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We study a simple model for the depinning and driven steady-state phases of a solid tuned across a
polymorphic phase transition between ground states of triangular and square symmetry. The competition
between the underlying structural phase transition in the pure system and the effects of the underlying disorder,
as modified by the drive, stabilizes a variety of unusual dynamical phases. These include pinned states which
may have dominantly triangular or square correlations, a plastically flowing liquidlike phase, a moving phase
with hexatic correlations, flowing triangular and square states and a dynamic coexistence regime characterized
by the complex interconversion of locally square and triangular regions. We locate these phases in a dynamical
phase diagram and study them by defining and measuring appropriate order parameters and their correlations.
We demonstrate that the apparent power-law orientational correlations we obtain in our moving hexatic phase
arise from circularly averaging an orientational correlation function which exhibits long-range order in the
�longitudinal� drive direction and short-range order in the transverse direction. This calls previous simulation-
based assignments of the driven hexatic glass into question. The intermediate coexistence regime exhibits
several distinct properties, including substantial enhancement in the current noise, an unusual power-law
spectrum of current fluctuations and striking metastability effects. We show that this noise arises from the
fluctuations of the interface separating locally square and triangular ordered regions by demonstrating a cor-
relation between enhanced velocity fluctuations and local coordinations intermediate between the square and
triangular. We demonstrate the breakdown of effective “shaking temperature” treatments in the coexistence
regime by showing that such shaking temperatures are nonmonotonic functions of the drive in this regime.
Finally we discuss the relevance of these simulations to the anomalous behavior seen in the peak effect regime
of vortex lines in the disordered mixed phase of type-II superconductors. We propose that this anomalous
behavior is directly linked to the behavior exhibited in our simulations in the dynamical coexistence regime
thus suggesting a possible solution to the problem of the origin of peak effect anomalies.
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I. INTRODUCTION

The motion of an elastic medium across a quenched dis-
ordered background presents a simple paradigm for the un-
derstanding of several experiments.1 These include studies of
the depinning of charge-density waves,2,3 transport measure-
ments in the mixed phase of type-II superconductors,4 as
well as measurements of the flow of colloidal particles across
rough substrates.5,6 The issue of universality at continuous
depinning transitions has traditionally dominated much of
this literature, especially in the charge-density wave context.7

However, the behavior of nonuniversal quantities in the vi-
cinity of the depinning transition is often of more interest to
the experimenter.8 The nature of order, correlations, and re-
sponse within the moving phase are also questions which
underly many recent investigations of the physics of non-
equilibrium steady states, motivated in large part by the
considerable experimental literature on dynamical states of
flux lines in the mixed phase of driven, disordered type-II
superconductors.8

The canonical example of a remarkable nonuniversal fea-
ture of the depinning transition is the peak effect often seen
in the mixed phase in the vicinity of the upper critical field

Hc2.9 The peak effect, a generic property of weakly disor-
dered type-II superconductors, describes the nonmonotonic
behavior of the critical current jc as a function of the tem-
perature T or applied magnetic field H.10 This critical current
measures the �depinning� force required to induce observable
motion of the vortex line array.10,11 The peak effect is an
often spectacular phenomenon with jc rising sharply in a
narrow region whose width is comparable to that of the zero-
field superconducting transition.8 Investigations of the peak
effect describe a host of unusual phenomena associated with
this narrow regime.8 These include “finger-print phenom-
ena,” slow voltage oscillations, history-dependent dynamic
response, enhanced low-frequency noise with a 1 / f� spec-
trum and many other remarkable features. These are often
collectively referred to as “peak-effect anomalies.”12–24

Approaches to understanding the peak effect have typi-
cally followed two distinct paths. The first views the peak
effect as arising solely from the softening of the flux lattice
close to Hc2, as reflected in the vanishing of the shear elastic
constant C66��H−Hc2�2 while pinning strengths soften
more gradually, as �H−Hc2�.25 As suggested initially by
Pippard,25 softer lattices should be able to adapt better to
random pinning.26,27 In the second class of theories, the peak
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effect is a reflection of the underlying phase diagram of a
weakly pinned, flux-line array in the H-T plane.28–43 It has
been argued that such phase diagrams should generically ac-
commodate intermediate glassy phases close to the melting
transition.22,29,33,35–37 The peak effect is then proposed to be
associated with abrupt changes in transport across such phase
boundaries with the anomalies rationalized in terms of the
glassy nature of such intermediate states.22,35–37,42

A third, as yet unexplored, alternative to these approaches
which addresses the origin of the anomalies directly, com-
bines the scenario of an underlying static phase transition
with the possibility that driving such a system induces dy-
namical steady states with no static counterpart. With this
motivation in mind, the central questions addressed in this
paper are the following: consider an underlying static phase
transition in a pure system as modified or broadened by weak
quenched disorder. How are signals of this transition mani-
fest in dynamical measurements? Further, can novel dynami-
cal states with no analog in either the pure or the disordered
undriven system be obtained once the system is driven? Fi-
nally, could some of the remarkable phenomenology of the
peak-effect anomalies possibly originate in the properties of
such states?

We recently proposed a suitable model system capable of
addressing some of these issues.44,45 Our model uses inter-
acting particles in two dimensions close to zero temperature.
These particles form a crystal in the absence of disorder. The
interaction potential contains a simple two-body repulsive
power-law interaction as well as a short-range three-body
interaction. The two-body interaction favors a triangular lat-
tice. The three-body term favors a square lattice. We tune
between a square and a triangular ground state by varying
the strength of a single parameter, the coefficient of the
three-body interaction v3. The square-triangular transition is
a first-order transition in the pure system. We place N such
interacting particles in a quenched disordered background,
modeled numerically in terms of a Gaussian random field
with specified strength and two-point correlations. After
finding the ground state of the interacting particles in the
disordered background using simulated annealing tech-
niques, we apply a uniform driving force to the particles.
This results, first, in a depinning transition and then a se-
quence of partially ordered states with varying degrees of
spatial correlations as the force is increased.

The advantages to such a formulation are several. Signa-
tures of phase transitions in dynamical measurements are
typically overwhelmed by thermal fluctuations for purely
temperature driven transitions, thereby obscuring the very
effects we wish to characterize. Our model of a T=0 transi-
tion between square and triangular phases surmounts this
problem while also mirroring similar structural phase transi-
tions in vortex lattices, typically between triangular and dis-
torted rectangular phases, across which broadened peak ef-
fects are seen.46–50

The sequence of steady states obtained in our model as a
function of the uniform external driving force F acting on the
particles, and for various values of the three-body interaction
strength v3, is summarized in the dynamical “phase” diagram
of Fig. 1. This phase diagram extends a similar phase dia-
gram proposed earlier to much larger values of v3.44,45 The

phase diagram shows a variety of phases: pinned states
which may have dominantly triangular or square correla-
tions, a plastically flowing “liquidlike” state, a moving an-
isotropic hexatic phase, flowing triangular and square states
ordered over the size of our simulation cell and a dynamic
coexistence regime.

This paper presents a detailed characterization of these
states. We define and calculate appropriate correlation func-
tions for n-atic �where n=6, mostly� orientational order, in
addition to structure factors measuring the distribution of
particles. We capture local bond-orientational order in terms
of distribution functions of a complex number characterizing
the local orientation. This representation is used to under-
stand the action of an external force in biasing the axes of
orientational order. We demonstrate that the hexatic order we
measure arises as an artifact of averaging an anisotropic
quantity, which decays either exponentially to zero or to a
constant value along two principal directions. In the “or-
dered” moving phases, square and triangular, shown in Fig.
1, orientational order appears to be established over length
scales much large than our system sizes.

In the coexistence regime �labeled �G� in the phase dia-
gram of Fig. 1�, we investigate the nucleation and growth of
ordered domains of one type �square or triangular� in an-
other. Such nuclei are, in general, anisotropic, forming along
the principal crystalline directions of each phase. The inter-
face region of different domains is remarkably dynamic. We
assign the substantial increase in noise we see within the
coexistence regime to the unusual properties of this interface,
quantifying this proposal by linking measures of fluctuation
magnitude to coordinations intermediate between square and
triangular.

