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We study the maximum entropy �MaxEnt� approach for analytical continuation of spectral data from imagi-
nary times to real frequencies. The total error is divided in a statistical error, due to the noise in the input data,
and a systematic error, due to deviations of the default function, used in the MaxEnt approach, from the exact
spectrum. We find that the MaxEnt approach in its classical formulation can lead to a nonoptimal balance
between the two types of errors, leading to an unnecessary large statistical error. The statistical error can be
reduced by splitting up the data in several batches, performing a MaxEnt calculation for each batch and
averaging. This can outweigh an increase in the systematic error resulting from this approach. The output from
the MaxEnt calculation can be used as a default function for a new MaxEnt calculation. Such iterations often
lead to worse results due to an increase in the statistical error. By splitting up the data in batches, the statistical
error is reduced and the increase resulting from iterations can be outweighed by a decrease in the systematic
error. Finally we consider a linearized version to obtain a better understanding of the method.
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I. INTRODUCTION

The analytical continuation of spectral functions from
imaginary time � to real energies � is a difficult problem due
to its ill-posed nature, i.e., the output can depend very sen-
sitively on the input. For strongly correlated electrons, how-
ever, this is an important problem. Most approaches for such
systems involve uncontrolled approximations. Using quan-
tum Monte Carlo �QMC� methods or quantum cluster meth-
ods it is, however, possible to obtain accurate data for the
Green’s functions and response functions on the imaginary
axis, raising the problem of analytical continuation to the
real axis. Since these methods provide data with statistical
noise, the ill-posed nature of the problem makes analytical
continuation very difficult.

This problem can be treated within the Bayesian theory.1,2

The problem is regularized by introducing an entropy in
terms of the deviation of the output real axis spectrum from
some default function. The importance of the entropy is con-
trolled by a parameter �, which is determined using statisti-
cal arguments.1,2 This method is referred to as the maximum
entropy �MaxEnt� method. It has been rather successful in
performing analytical continuations. Alternative methods
have been proposed, such as Padé approximations,3,4 singu-
lar value decomposition,5 stochastic regularization,6 and
sampling schemes.7,8

In this paper we focus on the MaxEnt method. This
method is usually discussed in terms of the Bayesian theory.
Here, we start from the equations generated by the MaxEnt
formalism and use an algebraic approach to analyze the
theory. We discuss the accuracy that can be obtained within
this framework. The error in the output spectral function can
be split up in a statistical error, due to the noise in the input
data, and a systematic error, due to the deviation of the de-
fault function from the true spectrum. The choice of � deter-
mines the relative size of these errors. In the classical Max-
Ent method the most probable � is chosen.1 We find that this
choice can make the statistical error unnecessary large.

The input data are typically given as a number Nsample of
samples, Ḡ����, where each sample gives a �noisy� version of
the imaginary time function G���. We find that the accuracy
can sometimes be improved by splitting up the samples in
Ncalc subsets �batches�, with Nsample /Ncalc samples in each
batch. We then perform Ncalc MaxEnt calculations, each with
Nsample /Ncalc samples, and then average the results, instead of
performing one MaxEnt calculation Nsample samples. This ap-
proach reduces the statistical error at the cost of an increase
in the systematic error.

We also discuss the possibility of an iterative MaxEnt
method, where the output is used to define a new default
function. This usually works poorly, and we show that this is
due to an increase in the statistical error, overwhelming the
improvement in the systematic error. However, if the data are
split in batches, as discussed above, the importance of the
statistical error can be reduced to the point where the ap-
proach improves the total accuracy.

To further analyze the results, we introduce an alternative
method with a slightly different definition of the entropy.
This leads to a set of linear equations, where the propagation
of the errors can be analyzed more easily and features of the
MaxEnt method can be better understood. This method, how-
ever, does not guarantee a positive spectral function, and it is
less useful for practical calculations.

In this paper we focus on a response function, the optical
conductivity ����. We introduce a typical ����, which in the
following will be referred to as the “exact” ����. The form
of ���� was chosen using results for the two-dimensional
Hubbard model as a guide. This model of ���� can easily
and accurately be transformed to imaginary axis data. We
add statistical Gaussian noise to the data and then transform
the data back to the real axis, using the various modifications
of the MaxEnt method. If a given method worked perfectly,
���� that we started with should be recovered exactly. The
deviations from the exact ���� are then a measure of the
accuracy of the different approaches.

