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Low-dimensional systems of interacting particles demonstrate a variety of fascinating macroscopic proper-
ties. Experimentally investigated examples include two-dimensional electron systems in semiconductors struc-
tures and Abrikosov vortex lattices in superconductors; these systems share notable features in common, such
as low-symmetry host crystal interactions. These interactions can be described in terms of a general statistical
model: as systems driven by Coulombic forces and anisotropic bond energy. Through molecular-dynamics
simulation we find that the expected hexagonal order disappears even for a weak tetragonal anisotropy, giving
rise to a tetragonal structure with a finite-length ordering allowing for determination of the critical anisotropy
parameter for the phase transition.
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Low-dimensional ensembles of interacting particles dem-
onstrate a variety of interesting phases with various types of
ordering. One of the most intriguing macroscopic orderings
is Wigner crystallization which is based on Coulomb repul-
sion and originally proposed for electrons in metals.1 Studies
of macroscopic ensembles of electrons demonstrated that this
phase can more easily be achieved in two-dimensional �2D�
rather than in three-dimensional systems. The first experi-
mental proof was given for electrons levitating over surface
of liquid helium in regime of low concentration, where elec-
tron motion is classical.2

A much broader class of 2D electron systems and experi-
mentally achievable temperature and concentration regimes
is presented by carriers in artificial semiconductor structures
such as quantum wells and heterojunctions. A result of a
balance between electron-electron interaction and quantum
kinetic energy of electrons, a 2D Wigner crystal can be sta-
bilized by an external magnetic field perpendicular to the
structure.3 Here, the presence of host lattice strongly influ-
ences properties of electron phases, making the understand-
ing of phase diagram a problem of fundamental interest.4–7

Since different phases of 2D electron ensembles are expected
to have energies different within only 0.01 of their values,5

the effect of coupling to the host lattice can be crucial. Cou-
pling to the host brings about at least two new sets of fea-
tures in the physics of electron systems. One new set is the
effect of a static disorder: the imperfections in the environ-
ment, always present there, can drastically affect the electron
structure. In the simplest case, a static random potential
U�x ,y� is coupled to local electron density ns�x ,y� as
U�x ,y�ns�x ,y�. A competition between Coulomb forces and
disorder produces elastic and inelastic deformations, pins the
electron solid, and leads to a interesting collective phenom-
ena, including the system creeping by an external electric
field.8,9

The other set of new properties is related to interaction
between electrons and excitations in the host lattice. These
features become very attractive to study since structures with
a very weak disorder can be produced. To provide an ex-
ample, a magnetic field perpendicular to the structure causes
stripes with a modulated electron density pinned with respect
to the host lattice.10 This behavior was experimentally ob-
served in an anisotropic 2D electron-gas conductivity.11 The
system has a metastable collective state and shows a relax-
ation at long time scales toward equilibrium. These effects
can be attributed to anisotropic contributions to electron-
electron interaction induced by a coupling to the host lattice
of tetragonal symmetry, which can occur through acoustic-
phonon exchange.12,13 Host-induced interactions, not directly
related to density, but lowering the system symmetry, are
weak and long range and can be crucial for the system be-
havior on macroscopic scale, as will be shown below. Per-
haps, the first effect of coupling of a monolayer of interact-
ing particles with the host lattice was considered for Ar on
graphite,14,15 where such host lattice forms a periodic poten-
tial for Ar adatoms. Other interesting examples of collective
interactions to the host system are polaronic effects16,17 and
stripe phases in high-temperature superconductors. The sys-
tems of our interest are, however, qualitatively different: here
the host lattice creates an additional symmetry-induced
particle-particle interaction rather than try to locate particles
in the minima of lattice-produced potential.

The interaction between electrons can be understood from
Fig. 1. To illustrate the appearance of the additional term in
the interaction, we consider phonon-mediated electron-
electron scattering matrix elements Mee

ph�k1 ,k2 ,q� �Fig. 1�a��
in the crystal structure with tetragonal symmetry. Here elec-
tron momenta k1 ,k2 are in the structure plane while phonon
momentum q can has an arbitrary direction. The Fourier
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transform of the matrix element yields the additional
phonon-mediated potential in the form,12,13

U�r� =
e2

�r
�1 + a cos 4�� , �1�

where r is the distance between electrons, � is the dielectric
constant, and � is the angle between one of the plane axes
and r �Fig. 1�b��. The coupling constant a determined by the
strength of electron coupling to acoustic phonons in the ma-
trix element in Fig. 1�a� will be considered here as a small
phenomenological parameter.