FIG. 1. �Color online� Schematic dynamical phase diagram of
our model system, plotted as a function of the three-body interac-
tion strength v3 and of driving force F �see text for a more detailed
discussion�. The phases are �A� pinned triangular, �B� pinned
square, �C� plastic flow, �D� anisotropic hexatic, �E� flowing trian-
gular, �G� coexistence regime, and �H� flowing square. The precise
location of the lines separating these phases is disorder dependent
although the general topology of the phase diagram is not sensitive
to disorder. The boundary separating plastic flow from the flowing
square phase is a very strong function of the driving force F at large
v3. This schematic is obtained from the Langevin simulations de-
scribed in this paper, for which a temperature scale of 0.1Tm �with
Tm the melting temperature� is used and vd=1 where vd sets the
scale of the zero-mean Gaussian random pinning potential �see
text�.
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We measure several quantities on the dynamical side, in-
cluding the basic current-force relations, current statistics,
and current noise at many different points in the phase
diagram. We calculate the Koshelev-Vinokur “shaking
temperature,”51 defined in detail below, to understand how
disorder-induced fluctuations in the flow might provide an
effective, pure-system temperature in terms of which phase
behavior can be discussed. This shaking temperature, while a
monotonically decreasing function of the applied force over
much of the F−v3 phase diagram, is strikingly nonmonotonic
in F within the coexistence regime. We correlate local orien-
tational and density fluctuations within the coexistence state
to understand the origins of the anomalous noise in the co-
existence regime. We compare the phenomenology of the
simulations, specifically relating to the coexistence regime,
to what is seen in experiments on peak effect anomalies in
the mixed state. We argue that this comparison, supported by
general phenomenological arguments, suggests strongly that
there may be a generic explanation for peak-effect anoma-
lies.

The outline of this paper is the following. In Sec. II, we
describe the model system we use, explaining our methodol-
ogy and discussing relevant features of the simulations and
what we calculate. In Sec. III, we provide an overview of the
phase diagram of the driven system, discussing, in particular
detail, the hexatic vortex glass and the coexistence phase. We
discuss growth and fluctuations of one phase within another,
the behavior upon quenching and the origins of noise in this
regime. In Sec. IV, we discuss some aspects of peak-effect
anomalies seen in the experiments, pointing out the close
relationship between the diversity we see in our simulations
with the experimental data. We then conjecture that behavior
analogous to what we see in the coexistence regime may be
generic to all driven disordered systems in the vicinity of an
underlying static first-order phase transition in the pure limit.
Finally, in our concluding section, Sec. V, we summarize our
results briefly and suggest further lines of research.

II. MODEL SYSTEM AND METHODOLOGY

Our model system is two-dimensional and consists of par-
ticles with two and three-body interactions.44,45 The three-
body interaction, parametrized through a single parameter v3,
tunes the system across a square-triangular phase transition.
The total interaction energy for particles confined to two di-
mensions and labeled by their position vectors ri is thus

V = 1/2�
i�j

V2�rij� + 1/6 �
i�j�k

V3�ri,rj,rk� , �1�

where rij ��rij���r j −ri�.
We take the two-body interaction to be of the power-law

form

V2�rij� = v2	�0

rij

12

�2�

while the three-body term is

V3�ri,rj,rk� = v3�f ijsin2�4�ijk�f jk + permutations� . �3�

The function f ij � f�rij�= �rij −r0�2 for rij �1.8�0 and 0 oth-
erwise and �ijk is the angle between r ji and r jk.

The two-body interaction favors a triangular ground state
while the three-body term favors 90° and 45° bonds and
hence a square structure. Energy and length scales are set
using v2=1 and �0=1. The zero-temperature phase diagram
for particles interacting with this potential has been calcu-
lated in Ref. 52. As a function of the parameter v3, which
measures the strength of the three-body term, a discontinu-
ous transition between a triangular lattice, obtained for v3
�1.5, and a square lattice, obtained for v3�1.5, is seen. A
similar potential was used by Stillinger and Weber53 in an
early study of melting of a square solid.

Particles also interact with background quenched disorder
in the form of a one-body Gaussian random potential field
Vd�r� with zero mean and exponentially decaying �short-
range� correlations. This potential field is defined on a fine
grid following a methodology due to Chudnovsky and
Dickman,54 and interpolation is used to find the value of the
potential at intermediate points.55 The disorder variance is set
to vd

2=1 and its spatial correlation length is �=0.12. Larkin
length estimates4,26,27 yield La /a�100, with a=1 /�1/2 the
lattice parameter, somewhat larger than our system size.

A. Methodology

The system evolves through standard Langevin dynamics

ṙi = vi,

v̇i = fi
int − �vi + F + �i�t� . �4�

Here vi is the velocity, fi
int the total interaction force, and

	i�t� the random force acting on particle i, simulating ther-
mal fluctuations at temperature T. A constant force F
= �Fx ,0� drives the system. The zero-mean thermal noise
	i�t� is specified by


�i�t� · � j�t��� = 2T�
ij
�t − t�� �5�

with T=0.1, well below the equilibrium melting temperature
of the system. While most simulations work in the purely
deterministic �T=0� and highly overdamped limit of Eqs.
�4�, our choice of a temperature scale which, while nonzero,
is far lower than the characteristic scale of interactions, pro-
vides a more accurate description of the experimental sys-
tem, while acting to suppress trapping into metastable dy-
namical states. The unit of time �=��0

2 /v2 with �=1 the
viscosity.

B. Simulation details

Our system consists of N particles, with N between 1600
and 10 000, in a square box at number density �=1.1. Con-
figurations obtained through a simulated annealing procedure
are the initial inputs to our Langevin simulations. This an-
nealing procedure involves equilibration using an NAT
Monte Carlo scheme, where N is the number of particles, A
the area of the simulation box and T the temperature, within
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a fixed background potential of tunable amplitude. The
strength of the disorder is then increased in steps to the
working disorder strength with the system equilibrated at
each step for around 105 Monte Carlo steps. Varying the
strength of disorder in this fashion enables the system to
converge to its true minimum energy state more efficiently
than methods which employ a temperature-annealing sched-
ule.

We evolve the system using a time step of 10−4�. The
external force Fx is ramped up from a starting value of 0 with
the system maintained at up to 108 steps at each Fx.

Given the local instantaneous particle density

��r,t� = �
i


�r − ri�t�� �6�

we calculate a variety of structural observables at equal time,
such as the static structure factor S�q� defined by

S�q� = �
ij

exp�− iq · rij� . �7�

where rij =ri−r j. Delaunay triangulations yield the probabil-
ity distributions P�n� of n=4, 5, 6, and 7 coordinated par-
ticles ��nP�n�=1�.56 We define order parameters

� = �P�4� − P�6��/�P�4� + P�6�� �8�

to distinguish between square and triangular phases

�
 = �P�6� − P�5� − P�7��/�P�6� + P�5� + P�7�� �9�

to distinguish between liquid �disordered� and triangular
crystals and

�� = �P�4� − P�5� − P�7��/�P�4� + P�5� + P�7�� �10�

to distinguish between liquid and square crystals. In addition,
we compute the hexatic order parameter

�6,i � �6�ri� = �
j

exp�− i6�ij� �11�

and its correlations, defined via

g6�r� = 
�6�0��6�r�� , �12�

where � defines the bond angle associated with the vector
connecting neighboring particles, as measured with respect
to an arbitrary external axis. The second moment of the dis-
tribution of �6,i is the bond-orientational susceptibility. Be-
low, we describe alternative distribution functions which
quantify the extent to which the axes of the crystal align
along the driving force direction. These include “Argand
plots” of the distribution of a complex quantity which char-
acterizes local orientational order.

