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The study of electric field distributions induced by flux creep in type-II superconducting films allows for
important insight into the mechanism of vortex dynamics, the temporal evolution of flux and current distribu-
tions, and the occurrence of local losses. Most studies are based on the assumption that a phenomenological
materials law, which has been extracted from macroscopic transport measurements, can be also applied to the
local electric field during magnetization decay. We evaluate this ansatz by reconstructing the three-
dimensional-induced Ei and potential Ep electric fields from experimentally measured time dependence of the
flux density distribution. The results are quantitatively compared with solutions of the nonlinear and nonlocal
equation of motion for the flux penetration, where the Maxwell equations as well as a materials law are utilized
to obtain a two-dimensional Ei,2D and Ep,2D. We focus our analysis on the electric field distributions on a
partially penetrated magnetized state of an epitaxial YBa2Cu3O6.95 film.
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I. INTRODUCTION

The study of vortex electrodynamics in thin-film super-
conductors, subjected to external magnetic fields, is an im-
portant and challenging problem for the development of
high-current carrying applications with low electromagnetic
losses.1 In type-II superconductors, the electric field E which
is related to electromagnetic losses is generated by current-
induced motion or thermally activated creep of Abrikosov
vortices. Microscopically, the total electric field of a moving
vortex has two different origins.2,3 It is composed by an elec-
tric field component ei�r� which is induced by the temporal
variation in the microscopic flux density b�r� according to

the Faraday law ��ei�r�=−ḃ. In addition, the moving vor-
tex creates a potential electric field component due to an
electric displacement charge density nin�r� induced by the
redistribution of the quasiparticles in the vortex core. This
potential component of the electric field ep�r� is given by
� ·ep�r�=nin�r� /�0. According to the Helmholtz
decomposition,4 both electric field components contribute in-
dependently to the total electric field. In addition, a hydro-
dynamic contribution to the potential electric field, which
was originally suggested by London,5 has been discussed.6

Experimental and many of the theoretical investigations
of electric field distributions consider coarse-grained electric
field distributions E�r� which are obtained by spatially aver-
aging the microscopic electric fields over the discrete vortex
structure, i.e., a length scale larger than the average vortex-
vortex distance. However, one should be aware that different
measurement techniques may record only characteristic con-
tributions to the total electric field E�r�. Space-resolved
magneto-optical �MO� imaging of the time evolution of the
magnetic-flux density distribution B�r� combined with nu-
merical methods for inversion of the Faraday law yield
coarse-grained distributions of the inductive electric field

component in high-temperature superconducting �HTS� thin
films while the reconstruction of the potential electric field
requires additional assumptions, Fig. 1.7 In contrast, trans-
port measurements reveal a potential drop at the electrodes
being converted into an electric field by dividing through the
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FIG. 1. �Color online� Flux diagram for the electric field E
reconstruction from magneto-optical measurement of the time evo-
lution of the magnetic-flux density. The measurement height for the
Bz�x ,y� distribution is denoted by h. All other symbols are intro-
duced in the main text.
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electrode distance. Such measurements thus yield a potential
electric field, representing an average over large regions or
the entire sample. Such a procedure gives rise to a phenom-
enological description of the dissipative processes of the
moving vortex ensemble by means of an effective material
law E�j ,B ,T�=��j ,B ,T�j. To some extent, this phenomeno-
logical law allows an analysis of the dissipation mechanisms
by means of a flux creep or flux flow resistivity ��j ,B ,T�. It
represents a rank two tensor and describes nonlinear trans-
port properties in the superconducting state without going
into details of both, microscopic vortex dynamics and micro-
scopic structure of the superconducting material.8 There are a
large number of studies of ��j ,B ,T� in various superconduct-
ors with different vortex-pinning potential and microstruc-
ture, showing a rich phenomenology �see, e.g., Refs. 9 and
10�. Below the critical current density jc, the dependence of
the electric field on the current density is usually approxi-
mated as a power law