As an example, Fig. 1 shows an exact optical conductivity
and two default models used in the MaxEnt approach. The
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optical conductivity has a Drude like peak at �=0 and a
“Hubbard” peak at ��3 corresponding to transitions be-
tween the Hubbard bands. The default models are chosen so
that they satisfy the exact sum rule. The two models are
chosen according to two different strategies. It is sometimes
argued that the default model should contain little informa-
tion, apart from certain exact results, such as sum rules. In
this way the results are not prejudiced by possibly incorrect
assumptions. Model 1 has been chosen this way. Alterna-
tively, as a default model one can use the output from a
calculation at a higher temperature T. Model 2 has therefore
been chosen to be quite similar to the exact result, but with
all features somewhat broader. Model 2 will naturally deliver
much more accurate output spectra.

The paper is organized as follows. In Sec. II we introduce
the formalism. Section III describes how a MaxEnt calcula-
tion is performed as an average of several MaxEnt calcula-
tions and Sec. IV discusses an iterative MaxEnt method. In
Sec. V we present a simplified entropy definition, leading to
linear equations.

II. FORMALISM

We introduce the basic formalism, essentially following
Jarrell and Gubernatis,1 and then provide error estimates. The
function Gi=G��i� for imaginary time �i is related to a spec-
tral function Ai=A��i� on the real frequency axis �,

Gi = �
j=1

N�

KijAj , i = 1, . . . ,N�, �1�

via a kernel Kij =K��i ,� j�, given for some discrete values � j
of �. For the case of the optical conductivity, considered
here, the kernel is given by

Kij =
1

�

� j

1 − exp�− �� j�
�e−�j�i + e−��−�i��j�f j , �2�

where f j is a weight factor chosen, so that Eq. �1� corre-
sponds to an integral over �. For the electron Green’s func-
tion the corresponding kernel is

Kij =
e−�i�j

1 + e−��j
f j . �3�

Assuming Gaussian noise, we introduce a likelihood func-
tion

L =
1

2�
i=1

N� � Ḡi − Gi

�i
�2

, �4�

where Ḡi are data obtained from, e.g., a Monte Carlo calcu-
lation, with the statistical accuracy �i, and Gi has been cal-
culated from Eq. �1�. We also introduce the entropy

S = �
i=1

N�

f i�Ai − mi − Ai ln
Ai

mi
� , �5�

where mi is a default model. The quantity L−�S is then
minimized with respect to Aj. This leads to the equations

− �
i=1

N� Ḡi − Gi

�i
2 Kij + �f j ln

Aj

mj
= 0. �6�

These equations are solved to obtain the spectral function Ai.
The quantity � can be determined using statistical methods,
giving the most probable �. This is referred to as the classi-
cal MaxEnt method.1 Alternatively, one can average the
spectrum calculated for different values of �, using the prob-
ability of that � as a weighting function.1 This method, Bry-
an’s method, gives similar results for the cases considered
here.

To estimate the error in this approach, we express the
calculated spectral function A in terms of the exact result
Aexact as

Ai = Ai
exact + �Ai, �7�

where �Ai is the error in Ai. We assume that the error is
sufficiently small that the logarithm in Eq. �6� can be ex-
panded to lowest order. Then

− �
i=1

N� �Ḡi − �Gi

�i
2 Kij + �f j�ln

Aj
exact

mj
+

�Ai

Ai
exact� = 0, �8�

where �Gi=� jKij�Aj and �Ḡi= Ḡi−� jKijAj
exact is the error

in Ḡi due to the statistical noise. To solve these equations, we
define

aj = �
i=1

N� �ḠiKij

�i
2 + �f j ln

mj

Aj
exact , �9�

bjk = �
i=1

N� KijKik

�i
2 +

�f j

Aj
exact	 jk. �10�

Using matrix notations,

�A = b−1a = b−1KT�−2�Ḡ + b−1�f ln� m

Aexact� . �11�

The error w is defined as
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FIG. 1. �Color online� Exact spectral function and two different
default models as a function of frequency. The inset shows the
models on a small energy scale.
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w =��
i=1

N�

��Ai�2f i� 	 wstat + wsyst, �12�

where 
¯ � denotes the average over many different realiza-

tions of the noise �Ḡi in the input data. Here, wstat is the
error due to this noise and wsyst is the error due to the devia-
tion,

