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We propose and theoretically investigate superconducting spin qubits. Superconducting spin qubit consists
of a single spin confined in a Josephson junction. We show that owing to spin-orbit interaction, superconduct-
ing phase difference across the junction can polarize this spin. We demonstrate that this enables single-qubit
operations and more complicated quantum gates, where spins of different qubits interact via a mutual induc-
tance of the superconducting loop where the junctions are embedded. Recent experimental realizations of
Josephson junctions made of semiconductor quantum dots in contact with superconducting leads have shown
that the number of electrons in the quantum dot can be tuned by a gate voltage. Superconducting spin qubit is
realized when the number of electrons is odd. We discuss the qubit properties at phenomenological level. We
present a microscopic theory that enables us to make accurate estimations of the qubit parameters by evaluating
the spin-dependent Josephson energy in the framework of fourth-order perturbation theory.
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I. INTRODUCTION

Potential benefits of a quantum computer: secure commu-
nication, fast database searching, and efficient prime
factorization1–3 have inspired significant research efforts.
Building a quantum computer requires the realization of qu-
bits as its elementary units. Useful qubits should satisfy two
conditions: they can be manipulated and read before the
quantum information stored in their state is lost, and they
allow for engineering of a controllable interaction between
them. Designing and realizing such qubits defines the focus
of most research in the field.

Since the electron spin provides the simplest example of a
coherent two-level system, that is, a qubit, spin-based qubits
very soon became a subject of intense theoretical4 and ex-
perimental research. Experiments proved relatively long T1
and T2 times for single-electron spins trapped in quantum
dots,5–9 diamond,10–13 and other materials. Good isolation
from the environment protects from decoherence at cost of
hampering qubit control and readout. While current research
successfully addresses these shortcomings,14–17 the realiza-
tion of controllable interaction between pairs of spin qubits
has been so far obstructed by numerous practical problems.18

Superconducting qubits do better in this respect. Quantum
logic gates involving the controllable interaction of two qu-
bits have been demonstrated in a variety of setups.19–23 Su-
perconducting qubits exploit Josephson effect and Coulomb
blockade, both immediately related to electric variables of
flux and charge. This allows for easy integration of qubits
into electric circuits and is the reason of the better perfor-
mance. At the same time, this forms the stumbling block on
the way to a superconducting quantum computer: the sensi-
tivity to noise of the electric variables22,24,25 results in rela-
tively short decoherence times.

In this paper, we propose a design of superconducting
spin qubit and discuss its feasibility and advantages. A spin is
trapped in a quantum dot connected to superconducting
leads, thereby forming a Josephson junction, see Fig. 1. Ow-
ing to spin-orbit interaction, the superconducting phase dif-
ference polarizes the spin. This provides means to read and
manipulate its quantum state.

We detail the operation of a single qubit and the design of
qubit-qubit interaction that allows to make quantum logic
gates. In particular, we emphasize the prospect of all electri-
cal manipulation of the qubit state and qubit-qubit coupling,
an important advantage of superconducting spin qubits over
other spin qubits. We discuss relaxation and decoherence of
superconducting spin qubits, in comparison with other super-
conducting qubits. We predict that superconducting spin qu-
bits have relatively longer decoherence time and thus, are
better suited for use in a quantum computer. To prove feasi-
bility of the qubit design proposed, we present microscopic
calculations and numerical estimates of the spin- and gate-
voltage-dependent Josephson energy.

Quantum dot connected to superconducting leads is an
essential element of our design. Superconducting quantum
dots have received theoretical attention rather early.26,27

About 10 years later, experimental breakthrough has been
achieved by making good contacts between semiconducting
nanowires and superconducting leads.28,29 Gate electrodes
put close to the nanowire can be used to create potential
barriers in the nanowire, thereby defining a quantum dot. The
quantum dot is in the Coulomb-blockade regime, that is, the
number of electrons is tunable. It has been proven that such
a dot can be included into a superconducting circuit as a
Josephson junction carrying a supercurrent.29 The idea of our
proposal is to use this setup by keeping odd number of elec-
trons in the dot. In this case, the ground state of the resulting
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FIG. 1. �Color online� Superconducting spin qubit. �a� Quantum
dot with odd number of electrons is connected to superconducting
leads �L and R� biased at phase difference �. �b� Energy levels in
quantum dot and the leads.
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Josephson junction is a spin doublet. This is advantageous in
comparison to an earlier proposal concerning Andreev quan-
tum dot,30 where the spin doublet corresponds to an excited
state of the system. Spin-orbit effects in quantum constric-
tions and dots have been discussed in Refs. 31 and 32.

The structure of the paper is as follows. In Sec. II, we
describe the qubit phenomenologically, discussing single-
qubit manipulation, design of qubit-qubit interaction, and re-
laxation and decoherence of the qubit states. Section III fo-
cuses on the microscopic description of the Josephson
junction with a single spin, leading to expressions of the
spin-dependent and spin-independent parts of the Josephson
energy in terms of the junction parameters. Section IV dis-
cusses different parameter regimes, providing order of mag-
nitude estimations of the Josephson energy. Section V pre-
sents numerical calculations of the relevant quantities.
Section VI concludes.

II. PHENOMENOLOGICAL DESCRIPTION

We proceed with the phenomenological description of the
qubit, postponing for now microscopic analysis. An impor-
tant feature is that the superconducting current flowing
through the Josephson junction is determined by the state of
the spin enclosed. This can be understood as follows. Junc-
tion current is the result of transfer of Cooper pairs between
the leads via coherent tunneling events. Conventionally, tun-
neling events are spin conserving. However, strong spin-orbit
coupling mixes the spin states of electrons as they tunnel
between orbitals in the superconductor and orbitals in the
dot.33 The resulting nonspin-conserving tunneling amplitudes
depend strongly on the wave function of the levels involved.
When a Cooper pair tunnels via two different levels in the
dot, the initial spin-singlet configuration acquires complex
spin structure, due to the different spin-dependent tunneling
amplitudes. If one of the two levels involved is occupied by
a single electron, its spin restricts the pathways of Cooper-
pair tunneling, due to Pauli exclusion. This directly couples
current to spin, lifting the degeneracy between spin-up and
spin-down states.