E�j� = Ec� j

jc
�n

= ��j�j . �1�

It is used for the theoretical calculation of electric field dis-
tributions for a large variety of problems, such as the trans-
port current in superconducting plates with various
geometries.11,12

The effective materials law ansatz derived from transport
experiments was then also successfully applied to the theo-
retical study of flux dynamics and time evolution of magne-
tization decay in superconductors. Assuming that a unique
current-voltage relation can be locally applied at all regions
of the sample, it allows for closing and thus solving the
system of Maxwell equations. The time evolution of the flux
density, current density, and electric field during magnetiza-
tion relaxation was studied, depending on the external mag-
netic field Ha direction and one-dimensional or two-
dimensional �2D� geometries, i.e., strips, disks, cylinders,
and thin plates.13–16 In the flux creep regime, an universal
behavior of the electric field distribution during flux creep is
revealed. This means that some transient time after the ramp
of Ha is stopped, the relaxing E�r , t� separates into a univer-
sal spatial profile f�r� and a time dependence g�t��1 / t. All
the 2D electric field calculations assume zero thickness and
consider a 2D sheet current density.14 An experimental study
of the electric field during magnetization decay was per-
formed in HTS single crystals by Giller et al.,17 where Ei
was determined from the time evolution of the flux density.
Analyzing the local time dependence of a magnetization cur-
rent by time-resolved and spatially resolved magneto-optical
technique, a nonconstant spatial distribution of the local ac-
tivation energy U0�x ,y� was found in a homogeneous thin
film,18 indicating that local relaxation behavior may strongly
depend on geometry.

In spite of the great success of this theoretical work to
reproduce experimentally observed flux and current distribu-
tions in various geometries and conditions,19,20 one should
be aware that all materials laws such as the power ansatz
are extracted from macroscopic experiments. Strong local
variations in the E-j relation may be due to flux density
gradients, vortex phase transitions,17 charging at current do-

main boundaries7 or geometric reasons such as holes or hole
arrays.21 In addition to such geometrical effects, anisotropic
current densities may arise even in isotropic superconductors
due to flux Hall effects or vortex dragging.8 Consequently,
the application of the condition E � j may not be generally
justified. We give evidence in this paper that at current do-
main boundaries or inhomogeneities, not only Lorentz and
pinning forces play a role in the resultant direction of the
flux-line motion but the effect of hydrodynamic �Magnus�
and Hall forces cannot be disregarded. Such studies require
further progress in determining local electric field distribu-
tions which are not based on a material law ansatz.

In this contribution, we present an experimental and the-
oretical study of potential and inductive electric field com-
ponents in a homogeneous superconducting film with finite
thickness. We restrict this paper to the problem of flux creep
in the so-called perpendicular geometry, that is, we study the
thermally activated vortex motion in superconducting thin
films subjected to an external magnetic field Ha, perpendicu-
lar to the sample surface. Our aim is to develop a consistent
technique to distinguish between the two contributions to the
electric field, the induced Ei and the potential component Ep.
The Ei�x ,y ,z� distributions are reconstructed via magneto-
optical imaging and the Faraday’s law as described in a pre-
vious paper.7 The main step of this paper represents the de-
termination of the Ep�x ,y ,z� distribution beyond the
assumption of E � j, used in Ref. 7 �E=Ei+Ep�. Our new and
more general approach only requires a symmetry argument
on the boundary conditions at the surfaces which guarantee
charge neutrality of the total sample and that the total electric
field Ei+Ep lies in the x-y plane of the superconducting film.
A planar total electric field is fully consistent with the pres-
ence of a planar current density in thin films with thickness
d�� in perpendicular external field, where � is the magnetic
penetration depth. The planar current density j�x ,y�
= jx�x ,y�ex+ jy�x ,y�ey is assumed to neither have a jz compo-
nent nor to posses a z dependence of the planar components.
In contrast, all three vector components of B�r�, Ei�r�, and
Ep�r� are calculated in the three-dimensional �3D� space be-
cause they vary strongly within a thin superconducting film
as well as in the exterior. We therefore consider our theoret-
ical approach as quasi-3D. It will turn out that the electric
field components Ep,z�x ,y�=−Ei,z�x ,y� perpendicular to the
current density are the key to obtain the electrostatic poten-
tial and electric charge density induced by flux creep. In fact,
Ez=Ep,z+Ei,z=0 is valid in the quasistationary state, where
the �fast� process of induced charge generation perpendicular
to the film plane is controlled by the slow process of mag-
netic relaxation due to flux creep. Ez=0 and thus Ep,z�x ,y�
=−Ei,z�x ,y� due to the induced surface charges is in full
agreement with jz=0 �see Fig. 2�. In extension of Ref. 7 this
guarantees ��Ep�r�=0 at the current domain boundaries.
As a consequence, at the domain boundaries, the total elec-
tric field is not directed parallel to the current.