�mi = mi − Ai
exact, �13�

of the default function from the exact result. Since the noise
is random, there is no contribution from the cross term in the
square of the two terms in Eq. �11�. The statistical error can
then be written as

wstat =� �
j,k=1

N� �Gj

� j
2 �Kb−1fb−1KT� jk

�Gk

�k
2 �

= �
j=1

N� �Kb−1fb−1KT� j j

� j
2 = Tr �−2Kb−1fb−1KT. �14�

The second equality was obtained by noticing that the terms
j�k do not contribute to the average and that the average of
�Gi

2 is �i
2. Later we consider the average over Ncalc MaxEnt

calculations, each using data with the statistical accuracy �.
The statistical error wstat is then reduced by a factor of Ncalc
since wstat refers to the square of the error in the output
spectrum.

For the systematic error we obtain

wsyst = ln� m

Aexact� f�b−1fb−1�f ln� m

Aexact� . �15�

The results in Eqs. �14� and �15� apply to the case when
MaxEnt calculation is not iterated. For an iterative calcula-
tion we use Eq. �22� below.

Figure 2 shows wstat and wsyst as functions of � for differ-
ent �. The figure illustrates that wstat behaves approximately
as 1 /�. This illustrates the importance of introducing en-
tropy, i.e., using an �
0. For �=0, the matrix b−1 is ill
behaved and the statistical error would be huge. Since wstat
depends only weakly on �, it is not possible to make wstat
small for �=0 by simply reducing � �within reasonable lim-
its�. Introducing �
0 regularizes b and leads to a manage-
able statistical error. The systematic error increases with �
and there is therefore an optimal value of � where the total
error is minimum. The dependence of the systematic error on
� is shown in Fig. 3. It behaves roughly as ��. The optimal
� therefore increases as � is reduced. It also increases as the
default model is made more accurate, e.g., by replacing de-
fault model 1 with model 2.

Since �=0 is often of particular interest we use a loga-
rithmic � mesh. For the case 0����max we use

�i = exp
�i − 1�dx + ln �� − � , �16�

where dx= 
ln��max+��−ln �� / �N�−1�. A small value of �
leads to a smaller spacing of the points close to �=0. We
have typically used N�=121 points, �=0.5, �max=12, �
=15, and N�=60. For simplicity, we assume that the statisti-
cal error is given by
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FIG. 2. �Color online� Statistical �wstat� 
Eq. �14�� and system-
atic �wsyst� 
Eq. �15�� errors for default model 1 as functions of �
and for different values of �. The parameters are �=15 and N�

=60.
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FIG. 3. �Color online� Systematic error �wsyst� 
Eq. �15�� for
default models 1 and 2 as a function of � and for different values of
�. The straight line shows the curve 0.001�1/2, illustrating that wstat

is approximately proportional to ��. The parameters are �=15 and
N�=60.
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�i = Gi� , �17�

in terms of some overall accuracy �. To perform these cal-
culations we have developed a MAXENT code, which was
found to give almost identical results to a code made avail-
able to us by Jarrell and Gubernatis.1

III. MULTIPLE MAXENT CALCULATIONS

A QMC calculation is arranged so that it gives a number

of samples, Ḡ���i�, of G��i�. From these data one can calcu-
late the statistical accuracy �i, check if the data are Gaussian,
and check for �undesirable� correlations between the noise

for different values of �.1 The data Ḡ���i� are then averaged

over � to obtain Ḡ��i� that is the input for the MaxEnt cal-
culation, possibly after removing correlations between the
noise at different � points.1

We now consider the case where we have 100 samples,
each with the accuracy �. After averaging over all the
samples, the accuracy of the resulting data is � /�100
=� /10. The value of � in a classical MaxEnt calculation
depends on the specific realization of the noise. We therefore
perform many calculations, each with a different realization
of the noise, and calculate the average of �. For �=0.01,
�=15, and N�=60, classical MaxEnt calculations using the
spectrum in Fig. 1 and the default model 1 then gave on the
average ��40.

