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Within the time-dependent Gutzwiller approximation applied to one-dimensional Holstein and Su-
Schrieffer-Heeger-Hubbard models, we study the influence of electron correlations on the phonon self-energy.
For the local Holstein coupling, we find that the phonon-frequency renormalization gets weakened upon
increasing the on-site interaction U for all momenta. In contrast, correlations can enhance the phonon-
frequency shift for small wave vectors in the Su-Schrieffer-Heeger-Hubbard model. Moreover, the time-
dependent Gutzwiller approximation applied to the latter model provides a mechanism which leads to phonon-
frequency corrections at intermediate momenta due to the coupling with double-occupancy fluctuations. Both
models display a shift of the nesting induced to a q=0 instability when the on-site interaction becomes
sufficiently strong and thus establishing phase separation as a generic phenomenon of strongly correlated
electron-phonon coupled systems.
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I. INTRODUCTION

Transition-metal compounds are usually characterized by
strong electron-electron and electron-phonon interactions
�for an overview cf. Ref. 1�. The interplay of these interac-
tions can give rise to a large variety of interesting electronic
properties which also reflect in the energy and momentum
structure of the phonons. In this regard, a well-known phe-
nomenon is the occurrence of bond-stretching phonon
anomalies which are observed in high-Tc cuprates
La2−xSrxCuO4 �LSCO, Refs. 2 and 3� and YBa22Cu3O6+x,

4

HgBa2CuO4+�,5 Nd1.86Ce0.14CuO4+�,6 Bi2Sr1.6La0.4Cu2O6+�

�Ref. 7� but also in Pb- and K-doped BaBiO3,8 Sr2RuO4,9

La1.69Sr0.31NiO4,10 and La1−xSrxMnO3.11

The interpretation of such experiments requires an under-
standing of the renormalization of phonons in a strongly cor-
related electron system which is the purpose of the present
paper. Such an analysis is usually based on Hubbard-type
models and the implementation of the electron-lattice cou-
pling is possible via the dependency of on-site energies and
of hopping integrals as a function of some atomic coordi-
nates. There are two generic one-dimensional �1D� models
which allow for a separate consideration of both couplings.
In the first case, where one restricts to the interaction be-
tween electron density and coordinate of the same lattice
site, the coupling is usually termed a Holstein or molecular
crystal model.12 In the second case, when the hopping be-
tween nearest-neighbor sites is expanded in terms of the po-
sitions of these sites, the resulting electron-lattice coupling is
often named after Su, Schrieffer, and Heeger �SSH� who
have used this type of interaction for the analysis of solitons
in polyacetylene.13

Since lattice vibrations are partially screened by the elec-
trons, the latter can have a profound influence on the effec-
tive dispersion of the phonons. One example is the Kohn
anomaly14 caused by the abrupt change in electronic screen-
ing near wave vectors q which are twice the Fermi momen-

tum kF �nesting�. Moreover, electronic correlations alter the
electron dynamics of the system and thus also affect the pho-
non dispersion. In the case of a Holstein coupling, correla-
tions suppress charge fluctuations �and the related e-ph cou-
pling� at large momenta q�2kF more than at low momenta
q�0. Thus it has been shown15,16 that the formation of a
charge-density wave �CDW� is suppressed in favor of a
phase-separation instability. For the phonons, this has the
immediate consequence that the dispersion anomaly is
shifted from the Kohn anomaly wave vector q=2kF to q=0.

Naturally the interplay between lattice and electronic de-
grees of freedom has already been investigated by means of
several techniques. Some of the approaches, such as quan-
tum Monte Carlo �QMC�,17–23 exact diagonalization,24–27 and
dynamical mean-field theory28–34 are intrinsically nonpertur-
bative but are numerically challenging and suffer some limi-
tations �small lattice sizes, no momentum resolution, etc.�.
On the other hand, �semi�analytical approaches such as
variational ones, slave boson, and large-N expansion15,35–44

deal with infinite systems but within approximate treatments.
It should be noticed that most of the work has been done on
the Hubbard-Holstein model. The papers which explicitly
deal with an Hubbard-SSH model18,22,35,36,39,40 mainly focus
on the interplay between correlations and dimerization or
superconductivity, respectively. Little has been said on the
renormalization of the electron-phonon coupling and its mo-
mentum dependence in this case, which is the problem which
we address.

In this paper, we want to study the correlation effects on
the phonon excitations for both Holstein and SSH models on
the same footing. To this aim, we need a method which is not
numerically very demanding but still provides a quantita-
tively acceptable treatment of the strongly correlated regime.
In this regard, we find the Gutzwiller approximation �GA�
supplemented with random-phase approximation �RPA�-type
fluctuations, the so-called time-dependent GA �TDGA�, a
good compromise. This technique corresponds to Vollhardt’s
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Fermi-liquid �FL� approach45 with the fluctuations extended
to finite frequencies and momenta. Electron-phonon interac-
tions will be treated in the Born-Oppenheimer approxima-
tion.

It is worth mentioning that the TDGA approach has been
tested in various situations and found to be accurate com-
pared with exact diagonalization.46–49 Computations for real-
istic models have provided a description of different physical
quantities in agreement with experiment.50–52

In the discussion of results, we will restrict to one-
dimensional systems. This clearly simplifies the computa-
tions and the presentation of the results. It has the drawback
that strictly one-dimensional systems are those for which our
Fermi-liquid-like approach is expected to be less suited.
Thus our results should not be taken too literally in this case.
On the other hand, the qualitative behavior we find is rather
independent of dimension. For example, for the Holstein
model, we find here the same qualitative behavior for the
charge response as we have found before in larger
dimensions.53 Despite the inadequacy of a Fermi-liquid treat-
ment for strictly one-dimensional systems, several real sys-
tems are only quasi-one-dimensional and in those cases, our
computations can be applicable. We also found that in certain
filling ranges the results are surprisingly accurate.