In order to compare reconstructed electric fields from ex-
periments with theoretically simulated results based on an
isotropic materials law, we employ a power-law ansatz to
close the Maxwell equations for the time evolution of the 2D
sheet current. The obtained total electric field is decomposed
in Ei and Ep components via Helmholtz decomposition. This
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gives rise to the following outline of the paper: Sec. II pre-
sents the theoretical scheme to calculate the induced electric
field and reconstruct the potential electric field from experi-
mental data. Section III presents experimental results based
on time- and space-resolved magneto-optical imaging and
electric field reconstruction for a magnetized YBaCuO
square-shaped thin film in partly penetrated state. In addi-
tion, the electric field results from numerical simulations
based on the power-law ansatz are presented, considering a
sample of finite thickness and an ideal two-dimensional
sample. Section IV compares theoretical predictions and ex-
perimental distributions and analyze physical impact of the
generalized electric field reconstruction. Finally, Sec. V sum-
marizes our results.

II. THEORY

The study of electric field distribution for flux creep in a
type-II superconducting thin plate is based on the Maxwell
equations for a material with mesoscopic, coarse-grained
electric and magnetic fields on a length scale ��1 �m�. This
corresponds to an average over many vortices and over dis-
tances larger than the characteristic distance of pinning sites.
The set of equations is given by

� � H = j +
�D

�t
, �2�

� · B = 0 , �3�

− � � E = Ḃ , �4�

�0 � · D = nex. �5�

In the quasistationary limit, the temporal derivative of D is
much smaller than the temporal evolution of the current den-
sity, and, in the following is thus disregarded. Since we con-
sider an electrically insulated sample, nex=0 and Eq. �5� can
be simplified to �0� ·Ep=nin, where nin represents the in-
duced charge density.

Helmholtz’s decomposition represents a natural way to
find a solution for the pair of Eqs. �4� and �5�. Specifically,
Helmholtz’s theorem4 can be applied to our electromagnetic
boundary problem. Indeed, the electric field E can be com-

pletely and uniquely decomposed into a sum of the induced
electric field Ei plus the electrostatic potential field Ep with
appropriate boundary conditions. In general, the induced and
potential electric fields obey the following relations:

� � Ei = − Ḃ , �6�

� · Ei = 0 , �7�

�0 � · Ep = nin, �8�

� � Ep = 0 . �9�

Knowing the magnetic induction B as much as the planar
current density j�x ,y�= jx�x ,y�ex+ jy�x ,y�ey circulating in the
x-y plane the electric field can be reconstructed. The method
is based on inversion of Biot-Savar’s law to determine j�x ,y�
from the measured Bz�x ,y�, application of Biot-Savart’s law
in forward direction, in order to determine all three vector
components B�x ,y ,z� in the entire space and using Faraday’s
law to determine Ei�x ,y ,z� as described in Ref. 7.

The integral version of the Faraday equation for the in-
duced electric field is given by

Ei =
1

4�
� �� Ḃ

R
dV�, �10�

where dV means integration over infinite space unless stated
otherwise.