A. Effective Hamiltonian

We describe the spin-polarization effect by the following
junction Hamiltonian:

H = Ej cos��� + ���so · �� �sin��� , �1�

where �� is the spin operator. The pseudovector ��so defines
the polarization axis in three dimensions. Its magnitude and
direction depends on the spin-dependent tunneling ampli-
tudes as well as on the positions of the levels in the quantum
dot. As a result, ��so is independent of the superconducting
phase difference � but does depend on gate voltage, as the
gate electric field modifies quantum-dot wave functions and
levels.

We will present estimations of Ej and ��so in Sec. IV. For
present purposes, it is enough to assume that typical values
of ��so are somewhat smaller than Ej. Actually, Ej can be
made zero by a certain choice of gate voltages. In the vicinity

of this point, ��so may be bigger than Ej. However, we do not
concentrate on this case.

The junction forms a qubit: it may be found in two spin
states, �↑ � and �↓ �, that differ in spin projection along the
polarization axis ��so. At fixed phase, the energy spacing,
�E=2���so��sin����, leads to a measurable difference in super-
conducting current �Fig. 2�,

�I = � �2e/�����so��cos���� . �2�

The sign is determined by the direction of the spin along ��so.
This provides the means to read the qubit state.

To illustrate, consider a simple superconducting circuit
consisting of a loop interrupted by the qubit junction and a
conventional Josephson junction, see Fig. 3�a�. We apply
magnetic flux through the loop �loop. When the Josephson
energy of the conventional junction is much larger than the
Josephson energy of the qubit Ej2	Ej1, the phase induced
by the magnetic flux is acquired mainly by the qubit junction
�2�0. The phase difference over the qubit junction can be
fixed by fixing the magnetic flux �1�2
�loop /�0, �0
=
� /e being the magnetic-flux quantum. The current
through the loop is plotted as a function of phase for each of
the two states of the qubit �see Fig. 2�. The magnetic flux
generated by this current can be measured by a nearby su-
perconducting quantum interference device loop, not shown
in Fig. 3. This is a common technique used to measure the
state of superconducting qubits.24

a) b)

FIG. 2. �Color online� Two states of a simple superconducting
circuit �Fig. 3�a�� containing the qubit junction. �a� Energy as a
function of phase drop over the qubit junction �. �b� Loop current
I���.

a) b)

FIG. 3. �Color online� Two simple superconducting circuits. �a�
Superconducting loop interrupted by qubit junction �characterized
by Ej1 and ��so� and conventional Josephson junction �characterized
by Ej2�. The phase of the two junctions are modulated by the mag-
netic flux, �1+�2=2
�loop /�0. �b� Two superconducting loops are
presented, each interrupted by a qubit junction. The loops have a
common side that is interrupted by a conventional Josephson junc-
tion Ej3. Magnetic flux flowing through the loops is represented by
�loop1 and �loop2.
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The maximum value of the induced flux is achieved when
Ej1�Ej2����so� and is on the order of the magnetic-flux
quantum �0. It is interesting to compare the induced flux,
with the flux generated by the magnetic dipole moment of
the electron spin confined in the quantum dot. Considering
an area element perpendicular to the dipole moment and situ-
ated at the distance r from it, the flux flowing through the
area scales with the distance as ��r−1. We find the distance
r0 where the magnetic field of a single electron produces a
quantum of magnetic flux via the relation e2 / �4
�0r0�
�mec

2. This distance is well into the subatomic region, on
the order of r0�10−15 m.

B. Spontaneous currents

Let us consider another regime, which is useless for qubit
applications but interesting from the point of view of general
physics. Let us consider vanishing flux through the loop and
assume formula Ej1 ,Ej2� ���so�. In this case, the phase depen-
dent energy Eq. �1� can be expanded at small �,

E��� = �Ej1 + Ej2��2/2 � ���so��

with opposite signs corresponding to opposite spin orienta-
tions.

We see �Fig. 4� that the equilibrium superconducting
phase is nonzero. It takes opposite values depending on spin
orientation. The current flowing through the junction is also
nonzero I=Ej2�0. We stress that at zero flux applied, the
system is time reversible. The situation just described can be
envisaged as spontaneous breaking of time reversibility. In-
deed, the energies of the states with opposite spins are pre-
cisely the same. We will present detailed description of the
situation elsewhere.

C. Single-qubit manipulation

Let us turn our attention to manipulation of the qubit
state. It is common to use pulses of an ac field of resonant
frequency 
=2���so��sin���� /�. Magnetic fields perpendicular
to the loop plane induce modulations of superconducting
phase but do not allow resonant manipulation as this does
not change ��so.

In-plane magnetic fields can polarize qubit spin, deflect-
ing it from the direction of ��so. However, this approach is
difficult to realize experimentally due to misalignment. The

magnetic field component perpendicular to the loop contrib-
utes to the total magnetic flux, changing the properties of the
qubit at the same time as the manipulation is performed.

Fortunately, magnetic field is not needed. Rabi oscilla-
tions can also be induced electrically via the gate electrodes.
We remind that the direction of ��so depends on the position
of levels in the dot. Therefore, shifting the gate voltage
would also rotate ��so. To illustrate, let us assume that a
change in the gate voltage leads to a corresponding change in
polarization pseudovector ��so→��so+���so. We describe the ef-
fect of a resonant gate-voltage pulse by the time-dependent
qubit Hamiltonian,

H�t� = ����so��z + ���so · �� cos�
t��sin��� , �3�

where the z axis is chosen along ��so. Assuming ����so�� ���so�,
the dynamics of the qubit is described by Rabi oscillations
with frequency,

��R = ����so,x�2 + ���so,y�2�sin���� .

We stress that if the change ���so is parallel to the initial
direction of ��so, Rabi oscillations do not occur. In this case,
the qubit retains its initial state. Thus, change in ���so in the
perpendicular direction is essential for qubit manipulation.

Since electric fields are easier to localize in space than
magnetic fields, electrical manipulation is advantageous in
view of controlling qubits individually.