The dynamical variables we study include the center of
mass velocity vcm, and the particle flux and its statistics. The
center-of-mass velocity is defined via

vcm =� 1

N
�

i
vi�t�� , �13�

where the brackets 
 · � denote an average in steady state and
vi�t� is the velocity of particle i at time t. We measure the
particle flux by counting the number of particles which cross

an imaginary line crossing the x=0 axis in a single time step
and then averaging this result over time. This flux, essen-
tially a current j�x ,y� integrated over all y at fixed x, which
must be independent of x in steady state, has fluctuations
about a constant value. We measure and discuss the power
spectrum of these fluctuations.

Koshelev and Vinokur �KV� �Ref. 51� have suggested that
the combination of the drive and the disorder should yield an
effective “shaking” temperature in the moving phase. Such
an effective temperature manifests itself in transverse and
longitudinal fluctuations of the velocity. We calculate the KV
shaking temperature Tsh

� �Ref. 51� appropriate to the drive
and transverse directions, obtaining it from

Tsh
� =��

i

N

�vi
� − vcm

� �2�/2N, � = x,y . �14�

We measure the variation in the T�’s as a function both of
force and v3 at various points in our phase diagram.

The transition to the coexistence phase is marked by the
growth of highly anisotropic, obliquely inclined square nu-
clei, in a background of approximately triangularly coordi-
nated solid. To understand their role in the nucleation kinet-
ics, we define and compute quantities which measure the
anisotropy of such clusters. To determine the source of ex-
cess noise in the coexistence phase, we measure the prob-
ability distribution of the instantaneous velocity excess
above the mean, as a function of the local coordination as
well as of the local density. As we show below, these mea-
surements indicate that the substantial portion of the noise
originates from regions which are neither wholly square or
triangular but to be found at the interface between such lo-
cally ordered states.

III. PHASES AND PHASE DIAGRAM OF THE DRIVEN
SYSTEM

A qualitative understanding of the basic structure of the
phase diagram of Fig. 1 can be obtained from snapshots of
instantaneous configurations in the steady state. Such snap-
shots are shown in Fig. 2, obtained from simulations at T
=0.1 with v3=6.0. The configurations labeled �a�–�f� are for
driving forces Fx�=F�=6, 10, 20, 22, 32, and 40 respectively.
Particles are colored according to their coordination number
n=6 �blue�, 4 �magenta�, 8 �gray�, 7 �orange�, and 5 �green�,
as obtained from Delaunay triangulations and a Voronoi
analysis. In grey scale, these colors appear in the order of
darkest to lightest shade.56

Disorder-induced inhomogeneities spawn local defects
and dislocations �five and seven coordinated particles� in the
system at low F. For sufficiently small F, there is no center-
of-mass motion which survives over the longest times we
have simulated, indicating that an effectively pinned state is
obtained. Boosting the external force transforms the disor-
dered pinned phase into a plastically flowing disordered flu-
idlike “plastic-flow” phase. While structure factors in this
state �Fig. 4� resemble those in a fluid, such a state cannot be
a true thermodynamic liquid phase. Snapshots of particle
motion indicate that local coordination is not maintained in
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the flowing state. This disruption of local topological order
defines plastic flow, justifying the nomenclature. The plastic-
flow phase turns into a coherently moving triangular phase at
much larger F.

We show the evolution of the coordination number histo-
grams of the system for the corresponding forces in Fig. 3. In
the disordered state, fivefold and sevenfold coordinated par-
ticles are roughly similar in number as expected. The number
of particles with fivefold and sevenfold coordination de-
crease with the drive �Figs. 3�a� and 3�b��. There appears to
be a small intermediate regime where we see some clustering
of these defects, as in �c� and �d�. Finally, at much larger F,
the number of nonhexagonal coordinated particles declines
abruptly �Figs. 3�e� and 3�f�� and the system freezes into a
triangular lattice. Similar observations hold for the case of
scans in F at larger v3 with the difference that the ultimate
large-force state is the flowing square lattice. Configurations
in the “coexistence regime” obtained at much larger forces
�F�100 for v3=6� are discussed separately in the sections
which follow.

A. Pinned phase

For small F the solid is pinned. In this regime, for F
�Fc, there is no center of mass motion at the longest times
we simulate. We see transient motion in the initial stages of

the application of the force, which then dies down once the
system optimizes its location within the background of pin-
ning sites. As F is increased across the depinning threshold,
there are long transient time scales for motion to set in.45
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These time-scales appear to diverge as the system ap-
proaches the transition, in agreement with expectations con-
cerning continuous depinning transitions. However, depin-
ning appears to be hysteretic, on the length and time scales
we consider i.e., the reverse path, from depinned to pinned
states yields an abrupt transition between these states.44,45

Strictly speaking, a depinning threshold different from
zero cannot obtain in our system at any nonzero temperature
but should take the form of a �possibly rapid� crossover be-
tween flowing states and states which are pinned over the
time scales of the simulation. We have checked that the lo-
cation of this crossover is both sharp and robust to changes
in the ramp rate, thus giving us confidence that we are effec-
tively simulating the underlying T=0 depinning transition.
We have been unable to conclusively settle the issue of
whether the hysteresis we see in our simulations should sur-
vive in the thermodynamic limit. We have examined several
ramp rates for the force but see largely similar behavior as
the ramp rate is reduced, simulating the adiabatic ramping
limit which we cannot, however, access. At nonzero tempera-
ture, as in the experimental situation, a physical criterion
involving the smallest measurable velocity is anyway re-
quired to quantitate a threshold for motion, given that creep
will always dominate at long times.

The pinned triangular and square phases are distinguished
primarily by our analysis of local coordination. The pinned
square phase has a substantial peak at a local coordination
corresponding to four nearest neighbors, whereas the distri-
bution function for the pinned triangular state peaks at a
local coordination corresponding to six nearest neighbors.
This provides a reasonable local characterization of triangu-
lar vs. square order. The crossover line separating these can
be assigned using the criterion that the relative weight of the
peaks at sixfold and fourfold coordinations are the same at
the transition line.

The pinned phase is a phase with short-range order in
both translational and orientational correlation functions.
Correlations typically extend to about four to eight interpar-
ticle spacings at the levels of disorder we consider. At non-
zero noise strength, strictly speaking, we would expect an
activated creep component to the motion. This presumably
lies beyond the time scales of our simulation, given the rela-
tively low temperatures �T�Tm� we work at.

The depinned state just above the transition is inhomoge-
neous and undergoes plastic flow57–59 consistent with earlier
numerical work. For larger Fx the velocity approaches the
asymptotic behavior vCM =Fx.

B. Plastic-flow phase

Upon increasing the force, we enter a regime of substan-
tial plastic flow.57–59 This regime is one in which particle
motion is extremely inhomogeneous. Similar plastic flow is
seen in a large number of simulations of particle motion in a
random pinning background.30,51,57–64 What is unusual here,
however, is the strongly nonmonotonic character of the plas-
tic flow boundary, as illustrated in the phase diagram of Fig.
1. Note that the plastic-flow phase boundary in the F-v3
plane is largely independent of F for small v3. However,

once the critical value of v3 for the square-triangular transi-
tion is crossed, this boundary becomes a strong function of
F, with the plastic-flow region expanding considerably be-
fore it collapses again.

The structure factor S�q� of the plastically moving phase
�C� obtained in a narrow region just above the depinning
transition consists of liquidlike isotropic rings, as shown in
Fig. 4�a�. For much larger values of v3, the disordered,
pinned phase appears to depin directly into the highly or-
dered moving square lattice phase, with no trace of a plastic-
flow regime. We have searched for tetratic phases, with al-
gebraically decaying tetratic correlations in the vicinity of
this depinning transition. However, no such phase is apparent
in our numerics.