Figure 4 shows the statistical and systematic errors for a
fixed �=40 as functions of � �Ncalc=1�. The cross gives the
total error of a classical MaxEnt calculation corresponding to
100 samples with �=0.01. The figure illustrates that the sta-

tistical error is much larger than the systematic error for the
MaxEnt calculation. This is also illustrated in Fig. 5�a�. This
shows the result of 20 MaxEnt calculations with different
realizations of the noise, each with 100 samples with the
accuracy �. The thick �red� line shows the exact spectrum.
The calculated spectra �thin green lines� scatter strongly
around the exact result, illustrating a large statistical error.
On the average, these spectra also deviate somewhat from
the exact result, with the value of ��0� being slightly too
small and the Hubbard peak being somewhat shifted toward
lower energies, illustrating a small systematic error.

We next group the 100 samples in Ncalc=5 batches, each
with 20 samples, and perform Ncalc MaxEnt calculations. The
accuracy of the data in these MaxEnt calculations is then
only �Ncalc� /10. This increases both the systematic and
statistical errors somewhat. Averaging these calculations,
however, reduces the statistical error by a factor Ncalc. In Fig.
4 this leads to a large net reduction in the statistical error,
which more than compensates for the increase in the system-
atic error. This is illustrated in Fig. 5�b�, which shows 20
such results, each one obtained by averaging Ncalc=5 Max-
Ent calculations with 100 /Ncalc samples, but with different
realizations of the noise. The spread between the curves is
substantially smaller �wstat=0.000 14 vs 0.000 67� than in
Fig. 5�a�, while the systematic error is somewhat larger
�wsyst=0.000 21 vs 0.000 14�. This leads to a substantial im-
provement in the total error �w=0.000 35 vs 0.000 81�.
These results are also shown in Table I.

The reason for this improvement is that that wstat
wsyst in
the MaxEnt calculation with Ncalc=1 and that wstat and wsyst
have different dependencies on Ncalc. For �=0, Eq. �14�
gives that wstat��2. Splitting up the calculation in Ncalc cal-
culations makes the effective � a factor �Ncalc larger, while
averaging reduces the error by a factor Ncalc. The net result
would be an unchanged statistical error. It is therefore crucial
that the method has been regularized by introducing an en-
tropy. Figure 4 shows that for realistic values of �, wstat
actually has a quite weak dependence on �, rather than be-
having as �2. Splitting up the samples in several batches, and
thereby reducing the accuracy of each batch, leads to a small
increase in wstat for each individual calculation. The averag-
ing over Ncalc calculations, however, reduces wstat by a factor
Ncalc. At the same time wsyst is increased, but only by ap-
proximately a factor Ncalc

1/4 , since this quantity behaves ap-
proximately as �� and � increases by a factor �Ncalc.

Figure 6 and Table I show the corresponding results using
the default model 2. In this case the classical MaxEnt calcu-
lation chooses a value of � that makes wstat and wsyst com-
parable. The gain from splitting up the samples and perform-
ing several MaxEnt calculations is then much smaller.

We are now in the position to discuss the limits of accu-
racy that can be obtained in this approach. We consider as
before 100 samples with the accuracy �=0.01 and allow for
any combination of �, Ncalc�100 and Niter�40. Starting
from the default model 1, we obtain the results shown in Fig.
7�a�. The curve “One calc.” shows the result of a traditional
MaxEnt calculation, using all the samples in one calculation
�Ncalc=1 and Niter=1�. If a classical MaxEnt calculation is
performed, ��20 is obtained. This result is shown by a
cross. We can see that this value of � is not optimal, and a
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FIG. 4. �Color online� Statistical �wstat�, systematic �wsyst�, and
total �w� errors in a MaxEnt calculation for the spectrum in Fig. 1,
default model 1, �=40 and �=15, and 100 samples, each with the
accuracy �. The full thick �red� line shows w when one �Ncalc=1�
MaxEnt calculation is performed for the average of over all data,
and the thick broken �blue� line shows the result when Ncalc=5
MaxEnt calculations are averaged, each calculation using the aver-
age of 100 /Ncalc samples. The cross corresponds to a historic Max-
Ent calculation for �=0.01, which gives ��40, used in the figure.
The thick broken �blue� line illustrates that a substantially lower
error can be obtained by averaging five MaxEnt calculations.
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FIG. 5. �Color online� Optical conductivity calculated for the
default model 1 using different methods. 100 samples, each with the
accuracy �=0.01, were given. �a� Each curve shows results of a
classical MaxEnt calculation using an average of all 100 samples.
The figure shows 20 such curves, each corresponding to a different
realization of the noise. �b� Each curve shows the average of Ncalc

=5 MaxEnt calculations using 100 /Ncalc samples. �c� Each curve
shows the results of iterating the calculations in �a� once, using the
output in �a� as a default function in the next MaxEnt calculation.
�d� Each curve shows the results of iterating MaxEnt calculations
Niter=5 times. Ncalc=100 was used, and the default function was
obtained from the average of these Ncalc calculations. The param-
eters were �=15, N�=60, and �=40.