D. Design of qubit-qubit interaction

Further, let us focus on qubit-qubit interaction. Two qubits
can be included in a superconducting circuit, such that the
spin-dependent supercurrents flowing through the two qubits
interact magnetically. The interaction does not modify the
polarization pseudovectors. As a result, the qubit-qubit inter-
action is of the Ising type,

H = H1�1
z + H2�2

z + H12�1
z�2

z , �4�

choosing the z axis along ��so for each qubit. The Ising-type
interaction is sufficient to perform the CNOT operation,
which, in combination with single-qubit operations, enables
universal quantum computations.34

The CNOT gate is an operation on two qubits which has
the effect of changing the state of one �target� qubit, only
when the other �control� qubit is in the excited state. We
propose a realization of CNOT gate using nonoscillating
pulses of H12 /� of length �. The pulse shifts the relative
phase between two qubit states, as follows: states �↑↑� and
�↓↓� gain phase factor exp�iH12� /�� while states �↑↓� and
�↓↑� gain phase factor exp�−iH12� /��. Tuning the length of
the pulse such that H12� /�=
 /4, one obtains a phase-shift
gate Gphase that can be combined with Bloch sphere rotations
by 
 /2 of the control and target qubit around the coordinate
axes Rx,y,z�
 /2�, to achieve the controlled NOT gate,

CNOT = ei
/4Rz
�1��
/2�Rz

�2��− 
/2�Rx
�2��
/2�GphaseRy

�2��
/2� ,

�5�

where the superscripts �1� and �2� imply that the operation is
performed on the control and target qubit, respectively.

a) b)

FIG. 4. �Color online� Superconducting loop without magnetic
flux. The dependence of energy on phase shows that the minimum
energy is achieved at nonvanishing phase ��0. The sign of the
equilibrium phase depends on the orientation of the spin in the qubit
junction.
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We have the opportunity to tune the interaction and also
to switch it on and off. To give an example, consider the
following circuit: two qubits with their superconducting
loops connected in parallel �Fig. 3�b��. The interaction en-
ergy can be tuned by the following parameters: the magnetic
flux flowing through the superconducting loops ��loop1 and
�loop2� and the Josephson energy of the conventional Joseph-
son junction Ej3. To lowest order in the polarization
pseudovectors ���so1,2�, the interaction takes the form,

H12 = −
���so1����so2�

�Ẽ�
cos��Ẽ + �1�cos��Ẽ + �2� , �6�

where the complex-valued energy Ẽ denotes Ẽ=Ej1ei�1

+Ej2ei�2 +Ej3, and �Ẽ denotes its complex argument �Ẽ

=tan−1�Im Ẽ /Re Ẽ�. The angles �1,2 are proportional to the
magnetic fluxes �1,2=2
��loop1,2 /�0�, with �0 the magnetic
flux quantum. Setting �1=�2=
 /2, it is possible to tune the
interaction simply by controlling Ej3. For Ej3	 �Ej1+Ej2�,
the interaction is turned off H12→0 while in the opposite
limit Ej3� �Ej1+Ej2�, the interaction achieves a maximum

H12=−���so1����so2� / �Ẽ�. Such control of the conventional Jo-
sephson energy can be achieved using exclusively electrical
means, as was demonstrated in Ref. 29.

E. Relaxation and decoherence

Successful manipulation of the qubit quantum states can
only be achieved at time scales shorter than the coherence
time. This motivates us to discuss the mechanisms of relax-
ation and decoherence.

In the case of superconducting qubits, the main mecha-
nisms leading to loss of coherence are well known. Coher-
ence is lost due to coupling of the qubit dynamics to noises
in magnetic flux and in the gate-induced charge of the Jo-
sephson junction.35 The same noises appear to be relevant for
spin superconducting qubits. In this case, small deviations of
flux modify the phase difference over the qubit junction
while deviations of the gate voltage modify the modulus and
direction of the polarization vector ��so. The phase difference
and the modulus of ��so are directly related to the qubit-level
spacing �E=2���so��sin����. Their deviations lead to decoher-
ence. The direction of ��so determines the orientation of the
electron spin. Its deviation mixes the spin-qubit states, lead-
ing to energy relaxation.

We describe the effect of small deviations of flux ���t�
and gate voltage �Vg�t� by the following Hamiltonian:

H = ����so�sin��� + �	��z + ���x,

�	 = ���so�cos����2
/�0����t� + �	� sin���e�Vg�t� ,

�� = ��� sin���e�Vg�t� , �7�

where �� terms describe the coupling of ��so to gate voltage,
as follows: �	�= �

d��so

d�eVg� ·
��so

���so� � and ��� = �
d��so

d�eVg� �
��so

���so� �.
We have separated the coupling to the voltage and flux

fluctuations into diagonal �	, and off-diagonal �� matrix el-
ements. Therefore �	 and �� are responsible for decoherence

and relaxation, respectively. Since flux modulations do not
modify the direction of ��so, they contribute only to the diag-
onal component �	. In contrast, voltage modulations contrib-
ute both to �	 and ��.

We estimate the frequency-dependent noises using the
fluctuation-dissipation theorem. Not all types of noises can
be estimated in this way. For instance, 1 / f noise of flux may
present a problem. Nevertheless, these noises can be quanti-
fied experimentally.35 For illustration of the use of the
fluctuation-dissipation theorem, we refer to the circuit in Fig.
3�a� �Ej1	Ej2�. However, the following discussion is not
restricted to this specific circuit.

The flux response function to external driving is deter-
mined by modeling the qubit as a parallel RL circuit. L de-
notes the Josephson inductance of the circuit. In the case of
Fig. 3�a�, with Ej1	Ej2 and L= ��0 /2
��� /2eEj1 cos����. R
describes energy dissipation to the environment. One usually
assumes R to be in the same order of magnitude as the
vacuum impedance Z0=�0c�377 �, describing loss of en-
ergy by radiation.

The gate-voltage response function is determined by mod-
eling the qubit tunnel junction as an RC circuit connected in
series. Here, C is not the capacitance formed between the
gate electrode and the quantum dot. We recognize that the
response of gate voltage is dominated by the much larger
capacitance formed between the gate electrode and the su-
perconducting leads. The typical charging time associated to
this capacitance is long compared to the time scale of the
qubit dynamics, RC	� / ���so� ,� /kBT.

We make the following assumptions regarding the time
scale of relaxation and decoherence. The relaxation time �R
is typically much longer than the time scale of the qubit
dynamics �R	� / ���so� ,� /kBT. The decoherence time can be
shorter �D��R but is commonly assumed to be much longer
than � /kBT. This sets the relevant frequency of noise 

�kBT /�, i.e., low-frequency classical noise.

We estimate the magnetic-flux noise,

S� = 
 �0

2

�2 1

8
RGQ

 �

Ej1 cos����
2kBT

�
, �8�

where GQ=e2 / �
���7.75�10−5 �−1 is the quantum of
conductance.

The low-frequency gate voltage noise is given by

SVg
= 2RkBT . �9�

Since we have neglected charging effects related to the large
capacitance C, the remaining contribution to gate-voltage
noise is the Ohmic response of the resistance R.