In the plastic-flow regime, transport properties are noisy,
reflecting the underlying highly disordered nature of the
phase, in agreement with previous work on such plastic-flow
states in systems without competing phases.30,51,57–64 Our
simulations in the plastic-flow regime see a complex struc-
ture of the velocity-distribution function, reflecting a weak
peak at vx=0 in addition to the dominant peak at the center-
of-mass velocity, as shown in Fig. 5. For force regimes just
above the depinning transition at F�5, there is a distinct
shoulder in the data for vx values in the vicinity of vx=0,
reflecting an anomalous weight for particles with zero veloc-

(a) (b) (c) (d)

FIG. 4. Structure factor S�q� for the �a� plastic-flow state, �b�
anisotropic hexatic phase, �c� moving triangle, and �d� moving
square solid phases at v3=6.0 and Fx=10, 20, 60, and 140, respec-
tively. To obtain S�q�, 500 independent configurations were used.
The structure in �d� reflects the presence of two misoriented square
crystallites.
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FIG. 5. �Color online� The probability distribution of velocities
P�vx� at v3=6, as a function of velocity vx, for driving forces F
=6,7, 8, 9, 10, 11, and 12, for which the system is in the plastic-
flow regime. Note that for force regimes just above the depinning
transition, there is a distinct shoulder in the data for vx values in the
vicinity of vx=0, reflecting the coexistence of stuck and moving
particles. For somewhat larger values of the force, the peak in the
distribution moves to larger vx values, becoming more symmetric
�Gaussian�, and the feature at vx=0 is suppressed.
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ity with respect to the fairly symmetric distribution about the
nonzero median value. This is indicative of the coexistence
of stuck and moving particles in any given snapshot. �How-
ever, no particle appears to be stationary over the full time
scales of our simulations.� For somewhat larger values of the
force, the peak in the distribution moves to larger vx values,
becoming more Gaussian, and the feature at vx=0 is sup-
pressed. However, motion in this regime is still plastic, in-
volving the disruption of local topological connectivity, as
evidenced both by the broad distribution about the mean
value and from direct inspection of configurations.

The structure of the data shown in Fig. 5 differs from data
obtained in other simulations, such as those of Ref. 60,
which obtain a far more distinct separation of the probability
distributions for the zero and nonzero velocity components.
However, the models have important differences: the inter-
actions used in Ref. 60 are far softer since they do not di-
verge at contact. In addition, we work in the partially over-
damped and not the fully overdamped limit, in contrast to
Ref. 60; see our Eqs. �4� above.

C. Anisotropic hexatic phase

As F is increased further, we encounter a narrow regime
in which translational correlations are short ranged while
angle-averaged orientational correlations appear to decay as
power laws. Within this phase the circular ring in S�q� con-
centrates into six smeared peaks, as shown in Fig. 4�b�. We
define the boundaries of this regime through various mea-
sures: �i� from the locations across which orientational cor-
relations cease to decay as power laws, �ii� from the variation
in S�q�, and �iii� from different regimes of behavior of the
transverse orientational correlation function �see below�. The
presence of sixfold order in the absence of the sharp Bragg
peaks associated with crystalline ordering suggests that this
phase may have hexatic orientational order. We thus tenta-
tively identify this phase as a driven hexatic, as shown in
�D�;30,65 the terminology “anisotropic” is justified in what
follows. However, to strengthen this assignment, other pos-
sible assignments, such as to a coexistence regime known to
plague similar analyses of hexatics in two-dimensional sys-
tems, must be ruled out.66

We compute the correlations of the hexatic order param-
eter for a very large system at varying values of F, as shown
in Fig. 6, where N=10 000. This figure displays the evolu-
tion of g6�r�, as F is varied across the phases �C�→ �D�
→ �E� at fixed v3=6. We observe a sharp exponential decay
of hexatic correlations in �C� and find that at the liquid to
hexatic transition for F�22, the decay fits the universal be-
havior

g6�r� �
1

r1/4 �15�

expected at the fluid hexatic transition in two-dimensional
nondisordered fluids. This exponent is obtained in a rela-
tively narrow range of forces. Our system sizes are compa-
rable to typical sizes employed to observe a metastable
hexatic phase in two dimensional melting of pure solids.

In Fig. 7�a�, we compare the distribution of ��6,i�2 over the

full system, for the plastically flowing, moving triangular
and the intermediate hexatic-glass regimes. The figure illus-
trates that in the liquid/plastic regime �F=10�, the distribu-
tion is primarily governed by nonsixfold coordinated par-
ticles. In the high driving force regime �F=40�, sixfold
coordinated particles contribute in main. This raises the
question of whether the intervening “hexatic” regime we ob-
serve in terms of S�q� and the correlation of the hexatic order
parameter g6�r� at F=24, is truly hexatic or defined by a
coexistence of the “solid” and “disordered” phases. If con-
figurations resemble those at solid-fluid coexistence, the dis-
tribution would be expected to be a sum of the disordered,
relatively ordered and interface distributions �weighted with
their relative areas�.

To settle this issue we investigate the dependence of the
distribution of ��6,i�2 on the size of the system. The distribu-
tion is obtained by dividing the system into a number of
blocks and computing the distribution of ��6,i�2 within each
block for every configuration. In this way, information over
many length scales can be obtained from the same set of
configurations. This provides us with the distribution of
��6,i�2 for various fractions of the total system.
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FIG. 6. �Color online� The hexatic correlation function g6�r� for
F=6, 12, 14, 16, 22, 26, and 30, each averaged over 500 indepen-
dent configurations of a N=10 000 particle system at v3=6. The
solid line indicates the universal behavior g6�r��r−1/4 at the liquid
to hexatic transition.
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FIG. 7. �Color online� �a� The distribution of the amplitude of
the local hexatic order parameter ��6,i�2 over the system for N
=10 000 in the plastic �Fx=10�, hexatic-glass �Fx=24� and moving
triangular �Fx=40� regimes, with v3=6.0 �b� Scaling of the distri-
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length L, with v3=6.0.
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We find, as shown in Fig. 7�b�, that apart from finite size
effects, there is not much difference between the distribu-
tions. Also, the distributions for the two largest systems, viz
0.8L and 0.9L �L being the size of the simulation box�, co-
incide to within statistical errors. In the case of two-phase
coexistence one would expect a strong size dependence when
the size of the blocks is comparable to the size of the phase-
separating clusters. These observations rule out two-phase
coexistence, at least of the conventional kind, as an explana-
tion for the long orientational correlations obtained on circu-
lar averaging.

As we show below, a more detailed characterization of
this phase yields the following results: long-range order in
orientation is always present in the direction of drive while
remaining short range in the perpendicular direction. When
averaged over all orientations, the resulting function appears
power-lawlike over 2–3 decades, i.e., over length scales ad-
dressed in virtually all simulations so far. Thus, while we call
the intervening phase as the “anisotropic hexatic,” we di-
verge sharply from previous work in our claim that the true
phase is never a true hexatic in the real sense since it always
has long-range order in the drive direction. We conclude that
the apparent hexatic correlation arises, in fact, as an artifact
of circularly averaging a very anisotropic correlation func-
tion, with qualitatively different decays in the longitudinal
and transverse directions.

1. Analogy to the XY model

The power-law decay of orientational correlations shown
in Fig. 6, taken together with the scaling of ��6,i�2 suggests
that the driven system in the vicinity of F=22 might best be
described as a hexatic, with power-law correlations in the
local orientation but short-range translational order. Such a
state is analogous to the low-temperature phase of the two-
dimensional XY model, where the Mermin-Wagner theorem
rules out long-range order at any finite temperature but vor-
texlike excitations responsible for the transition to the disor-
dered phase exist chiefly as bound vortex-antivortex pairs.
However, the presence of the drive direction introduces an
anisotropy into the system. The consequences of this aniso-
tropy have not, to the best of our knowledge, been explored
in previous studies of putative hexatic phases in driven dis-
ordered solids.65

In our studies, we have been motivated by an analogy to
the physics of the XY model in an applied field, specifically
by the intriguing possibility that the drive might play a role
equivalent to that of the magnetic field in the XY model.
Renormalization-group studies67 of the two-dimensional XY
model in an external magnetic field with Hamiltonian

HXY = �
i,j

Jijsisj cos��i − � j� − h�
i

si cos��i� , �16�

where the external field h points along the positive x axis,
indicate three distinct phases. These are a linearly confined
phase, a logarithmically confined phase, and a free vortex
phase obtained as the temperature is gradually increased.
Vortex-antivortex pairs at low temperatures are linearly con-
fined by a string of overturned spins. With increasing tem-
perature these strings participate in a proliferation transition

but vortices still remain confined due to a residual logarith-
mic attraction. As the temperature is further increased, the
vortices overcome this attraction and are finally deconfined.