The scheme of our paper is as follows. In Sec. II, we
define the model and show how the Hubbard-Holstein and
SSH Hamiltonians are represented within the GA. After in-
troducing the TDGA in Sec. II C, the phonon self-energy for
both Holstein and SSH couplings is derived in Secs. II D and
II E. In Secs. III A and III B, we present the results for the
phonon self-energies of the Holstein and SSH-Hubbard mod-
els, respectively. Our conclusions can be found in Sec. IV
and details of our calculations are given in the Appendix A.
In Appendix B, we provide specific comparisons of our re-
sults with exact and Monte Carlo results in one dimension.

II. FORMALISM

A. Model

Our investigations are based on the following Hamil-
tonian:

H = He + He-ph + Hph, �1�

where He denotes the Hubbard model, He-ph the coupling
between electrons and phonons, and Hph the bare phonon
part.

Here we restrict to one-dimensional systems and consider
for the electronic part hopping between nearest neighbors,

He = − t�
i,�

�ci,�
† ci+1,� + ci+1,�

† ci,�� + U�
i

ni,↑ni,↓, �2�

where ci,�
�†� destroys �creates� an electron on lattice site Ri and

ni,�=ci,�
† ci,�.

We consider two types of electron-phonon coupling. The
first is a local Holstein interaction initially motivated from a
molecular crystal model,

He-ph
hol = − ��

i,�
ui�ni,� − �ni,��� , �3�

where ui is the coordinate of an internal mode of the mol-
ecules affecting the site energy at site i. Its dynamics is de-
scribed by

Hph
hol =

1

2
K�

i

ui
2 +

1

2M
�

i

pi
2 �4�

and corresponds to dispersionless phonons. Here K and M
denote elastic constant and reduced mass and pi are the con-
jugate momenta at site i.

The second type of coupling originates from the depen-
dence of the electronic hopping on the atomic coordinates.
For the one-dimensional model under consideration, this so-
called SSH or Peierls interaction is given by

He-ph
SSH = − �t�

i,�
�ui+1 − ui��ci,�

† ci+1,� + ci+1,�
† ci,�� �5�

and in this case, the lattice dynamics is determined from

Hph
SSH =

1

2
K�

i

�ui+1 − ui�2 +
1

2M
�

i

pi
2. �6�

The parameter ��0 is the logarithmic derivative of the hop-
ping integral with respect to the interatomic distance. We fix
the lattice space a=1.

B. Gutzwiller approximation

We treat the model Eq. �1� within the GA supplemented
by Gaussian fluctuations, the evaluation of which are out-
lined in the next section. The GA can either be motivated
from a slave-boson approach54 or a variational ansatz for-
mally evaluated in infinite dimensions.55,56 The variational

wave function is given by ���= P̂���, where the Gutzwiller

projector P̂ acts on the Slater determinant ���. This approach
incorporates the correlation-induced renormalization of the
kinetic energy and treats the Hubbard on-site interaction via
the variational double-occupancy parameters Di. For each
term in the Hamiltonian, we derive an energy functional
EGA�� ,D	
���H���, where we have introduced the one-
body density matrix associated with the Slater determinant
�i,j,�= ���ci,�

† cj,����. Specifically the energy functional for
the electronic part Eq. �2� reads as

Ee
GA��,D	 = − t�

i,�
zi,�zi+1,���i,i+1,� + �i+1,i,�� + U�

i

Di

�7�

and the z factors are given by

zi� =
���ii,� − Di��1 − �ii + Di� + ���ii,−� − Di�Di

��ii,��1 − �ii,��
. �8�

Further on, �ij =���ij,�.
Within the Born-Oppenheimer approximation, the elec-

tronic expectation value of He-ph determines the lattice po-
tential. In contrast to the local Holstein coupling, for elec-

VON OELSEN et al. PHYSICAL REVIEW B 81, 155116 �2010�

155116-2



tronic degrees, the transitive SSH electron-phonon
interaction Eq. �5� is also renormalized by the z factors and
the corresponding energy functional reads as

Ee-ph
SSH,GA = − �t�

i,�
�ui+1 − ui�zi,�zi+1,� 	 ��i,i+1,� + �i+1,i,�� .

�9�

The GA variational ground state is then obtained upon
minimizing EGA with respect to �D
, �u
, and � under the
constraint that the latter derives from a Slater determinant,
i.e., �2=�. In the following, our starting point will be an
homogeneous state. The formation of possible charge-density
wave �in case of the Holstein model� and dimerized �in case
of the SSH model� states will appear as instabilities of the
homogeneous state. Thus our initial ground state is charac-
terized by ui
0, �ii,�
�0 /2, Di
D0, and zi
z0. The
ground-state energy per site is therefore simply determined
from Eq. �7� and reads

EGA��,D	/N = z0
2e0 + UD0 �10�

and e0 denotes the energy per site of a noninteracting system
with charge density �0. For later use, we also denote the
critical value of the on-site repulsion U=Uc=32t /
 for a
half-filled one-dimensional chain at which the Brinkman-
Rice �BR� transition �i.e., complete localization of the charge
carriers with D0=0� takes place.

C. Time-dependent Gutzwiller approximation

In order to study fluctuations beyond the GA saddle-point
solution, necessary for the evaluation of the phonon self-
energies, we use the time-dependent GA which has been de-
veloped in Refs. 46 and 47.

We briefly illustrate the formalism for the electronic part
He and further on show how lattice fluctuations can be
implemented into the theory. Further details can be found in
Refs. 46, 47, and 53.

We study the response of the system to a small time-
dependent external field which produces time-dependent
fluctuations in the density matrix �� and the double-
occupancy �D. This can then be obtained by expanding EGA

up to quadratic order in the density and double-occupancy
fluctuations �� and �D.