We estimate the decoherence time �D using the following
expression:

1

�D
= 
 1

�D
�

�

+ 
 1

�D
�

Vg

,


 1

�D
�

�

=
2

�2 ����so�cos����2S� =
1

4
RGQ

 ���so�

Ej1
�2kBT

�
,

�10�
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 1

�D
�

Vg

=
e2

2�2 ��	��2sin2���SVg
= 
RGQ��	��2sin2���

kBT

�
.

�11�

There are two contributions to decoherence: the first �1 /�D��,
describes decoherence due to coupling to flux noise. The
second �1 /�D�Vg

, describes decoherence due to coupling to
gate-voltage noise.

Let us focus on the coupling to flux noise. We recall our
initial assumption �D

−1�kBT /� ,�E /�. This sets a lower
bound on Ej1: Ej1

2 	 ���so�2 /4
RGQ. The physical interpreta-
tion of this condition is as follows: the qubit junction must be
shunted by a circuit element with sufficiently low inductance
�high Josephson energy� to reduce sensitivity to flux noise.
Otherwise, the high sensitivity to flux noise would prevent
any coherent manipulation of the qubit state. The same re-
quirement holds for other superconducting qubits,35 which
are designed to fulfill it. In this case, the sensitivity to
magnetic-flux noise scales as �Ej2 /Ej1�2. Superconducting
spin qubits are significantly less sensitive to such noise. For
the superconducting spin qubit, the scaling factor is
����so� /Ej1�2, smaller by a factor of the spin-orbit coupling
strength squared. Therefore, we predict significantly longer
coherence times for the superconducting spin qubit com-
pared to other superconducting qubits. The lower sensitivity
to noise is a compensation for the relatively smaller readout
currents.

We mention that the expressions in Eqs. �10� and �11� are
valid only for �D

−1�R /L. This sets an upper bound on the
temperature in terms of the resistance R and Ej1:
RGQEj1�Ej1 / ���so��	kBT. The condition is easily achieved in
the typical temperature regime required to induce supercon-
ductivity.

Let us turn our attention to the coupling to gate-voltage
noise. The sensitivity to voltage fluctuations is described by
�	�. As we show in Sec. IV, this parameter depends strongly
on gate voltage and on the microscopic parameters describ-
ing the qubit junction. It can be estimated to be �	�
����so� /EC�1, where EC is the quantum dot charging energy.

We can compare the coupling to flux noise with the cou-
pling to gate-voltage noise. The flux noise contribution
dominates provided Ej1�EC /RGQ. The energy scale
EC /RGQ is typically very high so that the condition Ej1
�EC /RGQ is satisfied. Therefore, we conclude that in typical
devices coupling to flux noise will be the dominating deco-
herence mechanism. If Ej1 is large enough such that the op-
posite limit holds Ej1�EC /RGQ, the coupling to gate-
voltage noise dominates and decoherence times are longer.

Let us compare the inverse decoherence time with the
Rabi frequency. We can estimate the Rabi frequency to be on
the order of �R����so� /�, for sufficiently high driving ampli-
tudes. The decoherence time can be estimated as �D

−1

�����so�kBT /4
RGQEj1
2 ��R. We see that the number of coher-

ent Rabi oscillations that can be realized �R /�D
−1 scales as

Ej1 / ���so�. This can be compared to the case of superconduct-
ing qubits, where �R /�D

−1 scales as Ej2 /Ej1, i.e., smaller by a
factor of the spin-orbit coupling strength. This is a conse-
quence of the lower sensitivity to flux noise of the supercon-

ducting spin qubit. In conclusion, we predict that supercon-
ducting spin qubits have longer coherence times compared to
other superconducting qubits, an important advantage in
view of performing a large number of coherent quantum op-
erations required by quantum computation schemes.

Further, let us focus on the relaxation time �R. In the limit
�E�kBT, �R can be estimated as follows:

1

�R
=

e2

�2 ���� �2sin2���SVg
= 
RGQ���� �2sin2���

kBT

�
. �12�

In the opposite limit �E�kBT, the relaxation time becomes

1

�R
= 
RGQ���� �2sin2���

�E

�
. �13�

We can compare the relaxation and decoherence times. The
typical case is when decoherence is dominated by flux noise,
i.e., Ej1�EC /RGQ. In this case, the decoherence time is al-
ways much shorter than the relaxation time. In the opposite
case, when Ej1�EC /RGQ, we find that �D /�R= ���� /�	��2. The
ratio ��� /�	� depends on microscopic junction parameters and
is discussed in Sec. IV. Typically, ��� /�	��� /EC�1. In case
�D��R, the decoherence rate is determined by the relaxation
time.

III. MICROSCOPIC DESCRIPTION

A. Hamiltonian

The total Hamiltonian comprises terms describing leads
�left and right�, quantum dot and tunneling between elec-
tronic states in the leads and in the dot,

Ĥ = ĤL + ĤR + ĤQD + ĤT

=Ĥ0 + ĤT. �14�

The electronic states of the left lead are labeled by l and spin
index � and are affected by the superconducting order pa-
rameter �ei�L,

ĤL = �
l,�

�lal�
† al� + �

��

�ei�Lg���al��
† al�

† + g����e−i�Lal�al��,

�15�

where a†�a� denotes the creation �annihilation� operators and
� denotes the energy of the levels in the normal-metal state,
counted from the chemical potential of the lead. In the su-
perconducting state, the energy of the levels is �l=��l

2+�2.

The terms of ĤL that depend on �ei�L couple time-
reversed states. To underline this, we mention that the elec-
tronic states labeled by index l are not momentum eigen-
states but rather the boxlike single-particle levels �in normal
state� that are superpositions of plane waves with opposite
momenta. The time-reversal operator does not change index
l. Time-reversal changes the sign of the spin. We take this
into account by using the antisymmetric matrix g= i�2. This
ensures that the two electrons forming a Cooper pair in the
leads are a spin singlet. Similarly, electronic states in the
right lead are labeled by r and are affected by �ei�R.
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The Hamiltonian of the quantum dot contains charging
energy term along with the terms describing noninteracting
electrons in levels labeled by m, �m�mam

† am,

ĤQD = �
m

�mam
† am + �N̂ − N0�2EC �16�

with N̂ being the operator of the total number of electrons

N̂=�mam
† am. N0=VgCg /e represents the effect of gate voltage

which allows to tune the total number of electrons in the dot.
Cg here is the capacitance to the gate. Since it only appears
in combination with gate voltage, we find it convenient to
rescale the gate voltage VgCg /C→Vg, with C being the total
capacitance of the junction. In these units, N0=eVg /EC.