Since the external field breaks rotational symmetry, the
magnetization is nonzero in all the three phases. Further, the
free energy is argued to be smooth; thus the distinction be-
tween phases can only be found in the structure and distri-
bution of topological defects. The correlation function

cos��i�cos�� j�� is then predicted to saturate to a constant
value �b, say� for �ri−r j�→�. This constant b�h2 since the
order parameter �cos��i�� couples linearly to the field h. On
the other hand, the correlation function 
sin��i�sin�� j�� which
corresponds to spin fluctuations in the direction transverse to
the applied field �see Eq. �6.6��, is predicted to show an
exponential decay in all the three phases.

2. Quantifying local orientational order

To test this possibility, we must map local orientational
order to an appropriate XY-like two-dimensional vector from
which defect structures can be extracted. This is done
through the local hexatic order parameter, �6,i��6�ri�, de-
fined earlier. It is convenient to identify this local quantity �a
phasor� with a “hexatic-spin” with components Re��6,i� and
Im��6,i�, thus mapping local geometrical order to a soft-spin
XY degree of freedom.

We illustrate this mapping from the local orientations of
particles in real space to XY spins in Fig. 8. Unlike in the
XY model, such hexatic spins are not attached to a fixed
lattice but associated with the moving particles. They thus
encode important information concerning the equal-time ori-
entational correlations in the driven system. Figure 9 shows
real-space configurations of the particle system with associ-
ated hexatic spins at various values of F, illustrating the va-
riety of associated spin configurations present in this map-
ping.

These configuration maps enable the identification of to-
pological defects in the ordering in the associated XY model.
Note the presence of locally aligned regions as well as vor-
texlike excitations of strength 1 and 1/2. Qualitatively, we
find that in both the disordered liquid phase and the aniso-
tropic hexatic phases, vortex configurations in such spin con-
figurations appear to have little correlation with each other,
suggesting that they may be either unbound or relatively
weakly bound at best �see Figs. 9�a� and 9�b��; the boxed
regions of these figures as indicated are expanded in Figs.
9�i� and 9�ii� for �a� and in Fig. 9�iii� for �b�. However, we

r
iψ( )

6

ψ
6Im [ ]

ψ
6Re [ ]x

y

r
i

FIG. 8. Mapping to the XY model: local hexagonal configura-
tion around the particle i �diagram on left� may be analyzed in terms
of the phasor �6�ri� represented as a spin situated at ri �diagram on
right�.
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have not been able to establish a quantitative distinction be-
tween the disordered liquid phase and the anisotropic hexatic
phase using our simulation data.

Some quantification is, however, possible for larger
forces, in the flowing triangular phase, �Fig. 9�c��, where
defects in the ordering appear to be associated with strips, or
strings, of defect. In this case, the defect is locally a solid
with square symmetry. �An expanded plot of the boxed re-
gion in Fig. 9�c� is shown in �iv�, illustrating the one-
dimensional character of the defect�. We expect that such
defects should be linearly bound with an energy proportional
to the length of the strip. The binding energy in the latter
case should be proportional to a nonequilibrium analog of a
surface tension between the square and the triangular crystal.
This argument is supported by calculations of the moment of
inertia tensor of the set of particles which belong to such a
defect, averaged over configurations which contain such de-
fects. The largest eigenvalue ���� of this tensor measures the
length of these extended stringlike defects. In Fig. 10 we
show the probability distribution P���� at a few different
values of the external drive. It is clear that within the inter-
mediate force regime, the distribution is exponential, imply-
ing that the energy for these excitations scale linearly with
their size. These stringlike excitations align preferentially
along the crystallographic axes of the surrounding triangular
lattice. As the force is increased, these defects offer nucle-
ation sites for square crystals which are less anisotropic. The
probability distribution then ceases to be linear in ��, lead-
ing to the long tail in the data shown in Fig. 10 at F=110.

Figure 11 shows the probability distribution of the
hexatic-spin phasors for forces Fx=8 �a�, 22 �b�, 24 �c�, and

40 �d�. While Fig. 11�a�, obtained within the plastic-flow
phase, appears to have a uniform distribution of hexatic spins
with angle, Figs. 11�b�–11�d� display substantial nonunifor-
mity in this distribution. Note the following feature of Fig.
11�c�: the mapped spins tend to overwhelmingly point along
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FIG. 9. �Color online� Typical orientation of the hexatic spins �see text� associated with particles in the �a� liquid, �b� anisotropic hexatic,
and �c� triangular phases, at the driving forces Fx=10, 24, and 40, respectively. The boxes in �a�, �b�, and �c� are expanded in �i� and �ii�
�corresponding to the configurations boxed in �a��, in �iii� �corresponding to the configuration boxed in �b�� and �iv�, corresponding to the
boxed configuration in �c�, to enable an easier visualization of spin configurations. The colors correspond to local coordination, n=6 �blue�,
5 �green�, 4 �magenta�, and 7 �orange�. Note the presence of extended defects in the ordering shown in �c�, associated with “strings” with
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FIG. 10. �Color online� Probability distribution of the largest
eigenvalue �� in a semilogarithmic scale for external forces F
=30, 34, 36, 60, and 110. It is clear that for all but the largest force,
the probability distribution is exponential showing that the energy
of stringlike excitations within the triangular phase is linear with
size. For the largest force which is inside the coexistence region
�see text�, the probability distribution decays slower than an
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the drive direction in the flowing triangular state. This should
be contrasted with the fact that the corresponding distribu-
tion function for the XY model in zero external field is iso-
tropic across the disordered to quasi-long-range-ordered tran-
sition, peaking below it at ��6��0, a value independent of
the phase angle, in a finite system. This indicates that orien-
tational order in our problem is strongly biased by the drive
F, if F is sufficiently large.

The probability distribution of the hexatic spins in the
complex Argand plane formed by the Re��6,i� and Im��6,i�
axes clearly describes how the external symmetry-breaking
field �Fx� builds up anisotropy in the our system, thus order-
ing the spin orientations. At low drive, the anisotropy is
masked by disorder-induced fluctuations at the scale of our
simulation box. As such fluctuations are increasingly sup-
pressed at higher drive values, the system appears to orga-
nize into a coherently moving lattice structure whose princi-
pal axes are biased by the force.

The spin-spin correlation functions in our model, Figs.
12�a� and 12�b�, obtained via the correlation functions CL6�r�

�longitudinal� and CT6�r� �transverse�, correspond to the lo-
cal quantities Re��6,i� and Im��6,i�. They are

CL6�r� = 
Re��6�0��Re��6�r��� , �17�
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FIG. 11. �Color online� Probability distribution of the hexatic-spin phasors for forces Fx=8 �a�, 22 �b�, 24 �c�, and 40 �d�. The plane of
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FIG. 12. �Color online� �a� The correlation functions CT6�r�
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and 30 and for v3=6.0. Note the generic exponential decay ob-
tained. �b� The correlation function CL6�r� �see text� plotted for a
range of force values Fx=12, 14, 18, 20, 22, 24, 26, 28, and 30 in
Ref. 67.
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CT6�r� = 
Im��6�0��Im��6�r��� �18�

In all the phases �C�–�E� of Fig. 1, the orientational correla-
tion function CL6�r� saturates asymptotically, as expected, to
a constant. In phase �D�, such saturation is obtained only in
the drive direction. The transition from phase �D� to phase
�E�, when triangular translational order increases continu-
ously with Fx, appears to be smooth. The correlation function
CT6�r� decays exponentially in all the three phases.