For a thin film of arbitrary shape a 2D Fourier transfor-
mation

f̃�kx,ky� = �
−	

	

dx�
−	

	

dyf�x,y�f i�kxx+kyy� �11�

can be applied in the �x ,y� plane to perform the integration.
A sufficiently large outer space avoids influencing the results
by periodic continuation. For half thickness 
 smaller than
1 /kmax the Fourier components of the in-plane-induced elec-
tric field are given by

Ẽi,x�kx,ky,z = 0� =
�0

2k3 ��̇ky	�k
� , �12�

Ẽi,y�kx,ky,z = 0� = −
�0

2k3 ��̇kx	�k
� , �13�

where k= 
k
=�kx
2+ky

2, 
=d /2, and �̇= �ky�t j̃x−kx�t j̃y� /k.
The system conformed by the Eqs. �6� and �8� would be a

complete system of equations including solutions for the po-
tential electric field, if the induced charge density nin is
known. The studied thin-film geometry, however, allows for
a complete reconstruction of the electric field in the quasis-
tationary state. For such a slowly relaxing magnetization de-
cay in a superconducting thin film, the induced charge den-
sity is mainly located at the boundaries. For film thickness
d�a, where a represents the lateral dimension of the
sample, the dominating contribution comes from the z= 


planes. It is built up by a perpendicular displacement current
jz�x ,y , t� due to the perpendicular induced field component
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FIG. 2. Scheme of the induced charge distribution in a super-
conducting thin film. Only the sign of the surface charge density at
the z= 

 planes and the bulk charge density at the z=0 plane are
shown. They are the source of the z component of the potential
electric field Ep,z. In the quasistationary state, Ep,z=−Ei,z and thus
jz=0.
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Ez,i�r�. The latter is generated by temporally changing in-
plane components of the magnetic induction Bx�r� and By�r�.
Considering hypothetically a short and quick temporal varia-
tion in the flux: the induced displacement current component
jz�r� �
z
�
� which is present due to the Ei,z�x ,y� compo-
nent, quickly drops down to zero after a transient time be-
cause of the built up of induced surface charges at z
= 
d /2 and the related counter field Ep,z�r�. This exactly
defines the quasistationary state, where the flux dynamics is
slow enough to establish a situation, where the Ei,z compo-
nent generated by relaxation of in-plane flux components is
exactly compensated by Ep,z�x ,y�=−Ei,z�x ,y� due to the in-
duced surface charge at the planes and thus jz=0. The con-
dition of quasistationarity consequently agrees with the con-
dition of a planar j and that the total electric field E is planar.

A. Reconstruction of Ep from Eiz

Naturally, the z-component Ei,z of the induced electric
field is required to reconstruct the induced surface charge
density, and, what will be shown below, all three vector com-
ponents of the potential electric field Ep. The 2D Fourier
representation of the z component of the induced electric
field, Eq. �10�, is �see Eq. �20� in Ref. 7�,

Ẽi,z =
i�0

4k
�̇�

−	

+	

dz�e−k
z−z�
�e−k
z�−

 − e−k
z�+

	 , �14�

where �̇= �k ·�tj̃� /k can be associated with the identity
�kx�t j̃x+ky�t j̃y�k−1=−�z /k�t j̃z−�t

2nin�0. This reflects the tem-
poral variation in the displacement current density which
would be present after a sudden flux relaxation step and
builds up the induced surface charge before reaching the
quasistationary limit. It is thus well suited to calculate Ei,z.
However, for the quasistationary state Ep,z�x ,y�=−Ei,z�x ,y�,
no real jz is flowing as discussed above. Once the integration,