For a translationally invariant ground state, it is conve-
nient to perform the expansion in momentum space. Besides
the local fluctuation ��q, we introduce the bond charge
fluctuation,53

�Ti = − t �
��=�1

���i+�,i,� + ��i,i+�,�� .

It is convenient to introduce the hopping factor in the defi-
nition of �Ti so that it can also be interpreted as a local
kinetic energy. Notice however that the z factors are omitted.
The Fourier transform is given by

�Tq = − 2t�
k,�

�cos�k + q� + cos�k�	��k+q,k,�. �11�

For later use it is also convenient to introduce the antisym-
metric combination of bond charge fluctuations,

�Ti
− = − t �

��=�1
����i+�,i,� + ��i,i+�,�� .

with Fourier transform,

�Tq
− = − 2it�

k,�
�sin�k + q� − sin�k�	��k+q,k,�. �12�

It is easy to check that the two fluctuations are related by a
function of q,

�Tq
− = i tan�q

2
��Tq. �13�

The second-order energy expansion in the charge channel of
Eq. �7� follows as

Ee
GA,�2� =

1

N�1

2�
q

Vq��q��−q + z0zD� �
q

�Dq�T−q

+
1

2
z0�z� + z+−� ��

q

��q�T−q + �
q

Lq��q�D−q

+
1

2�
q

Uq�Dq�D−q� �14�

with the following definitions:

Vq =
e0z0

2
�z++� + 2z+−� + z−−� � +

1

2
�z� + z+−� �2e0 cos�q� ,

Lq = e0z0�z+D� + z−D� � + zD� �z� + z+−� �e0 cos�q� ,

Uq = 2e0z0zD� + 2�zD� �2e0 cos�q� ,

where z� and z� denote derivatives of the hopping factors
which are given in the Appendix A.

The double-occupancy fluctuations can be expressed in
terms of the density fluctuations by use of the antiadiabatic-
ity condition which assumes that the double occupancy ad-
justs to the instantaneous configuration of the charge,46
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FIG. 1. �Color online� The interaction coefficient Aq=0 for vari-
ous values of particle density n in units of the Brinkman-Rice criti-
cal on-site repulsion Uc for a one-dimensional chain.
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�Ee
GA,�2�

��Dq
= 0 �15�

and one obtains the following functional which only depends
on the local and intersite charge deviations,

Ee
GA,�2� =

1

2N
�

q
���q

�Tq
��Aq Bq

Bq
� Cq

����−q

�T−q
� , �16�

where

Wq
e-e
=

= �Aq Bq

Bq
� Cq

� �17�

is the interaction kernel. The elements of Wq
e-e
=

are given by

Aq = Vq −
Lq

2

Uq
,

Bq =
1

2
z0�z� + z+−� − zD�

2Lq

Uq
� ,

Cq = − 4
�z0zD� �2

Uq
cos2�q/2� , �18�

and the long-wavelength limit of the Eq. �11� element Aq=0,
which dominates the interaction kernel close to half filling is
shown in Fig. 1. For small U, one finds Aq=0�U /2 whereas
Aq=0 is enhanced close to the Brinkmann-Rice transition U
=Uc. At exactly half filling, one finds

Aq =
U�Uc + U��U − 2Uc�

4Uc�U − Uc�
�19�

for U�Uc.
Since the energy expansion in Eq. �16� is a quadratic form

in ��q and �Tq �see also Eq. �11�	, it is useful to introduce the
following susceptibility matrix for the noninteracting system

q

0:


q
0
=

��� =
1

N
�
k�

� 1 − 2t�cos�k� + cos�k + q�	
− 2t�cos�k� + cos�k + q�	 4t2�cos�k� + cos�k + q�	2 � nk+q,� − nk�

� + �k+q − �k − i0+ . �20�

The susceptibility for the interacting system is then obtained
from the following RPA series:


q = 
q
0
=

+ 
q
0
=

Wq
e-e
=


q= , �21�

where the element �
q�11 corresponds to the correlation func-
tion for the local charge response.

D. Phonon self-energy for the Holstein coupling

As mentioned above, due to the local nature of the Hol-
stein coupling Eq. �3�, it is not renormalized by the z factors
and thus its quadratic contribution to the energy expansion is
given by

Ee-ph
hol,�2� = − �

1

N�
q

Q−q��q, �22�

where Qq=�iexp�−iqRi�ui denotes the Fourier-transformed
�normal� coordinate fluctuation �remember that the saddle-
point solution has ui=u0=0 so that we can skip the � sym-
bol�.

Similarly we write the lattice energy Eq. �4� as

Eph
hol,�2� =

1

2N
�

q
�PqP−q

M
+ M�2QqQ−q� �23�

with �2=K /M.
The small time-dependent deviation from the electronic

ground state ��q will act as a force on the lattice coordinates
via Ee-ph

hol,�2� and the corresponding equation of motion reads

MQ̈q + M�q
2Qq = − N

�Ee-ph
hol,�2�

�Q−q
= ���q. �24�

As a consequence, the lattice vibrations are shifted to new
frequencies �q which depend on the electronic charge fluc-
tuation ��q,

��q
2 − �2�Qq = −

�

M
��q. �25�

On the other hand, ��q can be determined from linear-
response theory when we view Eq. �22� as a small perturba-
tion on the electronic system. With the charge susceptibility
derived in the previous section, one has

��q = �
q�11�− �Qq� �26�

which upon inserting in Eq. �25� yields

�q
2 = �2 +

�2

M
�
q�11 
 �2 + 2��q, �27�

where �q denotes the phonon self-energy. In these equations,

q��� and �q��� should be evaluated at �=�q. Since the
phonon dynamics is assumed to be much slower than the
electron dynamics, it is a good approximation to evaluate the
susceptibilities in the static limit.