Note that our mapping for orientational order and its cor-
relations in the moving state is free from any underlying
lattice effects, in contrast to earlier studies of the XY model
in a field. Therefore, any anisotropy reflected in the spin
distribution �see Fig. 11� or their correlation functions re-
flects an intrinsic property of the particular driven phase. The
quadratic dependence of the asymptotic saturation value of
CL6�r� on the applied field Fx within the fluid �plastic-flow�
regime, as predicted by this intuitive mapping, is shown in
Fig. 13.

Our anisotropic hexatic phase appears to be distinct from
the driven smectic proposed in the context of driven vortex
lattices. In the driven smectic, there would be only two
�quasi-� Bragg peaks since the order is essentially one-
dimensional. We see a sixfold symmetric pattern in our com-
puted structure factors in the anisotropic hexatic although the
detailed analysis of the simulations provided above suggests
that at least two of these peaks may reflect long-range order
in the drive direction.

The results presented here address one fundamental issue
in the literature on orientational order in driven disordered
states, in particular, the question of whether a quasi-long-
range ordered phase, the “hexatic” can exist. We show here
conclusively that it cannot. What exists is an unusual inter-
mediate state which possesses long-range orientational order
in the direction singled out by the drive whereas orientational
order decays exponentially in the transverse direction.

D. Phases at large force: Square, triangular, and coexistence

What happens at still larger force values depends on the
value of v3. For small v3, the system transits directly from

anisotopic hexatic glass to triangular moving crystal. The
Bragg peaks sharpen into sharp Bragg spots with sixfold
symmetry. At intermediate values of v3, the system appears
to undergo an unusual transition into what we term a “coex-
istence phase,” discussed in more detail below. In this phase,
the system has both triangular and square domains and inter-
converts between them over a broad distribution of time
scales. Inspection of configurations suggests an analogy to
equilibrium phase coexistence with a large, heterogeneous
distribution of domain sizes of triangular and square regions,
although this is an explicitly nonequilibrium system.

At larger values of v3, the coexistence regime appears
bounded. However, the disordered, plastic-flow regime is ob-
served to expand. At these values of v3 the system undergoes
a direct transition into the square phase. For much larger v3,
the phase boundary between plastic and square phases col-
lapses again with increasing v3, reducing the extent of the
plastic regime. In this large v3 regime, the system depins
discontinuously and elastically from a pinned to moving
square crystal with no intervening plastic-flow phase that our
numerics can resolve. The plastic-flow regime �C�, as well as
that of the hexatic glass �D� expands at larger v3 due to the
frustration of local triangular translational order by three-
body interactions. On further increasing Fx, the structure ob-
tained depends on the value of v3: for low v3 the final crystal
is triangular �E� whereas for large v3 it is square �F�. We
assign these states through a study of the structure factor
S�q�, as well as the coordination number probability distri-
butions shown in Fig. 3, observing that the slightly smeared
sixfold coordination of the hexatic glass consolidates into
sharp Bragg-peaks across the transition into the ordered
states, as shown in Fig. 4.

E. Coexistence phase

For intermediate v3 and F, the system exhibits a remark-
able coexistence regime �G� best described as a mosaic of
dynamically fluctuating square and triangular regions. We
define the boundaries of this regime from the locations
across which the current noise amplitude exhibits a discon-
tinuous jump. From a direct calculation of the structure fac-
tor we see the simultaneous appearance of peaks correspond-
ing to hexagonal and square order.45 The intensity of the
peaks from the hexagonal and square phases are comparable.

As F is increased, clusters of four-coordinated particles
grow in size. The evolution of the configuration with increas-
ing force is shown in Fig. 14, which illustrates the square-
triangle domain mosaic characteristic of the coexistence re-
gime. The six-coordinated regions decrease in size and the
dynamics of the interfacial region–with predominantly five-
coordinated particles and with a few isolated seven-
coordinated particles—shows enhanced and coordinated
fluctuations. Real-space configurations �Fig. 14� exhibit is-
lands of square and triangular coordination connected by in-
terfacial regions with predominately five-coordinated par-
ticles. The configuration, as viewed in the comoving frame,
is extremely dynamic, with islands rapidly interconverting
between square and triangle. This interconversion has com-
plex temporal attributes.
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67�. The data points �circles� are for v3=6.0 and the dashed line is
a guide to the eye.
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As substrate randomness is averaged out due to the mo-
tion of the particles, the shaking temperature of the system
can reasonably be expected to decrease. This is reflected in
the decrease in the width in velocity component distribu-
tions. The “shaking temperature” predictions of Koshelev
and Vinokur, would indicate a �1 /v and �1 /v2 nature of
the fall in the transverse and drive directions, respectively.
Our results for Tsh

� are in agreement with this prediction out-
side the coexistence regime.

We find, as shown in Fig. 15, that Tsh
� is nearly indepen-

dent of v3. However, within the coexistence regime, Tsh
� be-

haves nonmonotonically. Typically, for a particular disorder
configuration and for 5.5�v3�8.5, Tsh

� appears to increase
sharply at a well defined Fx, signifying the start of coexist-
ence. Within G, Tsh

� remains high but drops sharply at the
upper limit of G, to continue to follow the interrupted KV
behavior. This anomalous enhancement of fluctuation mag-
nitudes provides strong evidence for a genuine coexistence
phase since increasing the driving force would be expected
to reduce current noise monotonically once the system de-
pins, as observed in all previous simulation work on related
models.60,62 The limits of the coexistence region, though
sharp for any typical disorder realization, vary considerably
between realizations.

Clusters within the coexistence state appear through a
nucleation and growth mechanism, as modified by the aniso-
tropy induced by the presence of the drive. Figure 16 shows
that for a particular disorder realization at a force Fx=98, a
nucleus of square region appears which grows with time. In

all the disorder realizations we studied, the square nucleus
first formed in the hexagonal phase is anisotropic and elon-
gated along the transverse direction �Fig. 16�, a consequence
of the fact that the drive introduces a preferred direction into
the system.

Square clusters in the coexistence regime tend to be less
anisotropic compared to the elongated stringlike defects of
square within a triangular background obtained at smaller
force values. This can be seen from Fig. 17 which plots the
distribution of angles made, with respect to the drive direc-
tion, by the principal direction of the square nucleus, corre-
sponding to the larger eigenvalue of the moment of inertia
tensor. For small F, the distribution peaks around �= �60°,
indicating that the square nucleus forms preferentially at a
60° angle with respect to the drive. For forces within the
coexistence regime, however, the distribution of this angle is
smooth and has no sharp peaks, concomitant with the shape
of the nucleus becoming more isotropic.

1. Noise in the coexistence regime

The interconversion between square and triangular re-
gions leads to complex spatiotemporal behavior. To demon-
strate this, we compute the power spectrum of fluctuations of
the particle current. We first obtain the statistics of the num-
ber of particles crossing an imaginary line parallel to the
transverse �y� direction per unit time, per unit length of the
line for a particular force �Fx� value. The power spectrum
Sflux�f� is the Fourier transform of the autocorrelation func-
tion of this time series of particle flux, averaged over differ-
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FIG. 14. �Color online� Evolution of configurations showing square-triangle coexistence with increasing force �a� F=90, �b� 95, �c� 100,
�d� 105, �e� 110, and �f� 115, together with the computed Delaunay mesh. The particles are colored according to the number of neighbors
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ent choices of the position of the imaginary line and over
different choices of the time slots of observation. Consider-
able statistics were taken to ensure that all quantities were
well averaged. About five different choices of the position of
the transverse imaginary line were taken, in addition to 20
different choices of time slots. Averaging is performed over a
large span of simulation time steps ��109�.