Electrons in semiconductor structures is not the only ex-
ample of possible Wigner crystallization. Other interacting
systems, even those not formed by real particles, can show a
similar ordering and, as a result, similar effects of coupling
to the host lattice.18 A neat example is the Abrikosov vortex
lattice in type-II superconductors.19 The interaction between
vortices is repulsive and, at sufficiently high concentration
they form a 2D periodic structure. As in 2D electron systems,
various phases of vortex structures have similar energies,
different in less than 1% of values. Therefore, the phase dia-
gram can be sensitive to external perturbations, including
symmetry lifting. For tetragonal crystals it was proven by
generalization of Ginzburg-Landau equations that the Abri-
kosov lattice can become tetragonal if anisotropy becomes
sufficiently strong.19–21

Here we formulate and explore a general statistical me-
chanics model consisting of a sum of isotropic and relatively
weak anisotropic Coulomb interactions, presented by Eq. �1�,
to study effects of a lower host crystal symmetry on a 2D
Wigner crystal. With this model we numerically simulate a
classical 2D Wigner crystal embedded in a tetragonal host
lattice, formulating it for brevity in terms of electrons. We
demonstrate that even being weak, this interaction changes
the long-range order leading to formation of a short-range
ordered tetragonal structure.

The total potential energy of a system with N electrons of
charge e can be written as

U =
e2�1 + a�

2�
�
i=1

N

�
i�j

N � 1

rij
+

8a

1 + a
� xij

4

rij
5 −

xij
2

rij
3 �	 , �2�

where xij =rij cos �. It will be shown below that these addi-
tional terms, weak compared to the Coulomb energy, lead to
strong changes in the properties of Wigner solid.

Our numerical simulations are carried out on basis of
Langevin molecular dynamics. The equation of motion for
an electron is mr̈=−�U�r�−bmṙ+��t�, where b is the
friction coefficient and the thermal noise arises from
random Langevin kicks with 
�i�t��=0 and 
�i�t�� j�t���
=2mbkBT�ij��t− t��. Here m is electron effective mass, kB is
the Boltzmann constant, and T is the temperature. The simu-
lations were performed in a rectangular box with area A for a
fixed density of 1.2�1010 cm−2. The sides of the simulation
cell have a ratio of �3 /2 to allow 4M2 electrons to lie in a
perfect triangular lattice without any external perturbation.
We use periodic boundary conditions and the electron-
electron interactions are treated with the Ewald summation.
Throughout this paper, we use �A and E0=e2 /2�A as units of
length and energy, respectively. We use �=�mA /2E0 as unit
of time. We have made runs with large systems with N
=1600 electrons. We set the dielectric constant �=10 and
m=0.1 of the free-electron mass, which are the typical values
for semiconductors structures. The charge neutrality of the
system is assured by imposing a contribution of a positive
background on the total energy. The equilibrium position of
electrons is obtained after a run of 105 time steps at zero
temperature. Other properties are obtained with an additional
5�104 steps. Here, we use the dimensionless time integra-
tion step as �t�=1.34�10−3. It is also possible to use the
typical interelectron spacing r0 related to the mean electron
concentration ns
1 /�r0

2 as unit of length.
We concentrate on defined by the minimum potential-

energy hexagonal-tetragonal transition, which occurs when a
exceeds a certain critical value ac. The corresponding struc-
ture’s evolution is shown in Fig. 2, demonstrating a sharp
transition. These results show that already for a	ac=0.042
the long-range hexagonal order is destroyed, aperiodic struc-
tures are observed in a narrow interval of a, and a short-
range tetragonal structure is quickly formed.

