74, 1408
�2005�.

71 V.-C. Lee and L. Liu, Phys. Rev. B 30, 2026 �1984�.
72 D. I. Khomskii and G. A. Sawatzky, Solid State Commun. 102,

87 �1997�.
73 A. Radomska and T. Balcerzak, Phys. Status Solidi B 225, 229

�2001�.
74 L. Passell, O. W. Dietrich, and J. Als-Nielsen, Phys. Rev. B 14,

4897 �1976�.
75 H. G. Bohn, W. Zinn, B. Dorner, and A. Kollmar, J. Appl. Phys.

52, 2228 �1981�.
76 H. A. Mook, Phys. Rev. Lett. 46, 508 �1981�.
77 B. C. Passenheim, D. C. McCollum, Jr., and J. Callaway, Phys.

Lett. 23, 634 �1966�.
78 J. A. J. Henderson, G. R. Brown, T. B. Reed, and H. Meyer, J.

Appl. Phys. 41, 946 �1970�.
79 P. K. Schwob and G. E. Everett, J. Phys. Colloq. �Paris� 32,

C1-1066 �1971�.
80 O. W. Dietrich, A. J. Henderson, and H. Meyer, Phys. Rev. B 12,

2844 �1975�.
81 S. H. Charap and E. L. Boyd, Phys. Rev. 133, A811 �1964�.
82 E. L. Boyd, Phys. Rev. 145, 174 �1966�.
83 A. Comment, J.-P. Ansermet, C. P. Slichter, H. Rho, C. S. Snow,

and S. L. Cooper, Phys. Rev. B 72, 014428 �2005�.
84 P. K. Schwob, M. Tachiki, and G. E. Everett, Phys. Rev. B 10,

165 �1974�.
85 S. Heathman, T. Le Bihan, S. Darracq, C. Abraham, D. J. A. De

Ridder, U. Benedict, K. Mattenberger, and O. Vogt, J. Alloys
Compd. 230, 89 �1995�.

86 H. G. Zimmer, K. Takemura, K. Syassen, and K. Fischer, Phys.
Rev. B 29, 2350 �1984�.

87 S. Blundell, Magnetism in Condensed Matter, Oxford Master
Series in Condensed Matter Physics �Oxford University Press,
New York, 2001�.

88 W. Heitler and F. London, Z. Phys. A 44, 455 �1927�.
89 R. E. Coffman and G. R. Buettner, J. Phys. Chem. 83, 2387

�1979�.
90 T. R. McGuire and M. W. Shafer, J. Appl. Phys. 35, 984 �1964�.
91 N. M. Souza-Neto, D. Haskel, Y.-C. Tseng, and G. Lapertot,

Phys. Rev. Lett. 102, 057206 �2009�.
92 D. DiMarzio, M. Croft, N. Sakai, and M. W. Shafer, Phys. Rev.

B 35, 8891 �1987�.
93 N. J. C. Ingle and I. S. Elfimov, Phys. Rev. B 77, 121202�R�

�2008�.