We stress that all these terms are not affected by spin-orbit
coupling. The reason for this is that spin-orbit coupling re-
tains the double degeneracy of the electronic states. Instead
of spin doublets, they become Kramers doublets so index �
in this case refers to the components of Kramers doublet,
rather than to the original spin state. The only place where
spin-orbit coupling plays a role is the tunneling part of the
Hamiltonian and can be included into spin-dependent tunnel-
ing amplitudes,33

ĤT = �
l,r,m,�,�

Tlm
��am�

† al� + Tmr
��ar�

† am� + H.c., �17�

where � and � are spin indexes.
As a result of time-reversal symmetry, we may write the

tunneling matrices in spin space,

Tlm
�� = Tlm

0 ��� + i�
j=1

3

tlm
j ���

j , �18�

where Tlm
0 and tlm

j are chosen to be real. The spin-
independent part is symmetric Tlm

0 =Tml
0 and spin-dependent

part is antisymmetric tlm
j =−tml

j with respect to interchanging
the state indices.

In principle, the tunneling matrix elements can be evalu-
ated by computing overlap of spin-dependent wave functions
of corresponding components of Kramers doublets. It is
known that wave functions become random either because of
scattering at defects in the leads and in the dot or because of
chaoticity of classical electron motion in the dot. If we con-
sider extended system, the statistics of spin-dependent part of
such overlaps is governed by length scale lsf that is a spin-flip
length, induced by spin-orbit scattering. At distances exceed-
ing this scale, spin orientation of Kramers doublets becomes
completely random so that T0 is on the order of �t��. The
length scale lsf corresponds to time scale �sf, spin-flip time. If
we apply this now to a quantum dot, the spin structure be-
comes random for each level in the dot, provided the mean-
level spacing in the dot �S is comparable or smaller than
� /�sf. The ratio of the two defines the strength of spin-orbit
coupling. For our estimations, we assume t�/T0�0.1 and ran-
dom distribution of the direction. Preliminary experiments
with InAs nanowires36 confirm this by order of magnitude.

B. Josephson energy

In the following, we provide a microscopic description of
the Josephson effect in the presence of spin-orbit coupling.
We treat Cooper-pair transport through a quantum dot in the
regime of Coulomb blockade, with no bias voltage and dis-
regarding effects of thermal excitation. Within the Coulomb
diamonds, the only mechanism of transport is cotunneling.
Four tunneling events are sufficient to transfer a Cooper pair
between the leads37 and these processes dominate for suffi-
ciently small normal-state conductances GN�GQ. We em-
ploy fourth-order perturbation theory in the tunneling ampli-
tudes and find the Josephson energy as the perturbation
correction to the ground-state energy.

The ground state of the unperturbed Hamiltonian Ĥ0

= ĤL+ ĤR+ ĤQD is degenerate with respect to the number of
Cooper pairs on the superconducting leads. The wave func-
tion can be written as a direct product of three wave func-
tions: ��NL ,NR�=�L�NL� � �QD � �R�NL� corresponding to
the two leads and the quantum dot. NL and NR represent the
number of electrons in the respective leads.

In the presence of tunneling, the degeneracy of the ground
state is lifted and the energy splitting between states with
different number of Cooper pairs in the leads corresponds to
the Josephson energy,

EJ��� = 
��− 2,2��T̂�4����0,0��ei�

+ 
��2,− 2��T̂�4����0,0��e−i�

= 2 Re�
��− 2,2��ĤT
�4����0,0��ei�� , �19�

where NL and NR have been set to zero.

Here, operator T̂�4� represents the correction to the ampli-
tude of the fourth order in tunneling Hamiltonian,

T̂�4� = ĤT
1

E0 − Ĥ0

ĤT
1

E0 − Ĥ0

ĤT
1

E0 − Ĥ0

ĤT. �20�

The structure of the fourth-order correction is as follows.

Each tunneling operator ĤT describes the transition of one
electron between a state in the dot and a state in one of the
superconducting leads. There are 24 distinct sequences re-
sulting from the permutations of the four tunneling events
considered. Each process involves three intermediary states.
The energies of the virtual states appear as the three denomi-
nators of Eq. �20�. The three energy denominators unambigu-
ously characterizes the sequence of tunneling events.

In contrast, the spin structure does not depend on the or-

der of individual tunneling events. The spin structure of T̂�4�

can be recovered from the product of four tunneling ampli-
tudes describing hopping of the two electrons between the
leads and the quantum dot,

�
l,r

gTTlm
T gTlnTnrg

TTmr
T g���L − �l����R − �r�

= �
l,r

TmlTlnTnrTrm���L − �l����R − �r� = Pmn
0 ��L,�R�

+ iP� mn��L,�R� · �� , �21�
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where m and n label states of the quantum dot.
Let us explain the properties of the two terms in Eq.

�21�. In the following, we neglect terms proportional to the
square of the small term t�/T0. Since the leads have continu-
ous spectra, it is convenient to introduce transport rates
which are continuous functions of energy, �L�R�,m���
=2
 /��l�r��Tml�r�

0 �2���−�l�r��. The spin-independent term
Pmn

0 ��L ,�R�, has different properties in the case m=n,
compared to the case m�n. Terms diagonal in the
dot levels have the following simple form: Pmm

0 ��L ,�R�
= �� /2
�2�L,m��L��R,m��R�. As a result, they are always posi-
tive. In contrast, the sign of Pmn

0 ��L ,�R� when m�n can be
related to the parities of the wave functions of the two dot
states. In analogy to the case of a particle in a box, the parity
of wave functions in a quantum dot alternates between

neighboring states. As a result, the sign of Pm,n�m
0 ��L ,�R�

alternates and the sum over all states in the quantum dot
averages out, �m,n�mPmn

0 ��L ,�R��0.
The contribution corresponding to the spin-dependent

term in Eq. �21� changes sign for different spin orientations.
Therefore, this term cancels out if the levels m and n are both
either empty or filled with electrons, as there is no asymme-
try between spin-up and spin-down terms. However, if either
state m or n is the state filled with a single electron, the
contribution is finite, giving rise to the spin-polarization ef-
fect.