Our results are summarized in Fig. 18 for two values of
Fx. For Fx=60, when the system is in the moving triangular
phase, Sflux�f� is, to a large extent, featureless and flat, except
for large f where effects due to the streaming of the entire
system become important. In contrast, for a high force Fx
=100, when the system is within the coexistence phase, we
obtain a 1 / f� regime, with ��1.5 in Sflux�f� over about a
decade. In addition the particle current fluctuations remark-
ably enhanced by 3–4 orders of magnitude in the coexistence
phase as compared to the triangular regime.

2. Origins of noise in the coexistence regime

To investigate the origins of the noise in the coexistence
regime, we define the local quantity

�i = �
j,k

sin2�4�ijk� , �19�

where the summation is over a defined region �r�r0
=1.2�� surrounding a particle i. Here �ijk is the bond angle

between particle i and j and k. We choose particles j and k
such that they are all within a specified cut-off radial distance
from particle i.

Figure 19�a� displays the probability distribution of �
��i for a state in the coexistence region. There are two
prominent peaks. The peak for small values of � corre-
sponds to the square lattice ��=0 for the ideal square crys-
tal� whereas the peak at higher values of � corresponds to
the triangular structure. Intermediate values of � are ob-
tained for particles at the interface between square and tri-
angle. Figure 19�b� shows a snapshot of the system in the
coexistence region with particles color coded according to
their value of �.

We next examine the fluctuations of the velocity about the
average value 
�v−vcm�2� as a function of the local coordi-
nation. In Fig. 19�c� this is plotted as a function of �. We see
that velocity fluctuations are larger in the interfacial region.
Further, Fig. 19�d� shows a plot of the local volume per
particle as a function of the velocity fluctuations, showing
that the relatively lower density of the interfacial region �due
to the presence of a large concentration of defects� causes it
to fluctuate more than the rest of the solid. The rapid fluc-
tuations of the interface also results in rapid interconversion
between square and triangular coordinated particles and
leads also to enhanced fluctuations in the coordination num-
ber. Since the driven solid is elastically constrained to move
as a whole in the direction of the drive without gaps or
cracks, this sets up strong correlations among the particle
trajectories. Such correlations are ignored in the theory of the
shaking temperature of Koshelev and Vinokur.

IV. DYNAMICAL COEXISTENCE AND PEAK-EFFECT
ANOMALIES

In this section, we turn to a possible application of this
model, in the context of experiments on transport anomalies
associated with peak-effect phenomena in the superconduct-
ing mixed phase. To recapitulate, the peak effect refers to the
sharp increase in the critical current jc in the mixed phase of
a disordered type-II superconductor close to Hc2�T�. This
critical current is thus a nonmonotonic function of T �or H,
depending on which is varied experimentally� since it de-
creases steadily from its low-temperature value till the onset
temperature To of the peak effect, from whence it increases
sharply over a small temperature range to its maximum
value, obtained at temperature Tm. As T is raised still further,
the critical current collapses again, to reach zero in the nor-
mal state. The temperature interval �T0 ,Tm� in which the
critical current rises anomalously is the peak-effect regime.
This regime is dynamically anomalous, displaying: �i� large
current noise amplification at low frequency, �ii� a 1 / f spec-
trum of current fluctuations, which is very non-Gaussian,
�iii� a “fingerprint” effect in which apparently random spikes
in the differential resistivity as a function of drive are re-
traced as the drive is decreased, �iv� a history-dependent dy-
namic response, �v� a memory of direction, amplitude and
frequency of applied currents, and �vi� a strong suppression
of ac response by a dc bias as well as a variety of other
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FIG. 15. �Color online� The shaking temperatures in the trans-
verse �top� and drive �bottom� directions �Tsh

y and Tsh
x � for different

v3 as a function of the center of mass velocity �vCM�, showing the
quantity is almost independent of v3 except in and around the co-
existence regime, due to effects of fluctuation.
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behavior.12–24 A very large number of experiments probing
such anomalous behavior, including all those referenced
above, are transport based, thus serving as probes of the dy-
namics of vortices within this narrow region of parameter
space.

Interpretations of these phenomena are largely phenom-
enological. One particularly influential proposal considers an
underlying order-disorder transition “contaminated” by
sample surfaces or “edges.” Such surfaces, with associated
surface barriers for vortex entry, provide an entry point for
vortices driven into flow.68 The surface should provide an
intrinsically more disordered environment for vortices than
the bulk, particularly in fairly pure samples where jc is low.
Thus, vortices might be expected to enter through the bound-

aries in a highly disordered state, only to anneal in the nearly
pure bulk, when a current is applied across the sample. This
spatial separation of disordered and ordered states and the
slow annealing of one into the other is argued to be the
central feature underlying the anomalous behavior seen in
the peak effect regime. Magneto-optic imaging via Hall bar
arrays support the surface contamination scenario. However,
such methods do not access the dynamics of annealing and
phase transformations directly. Much recent work appears
consistent with a bulk coexistence of disordered and ordered
phase69 while decoration experiments see a “multidomain”
structure in the peak effect regime,70,71 as proposed in Refs.
35–37 and accessed indirectly in Refs. 38 and 39. For related
simulations, see Ref. 72.
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The edge-contamination scenario implicitly assumes that
the underlying order-disorder transition is unaffected by the
drive, serving only to provide a background to the annealing
process. However, in a generic driven system, the possibility
that the drive has more nontrivial effects must be expected.
In particular, the drive may alter the very nature of the driven
bulk, stabilizing dynamical states that are truly nonequilib-
rium in character, as illustrated in the simulations discussed
above.

A beautiful recent experiment �Ref. 73� performs a variant
of scanning probe microscopy, using a mounted local Hall
probe. The probe is sensitive to variations in the local mag-
netic induction averaged across a mesoscopic scale of around
a micron. The system is tuned across the peak-effect regime
and then perturbed weakly through a low-amplitude ac field
applied from below the sample. The Hall probe, placed
above the sample and linked, though lock-in techniques to
the frequency of the ac perturbation, records a local suscep-
tibility, indicative of pinning response, as a function of space
and integrated over the thickness of the sample. The spatial
resolution is limited by the size of the Hall probe, typically
on the order of a micron or so in size.

As parameters are varied across the peak effect, these ex-
periments see a remarkable coexistence between a strong
pinning regime and a weak pinning regime. A complex in-
terface is seen between these coexisting states with a dynam-
ics which is exquisitely sensitive to the field and the disorder,
Such coexistence is also a feature of other phenomenological
approaches to this problem, which address transport mea-
surements. Locally more disordered regions of the sample
appear to nucleate more stable regions of strong pinning
whereas small variations in the applied field cause large
changes in the inhomogeneous pinning pattern. However, the
complex geometry of the coexisting regimes appears largely
stable if the temperature and field are fixed, suggesting that
thermal fluctuations are not dominant. While vortices enter-
ing from the sample boundaries do appear to contribute to
this dynamics in no small measure, there is significant evi-
dence for nontrivial dynamics in the bulk, with regions of
strongly pinned phase being nucleated far from any bound-
ary. Thus, these experiments point to a more active role for
the bulk than envisaged in the boundary injection scenario.
In this context, the authors of Ref. 73 and 74 have specifi-
cally argued that the complex topology of the two-phase in-
terface should be largely responsible for the history depen-
dence seen in the experiments.

How are these remarkable observations related to the
model we study here? We suggest that the link is the emer-
gence of a self-organized, disorder-stabilized, dynamically
sustained drive-induced coexistence phase seen both in the
experiments and in simulations of our model system. The
similarities between the two are striking: first, the coexist-
ence itself. Both the experiments and our simulations here
provide incontrovertible evidence for dynamical states in
driven disordered systems which resemble phase coexistence
at equilibrium phase transitions, with the added complication
of spatial inhomogeneities due to quenched disorder.69,75–77

Reasoning from the experiments, the complex interconver-
sion of one phase into the other and the spatially inhomoge-
neous character of the dynamics is the hallmark of vortex
dynamics within the peak-effect regime.73 This is precisely
the situation which obtains in the simulations. As pointed out
in the previous section, what is unusual about the coexist-
ence regime is that the strong disorder-induced fluctuations
seen and manifest in all the dynamic properties we measure
are obtained above the depinning transition, surviving even
at large values of the applied force.