ANALYTICAL CONTINUATION OF IMAGINARY AXIS… PHYSICAL REVIEW B 81, 155107 �2010�

155107-5



larger � would have given a smaller error. We next allow for
Ncalc
1 calculations, each using 100 /Ncalc samples. We find
the value of Ncalc which gives the best agreement with the
exact ����. This �“Several opt.”� leads to a much higher
accuracy for small values of �. The curve is almost flat as a
function of � over a substantial range. For large values of �,
Ncalc=1 gives the best accuracy, and the curve falls on top of
the curve “One calc.”

To provide a criterion for how to split up the data in
batches, we consider the statistical error 
Eq. �14�� again. As
before we consider the case of Nsample samples, each with the
accuracy �, divided in Ncalc batches with Nsample /Ncalc
samples in each. We define the product

M��� = b−1KT�−2, �18�

where b also depends on �. The statistical error of the kth
calculation is then written as

�Ai
�k� = �

j=1

N�

Mij��Ncalc
�
Ncalc

N
�
�=1

N/Ncalc

�Ḡj
�+�k−1�N/Ncalc, �19�

where �Ḡ� is the error in the �th sample, and the statistical
accuracy �Ncalc

=� /�N /Ncalc enters due to the averaging over
N /Ncalc samples. We then average over the Ncalc calculations
and obtain the error

�Ai = �
j=1

N�

Mij��Ncalc
�

1

N
�
�=1

N

�Ḡj
�. �20�

The average difference between two calculations with Ncalc
and Mcalc batches can then be written as

wMN 	 �
i


Ai�Ncalc� − Ai�Mcalc��2wi

= �
ij

wi�Mij��Ncalc
��Ncalc

�Ncalc

−
Mij��Mcalc

��Mcalc

�Mcalc
�2

.

�21�

This result represents an average over many different real-

izations of the error �Ḡ�k�. In addition to the statistical con-

tribution to the difference there is a systematic contribution
due to the error in the default function. We then compare
calculations with Ncalc=Nsample and Mcalc=Nsample /2 batches.
In the second calculation the statistical error is larger and the
systematic error is smaller. If the total difference between the
two calculations is larger than twice the expected statistical
difference, this suggests that the gain in the systematic error
outweighs the loss in the statistical error and the second cal-
culation is accepted. We then compare this calculation with a
calculation with Nsample /4 batches and if the latter is favor-
able the procedure is continued, considering Nsample /10,
Nsample /20, and Nsample /50 batches. The resulting accuracy is
shown by the curve “Several est.” in Fig. 7. This curve is
above the curve “Several opt.,” but the difference is not very
large for most values of �.

IV. ITERATING MAXENT

Once a MaxEnt calculation has been performed, one can
try to improve the default function by using the output spec-
tral function as a new default function. Such an iterative
approach, however, is usually not recommended. Figure 5�c�
shows the results of such calculations using the default
model 1. Indeed, the spread between different calculations is
larger than in the noniterated case in Fig. 5�a�, implying an
increased statistical error.

Equations �14� and �15� used to calculate the statistical
and systematic errors for a noniterated default model are not
appropriate in the case of iterations. The reason is that the
default model in this case contains statistical errors due to
the iteration procedure. Instead we perform many calcula-
tions N of the type shown in Fig. 5�c�, giving spectral func-
tions Ai

�, where �=1, . . . ,N. We then calculate

Ai
av =

1

N
�
�=1

N

Ai
�,

wstat =
1

N − 1�
�=1

N

�
i=1

N�

�Ai
� − Ai

av�2f i,

TABLE I. Statistical �wstat�, systematic �wsyst�, and total �w� errors in MaxEnt calculations for the spec-
trum in Fig. 1 and default model 1 or 2. 100 samples, each with the accuracy �, were split up in Ncalc batches
with 100 /Ncalc samples and used in Ncalc calculations. The average of the output was used as a default model,
performing Niter iterations. The errors were obtained from Eqs. �14� and �15� for Niter=1 and from Eq. �22�
for Niter
1. The parameters were �=15 and N�=60.