We see that in the case of the Holstein coupling, the
phonon-frequency shift is solely determined by the local
charge susceptibility renormalized by electronic correlations
within the GA. For later use, we define the ratio between
self-energies in the correlated and uncorrelated case,
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�q 

�q�U�

�q�U = 0�
�28�

which for the Holstein coupling becomes

�q =
�
q�11

�
q
0�11

. �29�

In addition, it is convenient to introduce the following cou-
pling constant which has energy units:

ghol = �� 1

2M�
�30�

so that the phonon self-energy for the Holstein model is
given by

�q = ghol
2 �
q�11. �31�

E. Phonon self-energy for the SSH coupling

The case of the SSH electron-lattice coupling is more
subtle since the interaction energy Eq. �9� depends on the z
factors, the fluctuations of which we have to consider in the
evaluation of �q.

Expansion of Eq. �9� up to second order in the fluctuating
fields yields for the Fourier-transformed effective electron-
lattice interaction,

Ee-ph
SSH,�2� = �z0

2 1

N
�

q

�Tq
−Q−q + i�e0z0�z� + z+−� �

	
1

N
�

q

sin�q���qQ−q

+ 2i�e0z0zD�
1

N
�

q

sin�q��DqQ−q �32�

with the same definitions already introduced in Sec. II C.
Besides the coupling to the transitive fluctuations �Tq, the
correlations induce a coupling of the lattice to local density
���q� and double-occupancy ��Dq� fluctuations. Unlike the
Holstein case, the antiadiabaticity condition now includes the
electron-lattice coupling Eq. �32� in addition to the bare elec-
tronic part Eq. �15�,

��Ee
GA,�2� + Eph

SSH,�2�	
��Dq

= 0 �33�

so that the double-occupancy fluctuations can be expressed
via the density and lattice fluctuations,

�Dq = 2i�z0zD�
sin�q�

Uq
Qq −

Lq

Uq
��q −

z0zD�

Uq
�Tq. �34�

Inserting Eq. �34� into Eqs. �14� and �32� and including also
the �Fourier transformed� lattice part Eq. �6� yields

Etot
SSH,�2� = Ee

GA,�2� + Ee-ph
SSH,�2� + Eph

SSH,�2�, �35�

where Ee
GA,�2� was derived in Sec. II C, Eq. �16�. The effec-

tive coupling of the lattice to the electronic-density fluctua-
tions is given by

Ee-ph
SSH,�2� = �

1

N�
q

Wq
1��qQ−q + �

1

N�
q

Wq
2�TqQ−q, �36�

where we used Eq. �13� to eliminate the antisymmetric fluc-
tuations and introduced the elements of the vector Wq

el-ph,

Wq
1 = ie0z0 sin�q��z� + z+−� − 2zD�

Lq

Uq
� ,

Wq
2 = iz0

2 tan�q/2� − 2ie0�z0zD� �2sin�q�
Uq

. �37�

The lattice part becomes

Eph
SSH,�2� =

1

2N
�

q
�PqP−q

2M
+ M�q

2QqQ−q� . �38�

Interestingly, the elimination of the double-occupancy intro-
duces a novel renormalization of the phonon dispersion,

�q
2 = 2

K

M
�1 − cos�q�	 −

1

M
�2�e0z0zD� �2sin2�q�

Uq
. �39�

The �squared� dispersion is composed of the acoustic branch
�1−cos�q� of the uncorrelated atomic chain and a contribu-
tion which arises from the double-occupancy fluctuations.
We will show below that it induces a phonon softening in
addition to the contribution which comes from electronic
screening.

The phonon self-energy in the present case can be derived
via a similar procedure as before, taking into account the
vectorial character of the susceptibility, and reads,

�q = gq
2�Wq

el-ph	T
q=W−q
el-ph �40�

where the electronic susceptibility matrix 
q= is obtained from
Eq. �21�. We also defined the dimensionless coupling con-
stant,

gq =� g̃

��q
, �41�

g̃ = �2 �2

2M
. �42�

In the uncorrelated limit U=0, the self-energy reduces to

�q�U = 0� = 4gq
2�U = 0�sin2�q/2��
q

0�22, �43�

where the coupling constant Eq. �41� has to be evaluated
with the bare acoustic dispersion �q

2�U=0�=2 K
M �1−cos�q�	.

Finally, it should be noted that the parameters of the prob-
lem are given by ��0
�K /M, g̃ and U measured in units of
the hopping t
1 unless otherwise specified and we set �

1 in the following.

III. RESULTS

A. Holstein coupling

The Holstein case has been analyzed in higher dimension
in Ref. 53. As a reference for the new SSH results and to

PHONON RENORMALIZATION FROM LOCAL AND… PHYSICAL REVIEW B 81, 155116 �2010�

155116-5



unify the language, we present here the analogous results in
1D which are qualitatively similar to the ones in higher di-
mensions. A more detailed analysis and comparison with
QMC results in one dimension can be found in Appendix B.

The �static� phonon self-energy for the Holstein coupling
�q

hol
�q
hol��=0�=ghol

2 �
q	11��=0� corresponds to the local
charge correlation so that the discussion of the previous sec-
tion directly applies also here. Figure 2�a� shows �q

hol for the
half-filled system where it is given by

�q
hol = ghol

2 �
q
0	11

1 − Aq�
q
0	11

.

The primary purpose of these results is to illustrate the ge-
neric behavior expected in higher dimensions rather than to
comprise the physics of 1D systems.

Due to the divergency of �
q
0	11 at q=2kF=
, the corre-

sponding singularity in �q
hol gets suppressed upon increasing

U. This suppression persists for all momenta which can also
be seen from the vertex �q, Fig. 2�b�, cf. Eq. �28� which
quantifies the phonon-frequency shift for the correlated sys-
tem as compared to the noninteracting case,

�q =
1

1 − Aq�
q
0	11

. �44�

In the limit q→0, where �−
q
0�11 equals the density of states

N�EF� the reduction in �q=0 is therefore determined by the
effective interaction Aq which diverges for U approaching
the Brinkmann-Rice transition �and thus �q→0�. On the
other hand, at q=
, the local noninteracting charge correla-
tions �
q=


0 �11 display a divergence due to nesting and are
thus responsible for the vanishing of �q→
 in this limit.