Second, the coexistence seen in the experiments is very
disorder sensitive.73,78 In experiments, this is manifest in
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FIG. 17. �Color online� The distribution of the angle �in de-
grees� made by the major principal axis �the eigenvector corre-
sponding to the eigenvalue ��� of the square islands within a trian-
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terms of the complex structure of differentially pinned re-
gions in the sample, presumably reflecting a nontrivial pin-
ning landscape. We see similar dynamical behavior within
the coexistence regime with the structure at fixed drive in-
fluenced by the underlying microscopic disorder and sensi-
tive to even marginal changes in the pinning. Thus, the na-
ture of inhomogeneities connected to dynamical phase
coexistence in this model as well as in the experiments ap-
pears to be dictated primarily by the underlying disorder.

Third, the slow dynamics and long relaxation times seen
in the experiments, reflecting the complex dynamics of the
interface separating the regimes of different pinning strength,
is seen in our simulations as well.8,79 In our simulations, if
the drive is switched off and the system allowed to anneal,
the nuclei of one phase within the other live anomalously
long, suggesting that the dynamics has stabilized long-lived
metastable states, precisely as seen in the experiments. In
Fig. 20 we show the dynamics of a square nucleus within a
triangular background, extracted from a typical configuration
within the coexistence regime, when quenched to zero drive.
Far from vanishing over a short time scale, the nucleus ap-
pears to be remarkably stable out to the longest time scales
accessed in our simulations, providing evidence that the

metastability exhibited in the coexistence regime survives
even after the drive is turned off. These are reflected in the
memory experiments, in which the removal of the driving
transport current essentially appears to freeze the system into
a metastable state from which it only recovers upon a reap-
plication of the drive.

Fourth and finally, the noise spectra within the coexist-
ence regime, including the anomalously large noise and the
power-law falloff with a 1 / f� spectrum is a prominent fea-
ture of the peak effect regime. Experiments see a power-law
falloff, with 1���2, as well as a substantial enhancement
in noise power of a few orders of magnitude.15,16 The sub-
stantial non-Gaussian features in the noise, as obtained in
Ref. 16, indicate that a small number of fluctuators contrib-
ute; it is tempting to assign these to a few large domains
which fluctuate collectively within the coexistence regime,
as suggested by the simulations.

The edge contamination scenario assumes that the drive in
the bulk anneals the disordered vortices injected across the
boundaries into the smoothly flowing state. In contrast, we
show that in the vicinity of an underlying transition, the bulk
flowing state is generically inhomogeneous and dynamically
nontrivial, thereby questioning this basic assumption. We be-

FIG. 19. �Color online� �a� Probability distribution of the bond-angle order parameter � �see text� in the coexistence regime. The peak
at low value of � corresponds to the square phase. The series of peaks at high � values all correspond to various combinations of bond
angles in the �disordered� triangular phase. The interfacial region has � corresponding to the first dip in the curve. �b� Illustration of the
spatial distribution of � values as stated in �a� ��0.2 �square� are black, those for 1.3���0.2 are red �interface� and those for �
�1.3 are blue �triangle�. �c� The fluctuation of the local velocity about the center of mass value 
�v−vcm��2 plotted against �. It is clear that
the fluctuations are largest for the particles in the interfacial region. �d� The fluctuation of the local velocity as a function of the local volume
per particle.
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lieve that the edge-contamination scenario should apply,
more immediately, close to but away from the peak effect
regime, where the drive in the bulk acts solely to smoothen
flow, precisely as seen in a recent experiment.80

We stress that the system we simulate is far from a literal
translation of the vortex system. It lacks the K0�r /��, �with �
the penetration depth�, interactions of vortex lines, which can
become fairly long range if � is large. In our simulations we
drive transitions between the two different pure system
phases by varying a parameter v3 whereas these transitions
are density or temperature driven in the classic scenario of
the peak effect in vortex systems. �The underlying order-
disorder transition in the vortex system is likely related to a
meltinglike transition, at least for small H and for tempera-
tures close to Tc and not a structural transition between two
crystalline phases as in our model.37� The experiments are
largely in three dimensions, and see substantial evidence for

discontinuous changes in thermodynamic parameters across
the peak effect, reflecting underlying static first-order transi-
tions with associated metastability and hysteretic effects at
phase coexistence.81 Our simulations are in two dimensions,
but capture many of these aspects, possibly as a consequence
of the fact that, like the experimental system, our model does
have a first-order transition in the pure limit. Our system
shows very little variation in the depinning force close to the
transition and thus no apparent peak effect. �It is known,
however, that factoring in the temperature dependence of the
coherence length � and � is essential to obtain a peak effect
in two-dimensional simulations.63�

For these, as well as other reasons, our proposal for the
origin of peak-effect anomalies should be thought of as indi-
cating a generic scenario within which much of the observed
physics finds a common explanation. Clearly more work,
including simulations of the three-dimensional case capable
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FIG. 20. �Color online� Configuration snapshots arising from a quench to zero force of a randomly chosen configuration within the
coexistence regime, at time steps �a� 0, �b� 4�103, �c� 104, �d� 5�104, �e� 105, �f� 2�105, �g� 3�105, �h� 5�105, and �i� 9�105, with
v3=6.0. The system size is N=10 000.
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of describing vortex entanglement, is required to further il-
luminate the relationship conjectured here.

V. SUMMARY AND CONCLUSION

This paper has studied the complex dynamical behavior of
a two-dimensional driven disordered solid which undergoes
a square to triangular structural transition as a single param-
eter v3 is tuned. Our interest in this model has several ori-
gins: the problem of dynamical probes of an underlying
static phase transition in a weakly disordered system is inter-
esting in itself. The possibility that such behavior might un-
derlie a classic and ill-understood problem in the literature
on type-II superconductivity, the problem of the origin of
peak-effect anomalies, provides further motivation for this
study.

Specifically, using the initial study of Ref. 44 and this
paper, we have demonstrated the following: first, the exis-
tence of a complex phase diagram containing a large number
of states induced purely by the drive, such as the anisotropic
hexatic state and the coexistence state. Second, the demon-
stration of dynamically unusual behavior in the coexistence
region, as measured through several dynamical quantities,
including the observation of 1 / f� correlations in the current
noise, the existence of highly metastable states and the ob-
servation of a very substantial noise enhancement. Third, the
breakdown of single-particle, effective temperature descrip-
tions in the coexistence regime, where measures of a flow
and disorder-induced temperature indicate substantially non-
monotonic variation within the coexistence regime. Fourth,
the demonstration that the putative driven hexatic glass
phase cannot have algebraically decaying orientational cor-
relations since correlations along the drive direction are al-
ways long ranged while those along the transverse direction
are generically short ranged. Fifth, the intuitively unexpected

expansion of the plastic flow regime at large v3 and its sub-
sequent collapse. Finally, we have suggested a possible con-
nection to the classic problem of the origin of peak-effect
anomalies, conjecturing that the explanation might be found
in the very nature of the unusual dynamical states obtained
when a system close to a first-order �structural or melting�
phase transition is driven across a quenched-disordered back-
ground.

There are several realizations of nonequilbrium states of
complex fluids, such as sheared lamellar phases, wormlike
micelles, and driven colloidal suspensions, which exhibit re-
markably nontrivial behavior as a consequence of dynamical
phase transitions.82–84 Possible relations to equilibrium de-
scriptions of systems at phase coexistence have also been
outlined.85 Many features, including profoundly nonlinear re-
sponse, complex spatiotemporal behavior and large noise
signals appear to be common to these systems when driven
away from equilibrium.82 What singles out the category of
systems we study here is the additional complication of
quenched disorder. Clearly these are suggestive links at the
intersection of these various fields. Further exploration of
these connections would appear to be fruitful.
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