After calculating the energy denominators for each tun-
neling sequence and integrating over all states in the leads
and all pairs of states in the dot, we obtain the following
result for the spin-independent Josephson energy:38

Ej =
�2

4
�

−�

� d�L

�L
�

−�

� d�R

�R
� �

M1,M2

PM1M2

0 ��L,�R�Jee��L,�R,�M1
,�M2

� + �
m1,m2

Pm1m2

0 ��L,�R�Jee��L,�R,�m1
,�m2

�

− 2 �
M,m

PMm
0 ��L,�R�Jeh��L,�R,�M,�m� + �

M

PM0
0 ��L,�R��Jee��L,�R,�M,�0� − Jeh��L,�R,�M,�0�� + �

m

P0m
0 ��L,�R�

��Jhh��L,�R,�0,�m� − Jeh��L,�R,�0,�m�� − 2P00
0 ��L,�R�Jeh��L,�R,�0,�0�� �22�

and for the polarization pseudovector,

��so =
�2

4
�

−�

� d�L

�L
�

−�

� d�R

�R
��

M

P� M0��L,�R��Jee��L,�R,�M,�0� + Jeh��L,�R,�M,�0�� − �
m

P� 0m��L,�R��Jhh��L,�R,�0,�m�

+ Jeh��L,�R,�0,�m��� , �23�

where m, m1, and m2 label filled dot states, M, M1, and M2 empty dot states and 0 labels the half-filled state. We have used the
notation �L,R=��2+�L,R

2 . The J functions contain the energy denominators and are different for processes where the Cooper
pair is transferred via two electrons, two holes or one electron, and one hole, respectively:

Jee��L,�R,�m,�n� =
1

�L + �m + E�e�
1

�L + �R

1

�R + �n + E�e�
+

1

�L + �n + E�e�
1

�L + �R

1

�R + �m + E�e�

+
1

�L + �m + E�e�
1

�m + �n + E�2e�
1

�R + �m + E�e�
+

1

�L + �n + E�e�
1

�m + �n + E�2e�
1

�R + �m + E�e�

+
1

�L + �m + E�e�
1

�m + �n + E�2e�
1

�R + �n + E�e�
+

1

�L + �n + E�e�
1

�m + �n + E�2e�
1

�R + �n + E�e�
,

Jhh��L,�R,�m,�n� =
1

�L − �m + E�− e�
1

�L + �R

1

�R − �n + E�− e�
+

1

�L − �n + E�− e�
1

�L + �R

1

�R − �m + E�− e�

+
1

�L − �m + E�− e�
1

− �m − �n + E�− 2e�
1

�R − �m + E�− e�

+
1

�L − �n + E�− e�
1

− �m − �n + E�− 2e�
1

�R − �m + E�− e�

+
1

�L − �m + E�− e�
1

− �m − �n + E�− 2e�
1

�R − �n + E�− e�

+
1

�L − �n + E�− e�
1

− �m − �n + E�− 2e�
1

�R − �n + E�− e�
,
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Jeh��L,�R,�m,�n� =
1

�L + �m + E�e�
1

�L + �R

1

�L − �n + E�− e�
+

1

�R + �m + E�e�
1

�L + �R

1

�R − �n + E�− e�

+
1

�L + �m + E�e�
1

�m − �n + �L + �R

1

�R + �m + E�e�
+

1

�R − �n + E�− e�
1

�m − �n + �L + �R

1

�R + �m + E�e�

+
1

�L + �m + E�e�
1

�m − �n + �L + �R

1

�L − �n + E�− e�
+

1

�R − �n + E�− e�
1

�m − �n + �L + �R

1

�L − �n + E�− e�
.

The above expressions can be used to calculate the spin-
independent and spin-dependent parts of the Josephson en-
ergy. However, they require knowledge of all the energy lev-
els and corresponding tunneling amplitudes of the quantum
dot. Here, we do not intend to develop a model of the quan-
tum dot and extract these parameters. Such a model would
have to account for the unavoidable defects present in a typi-
cal experimental device. Our intention is to use the above
expressions as a useful starting point for estimations and for
distinguishing different parameter regimes.

Instead of using analytic or numerical calculations, the
polarization vector can be determined experimentally using
spectroscopic techniques typical for superconducting
qubits.24 From the absorption spectra of the qubit junction,
one determines the spacing between the qubit states �E
=2���so��sin����, at a fixed superconducting phase difference.
Therefore, one can find the modulus of the polarization vec-
tor.

We do not suggest a method to determine the orientation
in three-dimensional space of the polarization axis in an ex-
periment. The precise orientation is of no relevance here.
What is important is that the orientation of this axis can be
modified by changing the gate voltage or by applying exter-
nal magnetic fields. In Sec. II, we have related rotations of
the polarization axis to manipulation of the qubit state.

IV. ESTIMATIONS

Let us estimate the typical magnitude of ��so and compare
it to the magnitude of spin-independent Josephson energy.
We will see that the relative magnitudes as well as its abso-
lute value cannot be just estimated by the typical strength of
spin-orbit coupling �t�� /T0. The estimations depend on three
energy scales in the problem: �S, EC, and �. Besides, it de-
pends on the energy distance to the diamond edge.

It has been already shown in Ref. 37 that Josephson en-
ergy and critical current exhibit spectacular peculiarities at
the diamond edge. These peculiarities are no singularities.
This is related to the diamond structure in the presence of
superconductivity.37 There is a bistability region in interval
of width ��eVg�=2� around each diamond edge. The singu-
larities in denominators of perturbation theory occur at the
edges of bistability region for the charged state of higher
energy. We always assume the dot to be in the lowest-energy
state. This saves us from singularities. However, the proxim-
ity to the point of singularity gives a spectacular increase or
decrease in Josephson energy at the diamond edge. To ac-

count for this in our estimations, we introduce the minimal
energy distance to the edge of Coulomb diamond E�

= �min�E�e� ,E�−e�����. We envisage two separate situa-
tions: E��EC and E��EC.

The dominant contribution to the Josephson energy con-
sists of the terms with smallest energy denominators. The
magnitude of the energy denominators depends on the en-
ergy of the dot levels involved in tunneling. We find that the
energy interval for quantum-dot levels involved in the domi-
nating contribution has the width E�, even in the regime
E�	�. Let us define the number of levels within this inter-
val NS as the integer part of E� /�S+1. If �S�E�, the Jo-
sephson energy is dominated by the contribution of a single
level. If �S�E�, there are multiple levels participating in the
dominating contribution.