Default model � Ncalc Niter wstat wsyst w

1 40 1 1 6.7�10−4 1.4�10−4 8.1�10−4

1 40 5 1 1.4�10−4 2.1�10−4 3.5�10−4

1 40 1 2 14�10−4 1.3�10−4 15�10−4

1 40 100 4 0.4�10−4 0.9�10−4 1.3�10−4

2 720 1 1 4.2�10−5 4.4�10−5 8.6�10−5

2 720 2 1 2.3�10−5 5.6�10−5 7.9�10−5

2 720 1 2 9.7�10−5 3.3�10−5 13�10−5

2 720 20 8 2.4�10−5 3.9�10−5 6.3�10−5
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wsyst = �
i=1

N�

�Ai
av − Ai

exact�2f i. �22�

Due to nonlinearity, some of the statistical error actually
shows up as a systematic error in Eq. �22�, but this is ne-
glected in the following.

The results in Table I show that the statistical error is
more than doubled after one iteration, while the systematic
error is not correspondingly reduced. We next consider the
case when the samples are split up in Ncalc batches and the
default model 1 is used. Using Ncalc=100 and Niter=4 the
total error is reduced, as is illustrated in Fig. 5�d� and Table
I. By using Ncalc=100, we drastically reduce the statistical
error. The following iterations increase the statistical error by
a substantial factor, but it nevertheless remains small. At the
same time the iterations reduce the systematic error, so that
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FIG. 6. �Color online� The same as Fig. 5, but starting from the
default model 2 and using �=720.
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FIG. 7. �Color online� Accuracy w of MaxEnt calculations for
100 samples, each with accuracy �. “One calc.” uses the average of
all samples in one MaxEnt calculation. “Several opt.” and “Several
est.” split up the samples in several batches and average the result-
ing MaxEnt calculations. “Several opt.” does this in the optimal
way and “Several est.” uses a prescription for finding the splitting
when the exact result is not known. “Iterated” in addition uses the
output spectral function as default model in an iterative approach.
The cross shows the result of a classical MaxEnt calculation. �a�
shows results for default model 1 and �b� for default model 2. The
parameters are �=15 and N�=60.
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both are improved compared with the noniterated case. Fig-
ure 6�d� shows similar results using the default model 2.
Since this model is very close to the exact result, iterations
now lead to a small improvement, but even with such an
accurate default function there is an improvement. In Fig. 7,
the curve “Iterated” shows results when iteration is allowed
�Niter�40�. This leads to a substantial improvement in the
accuracy. Figure 7�b� shows similar results for the default
model 2.

V. QUADRATIC ENTROPY

In Eq. �6� in Sec. II we introduced the entropy, containing
a logarithm. As a result, the basic equations of MaxEnt are
nonlinear, which makes the analysis complicated. For this
reason, we introduce another definition of the entropy, which
is used in this section for analyzing the behavior of MaxEnt.
The expression in Eq. �5� is expanded to lowest �second�
order in the deviation between the solution and the default
function. We then define this as the entropy and use it in this
section. This is then not an approximation but simply another
method. This method has some problems. For instance, it is
not guaranteed that the spectrum is positive. Therefore, we
do not recommend the use of this method for calculating
spectra, but simply use it to analyze the MaxEnt.

We define the entropy

S = −
1

2�
i=1

N�

f i

�Ai
�n� − mi

�n��2

mi
�n� , �23�

where we have allowed for the possibility of the MaxEnt
calculation being iterated, i.e., m�n� depends on the iteration
n. The original default function is m�0�. This leads to the
equations

a = KT�−2Ḡ + �f ,

b�n� = KT�−2K +
�f

m�n� , �24�

where matrix notations have been used and �f and �f /m�n�

are diagonal matrices. Then A�n+1�= 
b�n��−1a. The error in
A�n+1� is

�A�n+1� = 
b�n��−1�KT�−2�Ḡ + �f
�m�n�

m�n� � , �25�

where �m�n�=m�n�−Aexact. We define

	G�n� =�m�n�

�f
KT�−2�Ḡ ,

	A�n� =� �f

m�n��A�n�,

c�n� =� �f

m�n� 
b
�n��−1� �f

m�n� , �26�

and a similar definition for 	m�n� as for 	A�n�. �i
	Ai
�n��2 con-

tains the same integration factor f i as has been used earlier,
but due to the factor 1 /m�n� it gives more weight to errors
where m�n� is small. We have