Eq. �14�, is performed, the final expression for Ẽi,z is

Ẽi,z =
i�0

4k2 �̇e−k
�D sinh�kz� − 2kz cosh�kz�	 , �15�

where D=2k
+2.
To reconstruct the potential electric field Ep, we start con-

sidering its irrotationality ��Ep=0. The components of
such a vector identity provides us with an homogeneous sys-
tem of partial differential equations. As we emphasized,
since the total electric field E must lie in the x-y plane, one
has also to take into account here that Ei,z=−Ep,z. With this
relation, the system of equations is nicely decoupled and, in
the 2D Fourier �kx ,ky� space, acquires the form

ikyẼp,z − �zẼp,y = 0, �16�

�zẼp,x − ikxẼp,z = 0, �17�

ikxẼp,y − ikyẼp,x = 0. �18�

It is easy to show that the third equation is a consequence of
the first two equations. Consequently, one has a two indepen-

dent first-order ordinary differential equations, however, Eq.
�18� comes into play for the determination of the integration
constant. Integrating over the z component, one yields

Ẽp,x = − ikx� Ẽi,zdz + Cx, �19�

Ẽp,y = − iky� Ẽi,zdz + Cy . �20�

Without loss of generality, one can write the integration con-
stants as Cx=−ikxC and Cy =−ikyC, which, in fact fulfill Eq.
�18�. If we define

�̃ =� Ẽi,zdz + C , �21�

and conclude straightforwardly that �̃ is the two-dimensional
Fourier transformation of the scalar potential �. Therefore,
the potential electric field Ep is determined up to a integra-
tion constant C, which depends on the boundary conditions
of the particular system under study. Since a moving vortex
medium is characterized by a polarization vector field, then,
although an isolated superconductor is a neutrally charged
body, there is a nonzero-induced electrical charge density
defined as nin=�0� ·Ep. The induced charge density in the
2D Fourier space can be written as

ñin

�0
= k2�̃ − �zẼi,z, �22�

where �zẼi,z is given by the Eq. �15�.
The solution does not fulfill the condition of uniqueness

due to the integration constant C. However, employing
physical arguments, a suitable solution for Ep can be estab-
lished. The most general boundary condition for C is that the
volume integral over nin plus the surface integral over the
surface charge density �in must vanish and consequently the
total superconducting sample is charge neutral. However,
this integral equation is not sufficient to derive an equation to
determine C. Consequently, we apply an additional symme-
try argument. In a 2D model of a superconducting plate, the
integral over the induced surface charge density and the bulk
charge density would collapse into a condition of local zero
charge at every position in the �x ,y� plane. The correspon-
dence to the quasi-3D model can be used to derive a sym-
metry argument for the unknown bulk charge density
nin�x ,y ,z� in the superconducting film. Using the z=0 plane
as a symmetry plane of the problem, it follows from the
antisymmetry of Ei,z and Ep,z with respect to z=0 �Fig. 2 in
the paper� that �in�x ,y ,z=+
�=�in�x ,y ,z=−
� for any �x ,y�.
This step just follows from the sample geometry and does
not represent an additional assumption. Applying the condi-
tion of zero local charge at any point of the �x ,y� to the
quasi-3D case, one gets an expression of the bulk charge
density at the z=0 plane

nin�z = 0�d = b · �in�z = 
 
� , �23�

where the parameter b depends on the charge-density distri-
bution along the z axis. This equation does still not allow for
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calculating the z dependence of nin�x ,y ,z�. In order to solve
the problem for the z=0 plane, we have assumed that the
surface charge is fully compensated by the volume charge
nin�x ,y ,z=0�d which is mathematically expressed by the in-
teger value −2. In this case the charge density at the central
plane is nin�x ,y ,z=0�d=−0.5�in�x ,y ,z= 

�. The induced
surface charge at the lateral sample edges �in�
a ,y ,z� and
�in�x , 
a ,z� is disregarded in the further calculations. The
lateral surfaces are a /d times smaller than the top surfaces of
the sample. Consequently, their contributions are small and
restricted to a very narrow edge area of a width on the order
of d. This is below the spatial resolution of the experiments.
Equation �23� is then further used to adjust the integration

constant C and for the two components Ẽp,x and Ẽp,y of the
potential electric field at the z=0 plane in 2D Fourier space
follows,

Ẽp,x�kx,ky,z = 0� =
kx

2

�0

k3 �̇
1 +
2b − 1

1 − b
�k
���k
� , �24�

Ẽp,y�kx,ky,z = 0� =
ky

2

�0

k3 �̇
1 +
2b − 1

1 − b
�k
���k
� . �25�

Here again, we have considered the approximation k
�1.
Note that the potential electric field has a term proportional
to �k
�, like the induced electric field, plus a term propor-
tional to �k
�2.