Using Eq. �22�, we find the following estimate for the
spin-independent Josephson energy:

Ej � NS
�L�R

�

�2

E�
2 .

Similarly, we can estimate the spin-dependent component us-
ing Eq. �23�,

���so� � �NS
�L�R

�

�2

E��max�E�,�S��
�t��
T0

.

In all parameter regimes considered, both Ej as well as
���so� increase as E� /� decreases, i.e., as we approach the
edges of the Coulomb diamond. We can explain this in terms
of the energy of the intermediary virtual states. In the middle
of the Coulomb diamond, the energy cost of adding an elec-
tron to the quantum dot is maximum and the high energy of
the intermediary states reduces the probability of Cooper-
pair tunneling. Toward the edges of the diamond, tunneling
processes involving the state closest to resonance will have
intermediary states that are lower in energy, resulting in the
increase in Josephson coupling.

Let us turn our attention to the multilevel regime, where
Josephson tunneling is a result of the interference of tunnel-
ing processes that involve all pairs of the NS relevant states.
The spin-dependent and spin-independent terms do not scale
in the same way with the number of levels involved. In the
case of Ej, the dominant contribution results from summation
of diagonal spin-independent elements Pmm

0 ��L ,�R�. As a re-
sult, Ej scales with the number of levels NS. In the case of
��so, the result of summation over tunneling contributions is
equivalent to the distance traveled in a random walk in three
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dimensions, after NS steps. The average result in this case
scales as �NS.

The ratio of spin-dependent to spin-independent contribu-
tions is

���so�
Ej

�
1

�NS

E�

max�E�,�S�
�t��
T0

.

Apart from the trivial dependence on spin-orbit coupling
strength, the ratio ���so� /Ej is further reduced by factors that
depend on the gate voltage. We distinguish two important
regimes: the single-level regime �S�EC, and the multilevel
regime �S�EC, where multiple dot states contribute.

In the single-level regime, we find ���so� /Ej �E� /�S. Thus,
it is large in the middle of the diamond, where it scales as
EC /�S, decreasing toward the edge, where it scales as � /�S.
The behavior has a simple explanation in terms of energy of
intermediary virtual states. The dominant contribution to Ej
arises from processes involving tunneling of both Cooper-
pair electrons through the dot level closest to resonance.
Such processes do not contribute to the polarization effect; as
we have seen, only processes involving two different levels
contribute. Thus, the energy of intermediary states decreases
faster as we approach the diamond edge for dominant pro-
cesses contributing to Ej.

We can also estimate the dependence of ��so on gate volt-
age. Let us define the change in ��so with gate voltage in the
parallel and perpendicular directions, as we did in Sec. II:
�	�= �

d��so

d�eVg� ·
��so

���so� � and ��� = �
d��so

d�eVg� �
��so

���so� �. We have shown that the
sensitivity of ��so to gate voltage is an important mechanism
of relaxation and decoherence. Furthermore, we have shown
in Sec. II that change in ��so perpendicular to its initial direc-
tion is an essential ingredient for electrically driven Rabi
oscillations.

We find the following estimates for the parallel and per-
pendicular derivatives with respect to ��so:

� d��so

d�eVg�
·

��so

���so�
� �

�L�R

�

�2

E�
2 max�E�,�S�

�t��
T0

,

� d��so

d�eVg�
�

��so

���so�
� �

�L�R

�

�2

E��max�E�,�S��2

�t��
T0

.

To understand why ��so depends on gate voltage, we study the
structure of Eq. �23�. We have mentioned that ��so is the sum
of NS vectors characterizing spin-dependent tunneling via
two different states in the dot, one being the half-filled state.
The weight of each vector is determined by the energy de-
nominators and therefore, depends on gate voltage.

If the quantum dot consists only of two levels, then
change in gate voltage will modify only the modulus of ��so,
i.e., the weight of the vector contribution but not the direc-
tion. It is necessary to include the contributions of at least
three different levels, in order to estimate the change in the
orientation of ��so. As a result, for large level spacing ��� is
reduced by a factor of �� /�S�2. In contrast, �	� decreases
slower for large level spacing, only as � /�S.

The ratio between gate-voltage sensitivity of modulus and
direction of ��so is given by ��� /�	��E� /max�E� ,�S��1. The
ratio depends on gate voltage and is expected to be largest
near the middle of the Coulomb diamonds.

V. NUMERICAL ANALYSIS

We perform numerical calculations of the spin-
independent and spin-dependent parts of the Josephson en-
ergy, based on Eqs. �22� and �23�. We are particularly inter-
ested in the ratio ���so� /Ej, relevant for experiments aiming to
measure the separation between qubit states, and on the de-
pendence of the direction of ��so on gate voltage, relevant for
experiments aiming to perform electrical manipulation of the
qubit.

To set up the calculations, we assume that the tunneling
amplitudes are independent of the lead states. We account for
the fact that experimental realization of quantum dots does
not permit control of the resulting localized states: we choose
random energy spacing between the dot states and random
absolute value of tunneling amplitudes. The parities of the
localized wave functions are also chosen randomly, resulting
in a random sign associated to off-diagonal spin-independent
contributions Pm,n�m

0 ��L ,�R�. The parameters characterizing
the dot levels are the average level spacing �S and average
modulus of the spin-independent and spin-dependent tunnel-
ing amplitudes, respectively, 
�T0�� and 
�t���. As estimated, the
ratio ���so� /Ej is proportional to 
�t��� / 
�T0�� and we include this
ratio in the energy unit of the spin-dependent term.

Additional parameters in the calculation are the supercon-
ducting energy gap 2� and the charging energy EC. For the
numerical analysis, we need to consider a finite number of
levels of the quantum dot. The results presented are obtained
including a number of N=20 quantum-dot levels.

We vary the gate voltage over a large domain, permitting
observation of multiple Coulomb diamonds �see Figs. 5–8�.
The size of the diamonds observed is EC in the case of odd

b)a)

c) d)

FIG. 5. �Color online� Numerical results obtained for the re-
gime: EC /�=10, �S /EC=1.5. Six diamonds are presented: dia-
monds with even number of electrons are represented by lighter
shading while darker shaded regions represent diamonds with odd
number of electrons. For details regarding the quantities plotted, see
Sec. V.
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number of electrons and increases by the level spacing in the
case of diamonds with even number of electrons.