	A�n+1� = c�n�
	G�n� + 	m�n�� . �27�

We find the eigenvalues ��
�n� and eigenvectors ���n�� of the

symmetric matrix c�n�. Introducing the expansion in these
eigenvectors, 	A�

�n�= 
��n� �	A�n��, we obtain

	A�
�n+1� = ��

�n�
	G�
�n� + 	m�

�n�� . �28�

The matrix c can be rewritten as

c�n� = ��m�n�

�f
KT�−2K�m�n�

�f
+ 1�−1

. �29�

For the cases we have considered, the first matrix inside the
bracket has a broad range of positive eigenvalues, extending
from eigenvalues much smaller than 1 to much larger than 1.
As a result, the matrix c�n� is found to have some very small
eigenvalues and many eigenvalues very close to 1. This is
illustrated in Table II, which shows the lowest eigenvalues
for the default model 1 and �=40.

Figure 8 shows the eigenfunctions ���0�� corresponding to
the lowest eigenvalues in Table I. The lowest function is
nodeless, and the higher functions have an increasing num-
ber of nodes. Functions with the eigenvalue very close to 1
oscillate so rapidly that the corresponding components of
	m�

�n� and 	G�
�n� tend to have small weights, as shown in

TABLE II. Lowest eigenvalues �� of the matrix c�0� 
Eq. �26�� and the corresponding amplitudes 	m�
�0� �1� and 	G�

�0� for default model
1. The values of 	m�

�0� �2� for default model 2 �expanded in the functions corresponding to default model 1� and the expansion coefficients
of ���� are also shown. The larger eigenvalues are all close to unity; the amplitudes of the corresponding 	G�

�0� are all smaller than 2
�10−4. The corresponding values of 	m�

�0� are also fairly small, smaller than 0.1 for default model 1 and smaller than 0.02 for default model
2. We used �=15, N�=121, �max=12, �=40, and �=0.001.

�� 0.3�10−6 0.2�10−5 0.6�10−5 0.30�10−4 0.2�10−3 0.002 0.016 0.166 0.747 0.982 0.999 1.000 1.000

	m�
�0� �1� −0.92 −0.81 −0.28 −1.7 1.1 −0.01 −1.1 −0.17 0.31 −0.08 −0.33 −0.15 0.007

	m�
�0� �2� 0.80 −0.32 0.06 −0.08 0.08 0.03 −0.19 −0.11 0.07 0.03 −0.10 −0.08 −0.007

�� 3.1 −2.4 2.9 1.5 −1.3 0.09 1.0 0.18 −0.31 0.08 0.33 0.16 −0.007
�
�	G�

�0��2� 1.6�103 675 371 176 65 23 7.90 2.1 0.55 0.14 0.03 0.006 0.001

��
�
�	G�

�0��2� 0.6�10−3 0.002 0.002 0.005 0.014 0.038 0.128 0.349 0.411 0.134 0.030 0.006 0.001
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Table II. As a comparison, Table II also shows the expansion
coefficients of the default model 2 in the eigenfunctions ob-
tained for the default model 1 and �=40.

It is crucial for the success of a MaxEnt calculation that
the coefficients 	m�

�n� and 	G�
�n� are typically small for ��

�n�

close to 1. From Eq. �28� it follows that errors 	m�
�n� and

	G�
�n� corresponding to eigenvalues �� much smaller than 1

give a strongly reduced contribution to the error 	A�
�n+1�,

while errors corresponding to the eigenvalue of 1 are not
reduced at all. For these components the deviation of the
default model from the true result is taken over completely.

At the same time this sets the limits for MaxEnt calcula-
tions. A MaxEnt calculation fails if A��� has structures on
such a small energy scale that there are important expansion
coefficients 	A�

�n+1� corresponding to eigenvalues close to 1,
since the MaxEnt calculation gives no additional information
about these components. This also shows the danger of put-
ting in too much structure on a small energy scale in the
default function. This would make components 	m�

�n� corre-
sponding to ���1 important and the MaxEnt calculation
would not remove them from A�

�n+1�, even if there is no sup-
port for such components in the data.