At finite doping �Fig. 3�a�	, the singularity of �q
hol at U

=0 occurs at q=2kF�
 and similarly to the half-filled sys-
tem it becomes suppressed upon increasing U. As discussed
in Appendix A �cf. Fig. 11�, for large on-site interaction U,
the charge susceptibility �and thus ��q

hol�� acquires a maxi-
mum at small momenta so that the dominant phonon renor-
malization is shifted from q=2kF to q=0. On the other hand
�Fig. 3�b�	, the reduction in �q is still most pronounced at the
Fermi momenta q=2kF where the bare Lindhard susceptibil-
ity �
q

0�11 logarithmically diverges whereas �q=2kF
�U�0�

stays finite and thus �q=2kF
=0. Of course this is peculiar to
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the one-dimensional system where one has perfect nesting
for each carrier density.

We now analyze in more detail the mode which becomes
soft when the dominating instability shifts from q=2kF to
q=0 for large U and close to half filling. The dressed phonon
propagator,

Dq��� =
Dq

0���
1 − ghol

2 �
q	11���Dq
0���

�45�

couples the Holstein phonon �0 with the energy of the
particle-hole excitations �v�q when we use the long-
wavelength limit for the charge susceptibility given in Eq.
�B1�. Then Dq��� acquires new poles at

�+
2 = �0

2 +
4ghol

2 vF


�0
q2, �46�

�−
2 = �v�q�2 −

4ghol
2 vF


�0
q2 �47�

corresponding to a hardening of the Holstein phonon and a
softening of the effective �zero-sound� particle-hole velocity.
Thus the instability at q=0 does not follow from a zero in the
phonon-type mode but due to the fact that the zero-sound
particle-hole excitations acquire an imaginary velocity. Since
the poles of the dressed electronic susceptibility are identical
to those of Dq���, this also corresponds to a phase-separation
instability so that the present approach generalizes the analy-
sis of Refs. 15 and 57 for U→� Hubbard models to finite
on-site interactions.

B. SSH coupling

For the transitive electron-phonon coupling, we have seen
in Sec. II E that correlations already induce a renormaliza-
tion of the phonon dispersion Eq. �39�,

�q = ���q
0�2 − ���q�2 �48�

due to the elimination of the double-occupancy fluctuations
�cf. Eqs. �33� and �34�	. Here �q

0=2�0 sin�q /2� denotes the
acoustic branch for U=0 and the correlation induced contri-
bution �−���q�2 is always negative �since Uq�0 in Eq.
�39�	. The corresponding softening of �q is shown in Fig. 4.

The renormalization vanishes for both q→0 and q→
,
and is largest for intermediate momenta q�
 /2. This can be
understood from Eq. �34� where the first term links the dis-
placements to the double-occupancy fluctuations �Dq
�sin�q� /UqQq. Remember that Uq is the interaction energy
of double-occupancy fluctuations �cf. Eq. �7�	 which has a
significant momentum dependence only close to half filling
and large U. Therefore, the spatial relation between Qq and
�Dq is mainly determined by sin�q� and thus largest at q
�
 /2. The inset of Fig. 4 depicts the corresponding lattice
modulation �horizontal arrows� which, due to the increased
�decreased� hybridization, favors a modulation of the density
and double occupancies with the same periodicity �vertical
arrows�.

The correction ���q�2 to the phonon dispersion induced
by the double-occupancy fluctuations is separately displayed

in Fig. 5. For the half-filled system �top panel�, the maximum
of ���q�2 shifts to smaller q values upon increasing U due to
the more significant momentum dependence of Uq as men-
tioned above. This is less pronounced for the doped system
�lower panel� where the maximum in the correlation-induced
correction stays close to q=
 /2. Note also that ���q�2 has a
maximum as a function of U. This is due to the fact that the
SSH electron-phonon interaction Eq. �9� is renormalized by
the z factors which decrease with increasing U so that the
transitive fluctuations become suppressed. In this regard,
���q�2 results from a subtle interplay of kinetic and corre-
lation effects.

We now turn to the influence of electronic-density fluc-
tuations on the phonon dispersion which is measured in
terms of the phonon self-energy �q Eq. �40�.

Figure 6�a� displays �q for the half-filled system. In this
limit, the local-density fluctuations �originating from the
Hubbard interaction� are decoupled from the transitive ones.
Therefore, the latter are not screened and the divergence at
q=
 in the case of the SSH coupling is not removed upon
increasing U in contrast to the Holstein-Hubbard model. As a
consequence, the phonon excitations always �i.e., for infini-
tesimally small electron-phonon coupling� become unstable
for q=
 corresponding to the dimerized state. Correlations
lead to a suppression �enhancement� of �q for large �small�
momenta as can be more clearly seen from Fig. 6�b� which
shows the ratio �q=�q�U� /�q�U=0�. In the limit q=
, one
can show that the ratio is given by �q=
=z0

2, i.e., it is com-
pletely determined by the hopping renormalization factors of
the GA. This is consistent with the fact, that, for the half-
filled dimerized system, correlations suppress the dimeriza-
tion order parameter18,35 due to the reduction in the effective
electron-phonon coupling.