EXCHANGE INTERACTIONS IN EUROPIUM… PHYSICAL REVIEW B 81, 155213 �2010�

155213-15

http://dx.doi.org/10.1016/0304-8853(79)90335-4
http://dx.doi.org/10.1016/0038-1098(82)90631-7
http://dx.doi.org/10.1016/0304-8853(83)90305-0
http://dx.doi.org/10.1016/0304-8853(83)90305-0
http://dx.doi.org/10.1016/0304-8853(85)90328-2
http://dx.doi.org/10.1016/0304-8853(85)90328-2
http://dx.doi.org/10.1007/BF02400437
http://dx.doi.org/10.1007/BF02400437
http://dx.doi.org/10.1103/PhysRevB.42.1048
http://dx.doi.org/10.1103/PhysRevB.42.1048
http://dx.doi.org/10.1209/epl/i1997-00203-9
http://dx.doi.org/10.1209/epl/i1997-00203-9
http://dx.doi.org/10.1016/S0304-8853(96)00432-5
http://dx.doi.org/10.1103/PhysRevLett.80.1082
http://dx.doi.org/10.1103/PhysRevLett.80.1082
http://dx.doi.org/10.1103/PhysRevB.48.10998
http://dx.doi.org/10.1103/PhysRevLett.73.2236
http://dx.doi.org/10.1103/PhysRevLett.73.2236
http://dx.doi.org/10.1103/PhysRevB.60.15220
http://dx.doi.org/10.1103/PhysRevB.68.024419
http://dx.doi.org/10.1103/PhysRevLett.101.267202
http://dx.doi.org/10.1023/A:1012639817199
http://dx.doi.org/10.1023/A:1012639817199
http://dx.doi.org/10.1063/1.1454986
http://dx.doi.org/10.1063/1.1454986
http://dx.doi.org/10.1016/0022-3697(66)90262-9
http://dx.doi.org/10.1063/1.109377
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1103/PhysRevB.5.2668
http://dx.doi.org/10.1103/PhysRevB.43.6087
http://dx.doi.org/10.1103/PhysRevB.43.6087
http://dx.doi.org/10.1103/PhysRevB.48.3249
http://dx.doi.org/10.1103/PhysRevB.48.3249
http://dx.doi.org/10.1007/BF01313673
http://dx.doi.org/10.1007/BF01313673
http://dx.doi.org/10.1103/PhysRev.83.1260
http://dx.doi.org/10.1063/1.1374222
http://dx.doi.org/10.1063/1.1374222
http://dx.doi.org/10.1103/PhysRevB.70.035209
http://dx.doi.org/10.1080/14786436208213705
http://dx.doi.org/10.1007/BF01320511
http://dx.doi.org/10.1007/BF01320511
http://dx.doi.org/10.1143/JPSJ.74.1408
http://dx.doi.org/10.1143/JPSJ.74.1408
http://dx.doi.org/10.1103/PhysRevB.30.2026
http://dx.doi.org/10.1016/S0038-1098(96)00717-X
http://dx.doi.org/10.1016/S0038-1098(96)00717-X
http://dx.doi.org/10.1002/(SICI)1521-3951(200105)225:1<229::AID-PSSB229>3.0.CO;2-L
http://dx.doi.org/10.1002/(SICI)1521-3951(200105)225:1<229::AID-PSSB229>3.0.CO;2-L
http://dx.doi.org/10.1103/PhysRevB.14.4897
http://dx.doi.org/10.1103/PhysRevB.14.4897
http://dx.doi.org/10.1063/1.328887
http://dx.doi.org/10.1063/1.328887
http://dx.doi.org/10.1103/PhysRevLett.46.508
http://dx.doi.org/10.1016/0031-9163(66)90197-1
http://dx.doi.org/10.1016/0031-9163(66)90197-1
http://dx.doi.org/10.1063/1.1659037
http://dx.doi.org/10.1063/1.1659037
http://dx.doi.org/10.1051/jphyscol:19711383
http://dx.doi.org/10.1051/jphyscol:19711383
http://dx.doi.org/10.1103/PhysRevB.12.2844
http://dx.doi.org/10.1103/PhysRevB.12.2844
http://dx.doi.org/10.1103/PhysRev.133.A811
http://dx.doi.org/10.1103/PhysRev.145.174
http://dx.doi.org/10.1103/PhysRevB.72.014428
http://dx.doi.org/10.1103/PhysRevB.10.165
http://dx.doi.org/10.1103/PhysRevB.10.165
http://dx.doi.org/10.1016/0925-8388(95)01940-5
http://dx.doi.org/10.1016/0925-8388(95)01940-5
http://dx.doi.org/10.1103/PhysRevB.29.2350
http://dx.doi.org/10.1103/PhysRevB.29.2350
http://dx.doi.org/10.1021/j100481a017
http://dx.doi.org/10.1021/j100481a017
http://dx.doi.org/10.1063/1.1713568
http://dx.doi.org/10.1103/PhysRevLett.102.057206
http://dx.doi.org/10.1103/PhysRevB.35.8891
http://dx.doi.org/10.1103/PhysRevB.35.8891
http://dx.doi.org/10.1103/PhysRevB.77.121202
http://dx.doi.org/10.1103/PhysRevB.77.121202