The results in Figs. 5 and 6 show a beating pattern, where
the different calculations agree approximately for certain val-

ues of �. This must be related to the noise in the input data
since this is what differs between the calculations. The rea-
son can be seen from Table II and Fig. 8. The contribution of
the noise to the output is given by ��	G�

�n�. This contribution
comes mainly from the eighth and ninth eigenvalues. The
corresponding eigenfunctions in Fig. 8 have their zeros ap-
proximately where the deviations between the calculations in
Fig. 5 are small, although the agreement is not perfect. The
reason is probably the nonlinearity due to the logarithm in
Eq. �11�. For instance, if the logarithm is expanded to second
order, the resulting product of two functions generates func-
tions with more nodes than either of the two functions. As a
result we find that 	A�

�n+1� has appreciable errors also for
components with a few more nodes than the eighth and ninth
eigenfunctions. This then shifts the beating pattern slightly
toward lower energies.

We introduce the projection operator,

P�n� = �
�

���n��
��n�����0 − ��
�n�� , �30�

where the � function selects states with eigenvalues smaller
than �0�1. Equation �28� can now be iterated. If we assume
that ��

�n� is independent of n, which is a good approximation,
we obtain

	A�
�n+1� = ��

i=1

n+1

��
i 	G�

�0� + ��
n+1	m�

�0� for �� � �0

��
	G�
�0� + 	m�

�0�� for �� 
 �0.
� �31�

This illustrates how iteration reduces the systematic error for
components with ����0, but increases the statistical error.
Whether iteration pays off then depends on the relative size
of the statistical and systematic errors and the choice of �0.
In this linearized version, however, it does not pay off to
include all states in the projection operator �leading to P�n�

	1�.
For the nonlinear case, the behavior is a bit different.

From the expression for the error in Eq. �11�, it follows that
ln�m /Aexact� enters. Expanding the logarithm leads to terms
with products of eigenfunctions of the type in Fig. 8. Such
products couple to higher eigenfunctions with more nodes.
The result is that the error of a certain � component of
ln�m /Aexact� depends not only on the error of that � compo-
nent of m but also on the errors of other components, in
particular lower ones. Whether the errors from the different
contributions add constructively or destructively depends on
the specifics of the model. For the cases we considered the
contributions to the higher components often add destruc-
tively. Then it can be more favorable to iterate all compo-
nents rather than just the ones that would be favorable ac-
cording to Eq. �31�. For the cases we have studied, this has
usually been the case and this is the approach we used in
Sec. IV.

VI. SUMMARY

We have analyzed the MaxEnt approach for analytical
continuation, defining a statistical error, due to noise in the
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FIG. 8. �Color online� Eigenfunctions to the matrix c�n� in Eq.
�26� corresponding to the ten lowest eigenvalues. The figure illus-
trates how eigenfunctions corresponding to an eigenvalue close to 1
oscillate very rapidly.
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imaginary axis input data, and a systematic error, due to
errors in the default function entering the entropy. The clas-
sical method for choosing the weight � of the entropy can
lead to a nonoptimal choice, reducing the systematic error at
the cost of making the statistical error unnecessarily large.
We find that the statistical error can be reduced by splitting
up the data in batches. A MaxEnt calculation is performed
for each batch and the result is averaged. This approach in-
creases the systematic error but the total error can be re-
duced. We have also studied an iterative approach, where the
output spectrum is used as the default function in a new
MaxEnt calculation. We find that a straightforward applica-
tion of this approach often gives worse results due to a rapid
increase in the statistical error. By splitting up the data in
batches, the statistical error can be reduced sufficiently that
this is less serious. The reduction in the systematic error can
then outweigh the increase in the statistical error.

To analyze the MaxEnt method, we have studied a linear-
ized version of the problem. In this formalism it is easier to
see how the statistical error propagates, in particular in the
case of iterations. One can also see how certain deviations of
the default function from the exact result have little influence

on the output, while others fully show up in the output. This
illustrates the danger of having a default function with too
much structure.

While this paper shows the potential for improving the
MaxEnt method, it is harder to provide prescriptions for how
to use this. In Sec. III we provided a prescription for how to
split the data in batches, which we have found to often work
fairly well for a given value of �. This method makes the
resulting error less sensitive to the optimization of �. Alter-
natively, one can simply split the data in, say, ten batches.
For each batch the classical method of determining � is used
and the resulting MaxEnt results are averaged. This approach
typically improves the accuracy of the output spectrum. In
particular, it reduces the risk of finding spurious structures
due to overfitting of noisy data, while some real structures
can be lost in this approach.
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