In the limit q→0, the self-energy vanishes, however, the
slope of �q→0 strongly depends on the correlations and leads
to the observed increase in �q→0 with increasing U �Fig.
6�b�	. The main reason for this enhancement comes from the
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FIG. 4. �Color online� Acoustic-phonon dispersion in the SSH
model for three different U values at half filling �g̃=0.01 and �0

=0.1�. Shown is only the influence of the double-occupancy fluc-
tuations on �q. The inset displays atomic displacements with wave
vector q=
 /2 �horizontal arrows� and the associated modulation of
the double occupancy �vertical arrows� with the same periodicity.
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fact that the SSH coupling is a coupling to transitive elec-
tronic correlations which at half filling and small momenta
are decoupled from the local ones. In the limit q→0 and half
filling, Eq. �40� becomes

�q
SSH � gq

2�Wq
2�2�
q

0�22, �49�

Wq
2 � iq�z0

2 + 2
U2

Uc
2� = iq�1 +

U2

Uc
2� �50�

and one finds that �q
SSH is not screened by the strong local

charge fluctuations. On the contrary, since �
q
0�22�1 /z0

2 it
becomes enhanced due to the increase in the quasiparticle
mass with U. However, for the bare SSH coupling �Wq

2�2
=q2z0

4 this effect would be overcompensated resulting in �q
�z0

2. It is due to the TDGA induced vertex corrections Eq.
�50� that the increase in �
q

0�22 is even amplified by the con-
comitant increase in �Wq

2�2 with U. Finally, another �though
much weaker� factor which leads to the enhancement of
�q→0

SSH with U comes from the dependence of the coupling
constant gq Eq. �41� on the phonon frequencies gq�1 /��q

which become softened due to the elimination of the double-
occupancy fluctuations �cf. Eq. �39�	.

The enhancement of the vertex �q at small momentum is
a new effect very much in contrast with the result in the
Holstein case53 where one always finds �q�1, i.e., a reduc-
tion in self-energy corrections with U.

Figure 7 displays the behavior of �q and �q for the doped
SSH model. Similar to the case of half filling, �q is reduced
upon increasing U for large momenta. However, the behavior
for small q becomes more subtle as can be seen from Fig.
7�b�. As a function of U, the self-energy �q→0 passes through
a minimum and for large U exceeds again the uncorrelated
value �i.e., �q→0�1� similar to the half-filled case. This be-
havior results from a subtle interplay between local and tran-
sitive charge fluctuations which are now coupled. For small
U, the screening induced by the local charge fluctuations
leads to a suppression of �
q�22 and also �q. Only at larger U,
the vertex corrections for �Wq

2� can overcome this decrease
and effectively enhance again the self-energy at small mo-
menta.

In contrast to half filling, now the coupling of the local
charge-density fluctuations induces the suppression of the q
=2kF divergence in the self-energy. As in case of the Hol-
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stein coupling, one therefore finds that �q=2kF
=0 since

�q=2kF
�U=0� logarithmically diverges whereas �q=2kF

�U
�0� stays finite.

Within the Holstein-Hubbard model, we have seen that
away from half filling the maximum self-energy shifts from
the nesting vector q=2kF to q=0 when the correlations be-
come sufficiently strong. As a consequence, a large electron-
phonon coupling will induce a CDW instability for small U
while a phase-separation instability will occur for large U �of
course with a dependence on the carrier density�. Is there a
similar scenario for the transitive coupling in the SSH
model? We determine the instabilities from the zero-
frequency poles of the phonon propagator,

Dq�� = 0� =
Dq

0�� = 0�
1 − �qDq

0�� = 0�
�51�

which yields the condition

�q = − 2�q �52�

and �q is the effective phonon dispersion given in Eq. �39�.
The solid line in Fig. 8 marks the lattice instability at q
=2kF, i.e., where the system undergoes a transition toward a
combined CDW and bond-order state. This instability is sup-
pressed for large U due to the suppression of the 2kF peak in
�q as shown in Fig. 7.

The maximum at n=0.85 in the instability line is due the
following. At n=1, the self-energy can be written as �q�U�
=z0

2�q�U=0� so that upon approaching half filling the self-
energy is determined by both the diverging �q�U=0� and the
Gutzwiller renormalization factor z0

2 which at n=1 tends to
zero for U�Uc �in Fig. 8, the solid bar at n=1 indicates this
regime where the charge carriers are localized�. As a conse-
quence, ��q�U�� develops a maximum as a function of con-
centration and fixed U which is reflected in the maximum of
the instability line.

Another instability occurs when the system is stable
against nesting �i.e., ��q=2kF

���q=2kF
/2� but the slope of

��q→0� becomes larger than the slope of �q→0. Then there
exists another solution of the condition Eq. �52� The transi-

tion toward this instability occurs at q=0 when both slopes
become equal. The corresponding line is shown in Fig. 8 by
the dashed-dotted curve. Similar to the Holstein-Hubbard
model, we thus find a q=0 instability for large U which here
is confined to a region close to half filling. However, in con-
trast to the Holstein model, where the phase separation is due
to an instability of the zero-sound collective mode v�q
caused by the coupling to the optical phonon, in the SSH
model we have a coupling between two acoustic modes, i.e.,
�q�vphq and v�q. For the situation we have analyzed in
Fig. 8, we find always vph�v� so that the mode which be-
comes unstable has dominantly phonon character. This
phase-separation instability is very different from the one in
the Holstein model, specially when the long-range part of the
Coulomb interaction is taken into account. In the Holstein
model, only molecular modes are allowed, therefore at long
scales the ions provide a rigid background of charges which
cancels the carriers charge. A macroscopic phase separation
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of the electronic system is frustrated by this background and
in general modulated phases arise.16,58–63 In the SSH case,
the background is allowed to relax at long wavelengths and
can follow the charge keeping the system locally neutral. The
present instability corresponds therefore to macroscopic
phase separation of the solid which in higher dimension is
not frustrated by the Coulomb interaction but by elastic
effects.64

Finally, we have seen that the TDGA applied to the SSH
coupling yields an effective phonon dispersion Eq. �39�
which yields correlation-induced softening through the
elimination of double-occupancy fluctuations �cf. Fig. 5�. For
large coupling g̃, these frequencies can become complex
even without the consideration of density fluctuations. The
corresponding regime in Fig. 8 is enclosed by the dashed
line. We find �at least for the present model� that this area is
always in a parameter regime which corresponds to the
nesting-induced instability and therefore never gives rise to a
“real” instability.