To study the transition quantitatively we calculate the pair
correlation function �Fig. 3�,

g�r� =
1

Nns
��

i=1

N

�
j�i

N

��r − rij�� , �3�

to characterize the distribution of distances between elec-
trons. For numerical calculation g�r� can be presented as,

nsg�r� =
2N̄�r,�r�
2�r�rN

, �4�

where N̄�r ,�r� is the total number of electrons located be-
tween r and r+�r for all electrons considered as the origin.
Another possibility is provided by the function describing
the coordination number �Fig. 4�,

FIG. 1. �Color online� �a� Matrix element for the phonon ex-
change Mee

ph�k1 ,k2 ,q�. �b� Host lattice with tetragonal symmetry.
Large circles stand for the host lattice and small ones represent
electrons.
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C�R� = 2�ns�
0

R

rg�r�dr . �5�

Figures 3 and 4 confirm that long-range hexagonal order
disappears for a	0.043 and a tetragonal structure is formed.
Another interesting observation is that the formed structure
is in fact relatively short range. This can be seen in Figs. 3
and 4 since the weak anisotropic forces compete with the
strong isotropic Coulomb interaction. In Fig. 3 the structure
peaks remain broad even deeply in new phase. The same
observation can be done for Fig. 4, where the plateaus cor-
responding to the coordination numbers are not flat and show
a weak slope with the distance. In addition to the disorder

and transitions related to electron-electron bond length, we
have studied orientational disorder related to the distribution
of angles between the bonds, and therefore to the crystal
symmetry. For this purpose we introduce a local parameter
characterizing orientation of the bonds in the vicinity of a
given lattice site R0,


n�R0� =
1

Nk
�
j=1

Nk

exp�in� j�R0�� , �6�

where Nk is the local coordination number of the particle at
R0 determined by the Voronoi tessellation and � j is the angle
made by a bond between a particle at the R point and its
nearest neighbor with respect to an arbitrary fixed axis. The
corresponding correlation function has the form,

gn�r� = 

n
��R0�
n�R0 + r�� . �7�FIG. 2. �Color online� Phases of 2D Coulomb solid at different

values of anisotropy: a=0.41 �upper panel�, a=0.42 �middle panel�,
and a=0.43 �lower panel�. Dark area—hexagonal structure, light
area—tetragonal structure.

0

1

2

3

4

5

g(
r)

1 2 3 4 5 6
r/r

0

0

1

2

3

4

g(
r)

FIG. 3. �Color online� Correlation function g�r�. Upper panel:
solid line a=0.041 and dashed line a=0.05. Lower panel: solid line
a=0.042 and dashed line a=0.043. Change in the structure correla-
tion function that occurs between these values of a is clearly seen in
the figure.
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FIG. 4. �Color online� Correlation function C�R� shown the
number of neighbors as a function of the distance. Solid line a
=0.041, dashed line a=0.042, dashed-dotted line a=0.043. The pla-
teaus in the tetragonal phase at C�R�=4 and C�R�=8 have a finite
slope corresponding to the finite spatial scale of the ordering.
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These parameters characterize the bond-direction disorder
shown in Fig. 5. The behavior of gn�0� characterizes the local
distribution of the angles between the bonds to neighbors of
a given electron. To characterize the hexagonal-tetragonal

transition, we consider two parameters, g6�r� and g4�r�,
which show a well-structured behavior in the hexagonal and
tetragonal structures, respectively.22–24 Due to imperfect te-
tragonal ordering, the parameter g4�r� depends on cutoff rco
performed in the calculation: neighbors at the distances r
	rco are not included in Eq. �6�.

To conclude, we have investigated a 2D Wigner crystal
with anisotropic bond energies: the model for 2D electrons in
solids and Abrikosov superconducting vortex lattices. The
changes in the crystal structure brought about by the aniso-
tropy are seen in g�r� and angular g4�r� and g6�r� correlation
functions, characterizing the pair distances and orientational
order, respectively. By the Langevin molecular simulation
we found a small critical value of anisotropy close to 0.04
showing that even a weak anisotropic contribution in the
Coulomb force leads to a transition between long-range or-
dered hexagonal and short-range ordered tetragonal struc-
tures. This value is in a very good agreement with calcula-
tions on Abrikosov vortex structure based on solution of
Ginzburg-Landau equations,21 revealing the fact that the
physics brought about by the anisotropy in these two systems
is common despite different original scales of interaction.
Our results can be applied to analysis of various systems
where weak anisotropic interactions compete with strong
long-range forces.
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FIG. 5. �Color online� �Upper panel� Illustration for gn�r� func-
tion. �Middle panel� Function g6�r� characterizing the hexagonal
orientational order. Solid line a=0.041 and dashed line a=0.042.
�Lower panel� Function g4�r� characterizing the tetragonal orienta-
tional order for a=0.043. The cutoff is taken at rco=2.15r0.
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