The units in Figs. 5–8 are chosen in accordance with the
estimations presented in the section above, such that the
value of unity corresponds to the estimated value of the
quantity close to the edge, i.e., at E�=�. The results confirm
our estimations.

We focus on four regimes differentiated by high charging
effects EC /�=10, see Figs. 5 and 6, and relatively low
charging effects EC /�=1.5, see Figs. 7 and 8. We also com-
pare large average level spacing �S /EC=1.5, see Figs. 5 and
7, to regimes where the level spacing is smaller �S /EC=0.1,
see Figs. 6 and 8.

A general feature of the results in Figs. 5–8 is that both
spin-independent and spin-dependent terms in the Josephson
energy increase as we approach edges of the diamond. Fur-
thermore, comparing Fig. 7�a�, where EC��, with Fig. 5�a�,
where EC	�, we can conclude that for lower charging en-
ergies, the ratio between Josephson energy in the middle of
diamond and energy at the edge is reduced, in agreement
with our estimations. In Figs. 7 and 8�a�, Ej is shown to
decrease in modulus toward the edge. This an unusual be-
havior that can be explained if there is a point in the higher-

energy state of the bistable region E���, where Ej would
change sign.

Let us focus on the spin-independent contribution to the
Josephson energy, presented in panel �a� of Figs. 5–8. In the
single-level regime, we expect Ej to be positive for diamonds
with even number of electrons and negative for odd occu-
pancy, as explained in Ref. 29. This behavior, observed in
Fig. 5�a� in the first two diamonds, would dominate for
�S /EC	1. In the regimes presented, an interesting feature
occurs: there are regions of gate voltage where Ej changes
sign within a single diamond �point of supercurrent
reversal29�. As a result, Ej is dramatically suppressed. In
these regions, ���so� may provide the dominating contribution
to the total Josephson energy. This can be observed in panel
�d� when ���so� /�Ej

2+ ���so�2�1, see Figs. 5 and 6. Comparing
the different regimes, we observe that regions where Ej
changes sign are more likely to appear if �S�EC. In addi-
tion, the larger variations in the Josephson energy observed
for EC	� compared to the regime EC��, further increase
the probability of sign reversal.

Turning to the polarization vector ��so, panels �b� and �c�
of Figs. 5–8 present its modulus and the variation in its ori-
entation as a function of gate voltage. The modulus ���so� ex-
hibits similar behavior as the absolute value of the spin-
independent term Ej. In contrast to Ej, we do not observe
regions of gate voltage where ���so� vanishes. It is not surpris-
ing: the probability that all three components of the polariza-
tion vector would vanish at the same value of gate voltage is
very small.

In panel �d� of Figs. 5–8, we plot the normalized ratio
between the spin-dependent and spin-independent terms
���so� /�Ej

2+ ���so�2. We note that the ratio increases in the vicin-
ity of regions where Ej vanishes, as is the case in Figs. 7 and
8�d�. These regions are exceptional. The common case is
represented by diamonds such as diamond 1 in Fig. 5�d�,
where one observes a maximum of the ratio in the middle of
the Coulomb diamond and decrease toward the edges. This is
in agreement with our estimations, reflecting that Ej diverges
faster than ���so� as we approach the diamond edge.

Let us focus on the direction of ��so and its dependence on
gate voltage. We study the derivative with respect to gate

a) b)

d)c)

FIG. 6. �Color online� The same as in Fig. 5, for the regime:
EC /�=10 and �S /EC=0.1.

a) b)

c) d)

FIG. 7. �Color online� The same as in Fig. 5, for the regime:
EC /�=1.5 and �S /EC=1.5.

a) b)

c) d)

FIG. 8. �Color online� The same as in Fig. 5, for the regime:
EC /�=1.5 and �S /EC=0.1.
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voltage, projected in the perpendicular direction to ��so. We
use the same notation as previously ��� = �

d��so

d�eVg� �
��so

���so� �.
As a general feature, the derivative is significantly re-

duced in the middle of the diamonds, as compared to the
edge. It is interesting to note that the change in the perpen-
dicular projection is not as smooth as the variation in ��so with
gate voltage. In the regime ���S, see Figs. 5, 6, and 7�c�,
we find regions of gate voltage where the perpendicular de-
rivative either vanishes or abruptly changes its behavior.
These features can be explained as follows. In this regime,
NS�1 near the edges, meaning that the direction of ��so is
dominated by contributions of few levels. It is possible to
find regions of gate voltage where the weight of the domi-
nating contribution vanishes, similar to the case already dis-
cussed for Ej. In the vicinity of such points, the weight of the
dominating contribution changes sign. This is represented by
the sharp turning points observed in Figs. 5, 6, and 7�c�. In
comparison, the case �	�S presented in Fig. 8�c� shows that
the behavior is smooth. In this regime, the contribution is
dominated by terms of multiple levels, reducing the probabil-
ity to encounter values of the gate voltage where the domi-
nating contribution to the perpendicular derivative vanishes.

We may also conclude that ��so varies mainly laterally
when the gate voltage is set to the middle of the diamond.
Here, the variation in ���so� vanishes. As the gate voltage is
tuned toward the diamond edges, the lateral variation is over-
come by the faster divergence of ���so�.

VI. CONCLUSION

In conclusion, we have outlined our proposal of supercon-
ducting spin qubit. Such a unit would combine the natural

representation of two-level system in terms of electron spin
and advantages of superconducting qubits. Spin and super-
conducting qubits can be operated within the circuit, the flux
and spin degrees of freedom can be easily entangled. We
have demonstrated feasibility of all electric manipulation of
superconducting spin qubits and more complicated quantum
gates made of such qubits. Although this has been achieved
previously for superconducting qubits,24 realizing the same
controllability for spin qubits is remarkable.

We have discussed relaxation and decoherence of the qu-
bit. Our analysis shows that the dominating decoherence pro-
cess is typically the coupling between qubit-level spacing
and magnetic-flux noise. We show that in comparison to
other superconducting qubits, superconducting spin qubits
have lower sensitivity to flux noise and therefore longer de-
coherence times. This is an important advantage in view of
realizing a large number of coherent quantum operations re-
quired by quantum computation schemes.

The microscopic analysis presented shows that the spin-
dependent part of the Josephson energy can be made suffi-
ciently large, at least for semiconducting devices where spin-
orbit interaction is intrinsically strong. We predict
spontaneous breaking of time-reversal symmetry in the loops
containing superconducting spin qubits.
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