IV. CONCLUSIONS

We have investigated the renormalization of phonon fre-
quencies within the Hubbard-Holstein and Hubbard-SSH
models based on the TDGA approach. Our considerations of
the Holstein coupling for one-dimensional correlated sys-
tems supplement our investigations in higher dimensions53

and serve as a reference for our computations of the SSH
coupling. In the latter case, we have found that correlations
influence the phonon modes �q via two mechanisms. First,
the coupling to double-occupancy fluctuations leads to a
softening which has a maximum around q=
 /2, depending
on U and doping. The second mechanism is the standard
screening from density fluctuations. However, in this regard,
our TDGA approach goes beyond the standard RPA since it
incorporates the interaction between phonons and both, tran-
sitive and induced local-density fluctuations. This leads to an
interesting dependence of the self-energy �q on the local
repulsion U since it becomes suppressed for large but en-
hanced for small momenta.

We have found that also the transitive coupling of the
Hubbard-SSH model gives rise to an interesting phase dia-
gram where correlations can suppress the q=2kF nesting in-
stability but at the same time are responsible for the occur-
rence of a q=0 instability in the vicinity of half filling. To
some extent, our calculations indicate that the phase-
separation instability, previously only evidenced for
Holstein-type couplings, seems to be a generic property of
strongly correlated electrons coupled to phonons. However,
in the case of SSH phonons, the phase-separation instability
involves the relaxation of the background and corresponds to
volume collapse transition close to the Mott insulator, i.e., a
transition in which the solid has two possible equilibrium
volumes. It is interesting that Mott insulators often show
volume instabilities close to the Mott transition consistently
with our result.65

How do our results apply to higher-dimensional systems,
especially with regard to the anomalous softening of bond-
stretching modes in perovskite materials?2–7 Consider, e.g.,

the half-breathing mode in cuprates which involves the
movement of two planar oxygen ions toward the central Cu
ion. The induced change in the ionic potential on Cu leads to
a Holstein-type coupling whereas the associated modulation
of the Cu-O hopping integral gives rise to a coupling of the
SSH type. Concerning the latter interaction, it is interesting
that the double-occupancy-induced renormalization in the
two-dimensional three-band model would lead to a maxi-
mum frequency shift at the zone boundary �in contrast to that
at q=
 /2 in the 1D SHH model�. This kind of interaction
therefore induces a downward dispersion of the half-
breathing mode which in the lowest approximation just vi-
brates at constant frequency. Obviously, in order to account
for the doping dependence of the softening, one has addition-
ally to consider the effect of the density fluctuations entering
the phonon self-energy. In this regard, it would be interesting
to investigate whether our approach can improve related
Hartree-Fock �HF� calculations within the three-band
model66 which give a too small doping dependence of the
softening. In fact, since the correlation functions in the
TDGA incorporate the correlation-induced reduction in the
kinetic energy, its dependence on the charge-carrier concen-
tration is expected to be much more pronounced than in the
HF approach. It should be noted that calculations of the den-
sity response for the tJ model also indicate a strong renor-
malization of bond-stretching phonons67 with a larger
anomaly occurring for half breathing as compared to full-
breathing modes.68

Our theory can be easily extended toward ground states
which break translational symmetry. In this regard, it would
be interesting to evaluate the phonon renormalization from
striped ground states since there is experimental evidence69,70

that these textures contribute to the anomalous phonon soft-
ening at intermediate q values in high-temperature supercon-
ductors. Since codoped LSCO compounds, where static
stripe order is unambiguously established, show a rather
strong renormalization it has been argued71 that the corre-
sponding phonon dispersion exhibits a Kohn-type anomaly
originating from the q=2kF=
 /2 scattering along the half-
filled stripes. Since the GA �in contrast to HF� leads to half-
filled stripes as stable mean-field solutions of the Hubbard
model,50 our approach allows for a test of this scenario from
a realistic model.

An interesting question is whether phonon-induced super-
conductivity can be enhanced by correlations. In the case of
Holstein phonons, the increase on the density of states due to
correlation is compensated by the vertex corrections so the
Hubbard U does not enhance the phonon-induced supercon-
ducting instability. This is because the Holstein attractive
interaction and the Hubbard repulsive interaction compete on
the same charge fluctuation channel. Capone and
co-workers72,73 have shown that the situation is dramatically
different when Cooper pairing occurs in a channel that does
not involve the same charge fluctuations that are suppressed
by U. Our results show some analogy with this work in that
we obtain a suppression of the electron-phonon coupling in
the Holstein case and an enhancement in the SSH case where
the bond fluctuations induced by the phonons are not in di-
rect competition with the charge fluctuations suppressed by
U. An analogous enhancement of superconductivity may also
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work in the correlated SSH model. However, this issue is
much more involved since the investigation of pair-pair scat-
tering requires a GA energy functional which is charge-
rotationally invariant74 also for the transitive electron-
phonon coupling Eq. �9�. As a consequence, the coupling
between pair and lattice fluctuations will in general be dif-
ferent from Wq

el-ph given in Eqs. �37� and �38� and will be
considered elsewhere.
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APPENDIX A: DEFINITION OF z FACTORS AND
DERIVATIVES

In the TDGA expansion, Eq. �14�, we have introduced the
following abbreviations for the z factors and its derivatives:

zi� 
 z0,
�zi�

��ii�

 z�,

�zi�

��ii−�


 z+−� ,
�zi�

�Di

 zD� ,

�2zi�

��ii�
2 
 z++� ,

�2zi�

��ii� � �ii−�


 z+−� ,
�2zi�

��ii−�
2 
 z−−� ,

�2zi�

�Di
2 
 zD� ,

�2zi�

��ii� � Di

 z+D� ,

�2zi�

��ii−� � Di

 z−D� .

For the half-filled paramagnetic state, we have z�=z+−� and
z+D� =z−D� .

APPENDIX B: PROPERTIES OF THE TDGA AND
COMPARISON WITH EXACT RESULTS

For simplicity, we have restricted to 1D systems, although
our primary interest is higher dimensions. Still it is interest-
ing to analyze to what extent the results are applicable to real
1D or quasi-1D systems by comparing with exact results.

Since in the Holstein case, the phonon self-energies are
completely determined by the charge susceptibility �
q�11,
we first analyze the corresponding TDGA result which for
small wave vectors q and close to half filling can be ex-
panded as

�
q�11 �
2




vFq2

�2 − �v�q�2 , �B1�

where vF=vF
0zo

2 is the quasiparticle Fermi velocity and v�

=vF
�1+4A0 / �
vF� is the velocity of the �quasi�particle-hole

excitations with A0
Aq=0 defined in Eq. �18�. The compress-
ibility �=−�
q→0�11��=0� follows as

� =
2vF


v�
2 =

2




1

vF + 4A0/

. �B2�

In the weak-coupling limit, this expression coincides with
the perturbative expressions for the Tomonoga-Luttinger
liquid.75 As in the exact case, the effective interaction and the
Fermi velocity gets renormalized upon increasing U.

In Fig. 9, we compare the TDGA charge compressibility
with the exact 1D solution of the Hubbard model.76–78 The
renormalization of vF and the effective interaction pushes the
qualitative agreement with exact results to larger values of U
than the traditional HF+RPA approach. Strong differences
arise close to n=1. As soon as the interaction is switched on,
the exact compressibility diverges. This can be understood in
the strong-coupling limit where the charge degrees of free-
dom can be mapped to a spinless fermion model79 and the
compressibility is related to the spinless density of states
which has a 1D Van Hove divergence. In contrast, the GA
yields a compressibility which tends to zero at the BR point.
We remark that the GA compressibility has a jump disconti-
nuity for n=1 and U�Uc. In fact, its left and right limits are
finite while its value computed in n=1 is zero. At half filling,
an antiferromagnetic �AF� broken-symmetry TDGA compu-
tation instead of the present paramagnetic one yields much
more accurate results.46

In the dilute limit, the exact compressibility diverges
again whereas the TDGA result yields a finite value. This
disagreement is not surprising since the RPA in general is
well known to fail at low densities. In this case, a particle-
particle approach, recently implemented on top of the GA,49

would be more appropriate.
Despite the �expected� failure of the paramagnetic TDGA

at low and half filling at intermediate fillings, the behavior of
the compressibility as a function of U is qualitatively and to
some extent quantitatively reproduced. One should keep in
mind again that we are using a Fermi-liquid approach
whereas the real ground state is a Luttinger liquid.

In Fig. 10, we compare the TDGA charge susceptibility
with QMC results from Hirsch and Scalapino.17,19 Since their
data are for n=0.6, we expect the TDGA to give reasonable
results. Although our formalism is at T=0 and the QMC

(b)(a)

FIG. 9. �Color online� 1D charge compressibility as a function
of n and for different values of U /Uc calculated with the Bethe
ansatz—exact 1D solution �a� and with the TDGA �b�. Here Uc

=32t /
 is the Coulomb repulsion at which the Brinkman-Rice tran-
sition takes place for n=1 in the GA. In the exact solution, the
metal-insulator transition occurs at U=0 therefore Uc=32t /
 is
used only as an energy unit.
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study at T�0, the comparison is meaningful because their
results are at T=0.0690, quite low if compared to the elec-
tronic energy scales. The QMC susceptibilities generally
agree with ours within 10–20 % deviations, and with larger
deviations at large momenta for U�Uc. For large U, in fact,
the QMC data exhibit the transfer of the peak from q=2kF to
q=4kF, signature of the spin-charge separation of the 1D
Luttinger liquid, clearly absent in our 1D FL. The QMC
curves present a finite-T effect that smoothes the peak.

The above results indicate that our FL scheme works
quantitatively rather well away from half filling �where an
AF TDGA computation would do a better job� and provides
reasonable momentum dependencies �but for the subtle Lut-
tinger 4kF peak shift for large U�.

In Fig. 11, we show the charge susceptibility �q as a func-
tion of U /Uc. These results should be taken with a pinch of
salt due to the explained drawbacks, however they illustrate
well the general behavior of the TDGA that are found in
higher dimension.53 For small deviations of the density from
half filling, the compressibility has a minimum close to U
=Uc which is due to the corresponding maximum in the Eq.
�11� element of the interaction kernel �cf. Fig. 1�. For large q,

this minimum becomes too shallow to be clearly seen in Fig.
11. At small momenta, the charge susceptibility is close to
the compressibility. As the momentum approaches q=2kF
=n
, the charge susceptibility diverges for small U. How-
ever, this divergence is strongly suppressed upon increasing
U. At small doping, �q is finite but still shows a shallow
minimum close to U=Uc. This behavior is due to the prox-
imity of the Mott phase which is more clear in higher
dimensions.53 The essential point is that the maximum
charge response changes from the wave vector q=2kF to q
=0 upon increasing U. Therefore, correlations suppress the
nesting-induced transition to a CDW state in favor of phase
separation as is discussed in higher-dimensional systems in
Ref. 53.

It is important to notice that the failures of the TDGA
found at high filling in our comparison with the exact results
can be traced back to specific features of the 1D physics
�such as, e.g., the spin-charge separation, the equivalence to
spinless fermions at U=��. Therefore, these failures should
not be attributed to the TDGA per se but to the underlying
assumption of a FL ground state. This is why our results not
only provide qualitative informations on the 1D case but also
shed light on the physics of the FL state occurring at higher
dimensions.
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