B. Electric fields from flux simulations

The numerical simulation of the time evolution of the flux
and sheet current are performed similar to the scheme pub-
lished by Brandt14 based on a potential law ansatz for the
scalar flux creep resistivity. In order to calculate the resulting
induced electric field, the Faraday equation is solved relating
Ei to the temporal evolution of the current distribution in a
film of finite thickness. The Eq. �10� can be then rewritten as
follows:

Ei = �0�
V

�tj

4�R
dV� + �

S

�tB � n̂

4�R
dS�.

We restrict our attention to the plane z=0 of a square film
with width a and thickness d=2
. The original 3D calcula-
tion can then be restricted to the integral

Ei�x,y,z = 0� = �0



a
�

−a/2

+a/2 �
−a/2

+a/2

�tJKdx�dy�, �26�

where the kernel K is given by

K = ln
+ 
 + ��x − x��2 + �y − y��2 + 
2

− 
 + ��x − x��2 + �y − y��2 + 
2�
−

2a
��x − x��2 + �y − y��2 + 
2

.

Note that the Eq. �26� is obtained for the sheet current J by
J�x ,y�=dj�x ,y�.13,14 Because the J calculation requires the
current-voltage relation �1�, Eq. �26� is solved numerically.

In addition to the calculation of the induced electric field
in square geometry with finite thickness, we apply the Helm-
holtz decomposition of the electric field for the electric field
distribution directly calculated from the materials law in an
infinitesimal thin film. Again, a method based on Brandt’s
scheme13,14 for the flux and electric field simulations is ap-
plied. The Helmholtz decomposition divides the electric field
E2D into the sum of a potential field �irrotational� Ep,2D and
an induced �soleinodal� Ei,2D field. For the electric field de-
composition, we will follow the Gui and Dou22 procedure.
The two-dimensional electric field E2D�x ,y�=Ex,2D�x ,y�x̂
+Ey,2D�x ,y�ŷ can be obtained performing the transformation
E2D=−�2W, where the vectorial function W is a first order
and continuously differentiable function. Each component of
the last expression represents a two-dimensional Poisson
equation whose uniqueness depends on application of appro-
priate boundary conditions. We are interested in the electric
field within the sample with is bounded by the surface S.

W =
1

2�
�

−a

a �
−a

a

E2D ln
1

��x − x��2 + �y − y��2
dx�dy�.

�27�

Using the vector identity �2W=��� ·W�−�� ���W�,
one can identify both the induced electric field and the
electrostatic potential as Ei,2D=�� ���W�, and Ep,2D
=−��� ·W�. Consequently, making use of the sheet current
J�x ,y�, Eq. �27� is numerically integrated by Gaussian-
Legendre quadratures. In Fig. 3, the steps to calculate the

decomposition

Helmholtz

Bz

Sheet Jcurrent

Finite
thickness

Zero
thickness

Faraday
law

( model)ρ

Theoretical

simulations
flux

2d = JE (x,y)ρ (J)

E i , EE p,2di,2d

FIG. 3. Flux diagram describing how the induced Ei,2D and
potential Ep,2D electric field components are obtained via magnetic
flux simulations.
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electric field E2D�x ,y� via magnetic-flux simulations based
on a material law is summarized.

III. RESULTS

In this section, we present the electric field distributions
obtained by the methods presented in the former section.
Our sample is a nearly single-crystalline YBa2Cu3O6.95
�YBaCuO� film, grown by pulse laser deposition. The
square-shaped YBaCuO film has a thickness d=500 nm and
a width a=1.2 mm. After zero-field cooling to T=8 K, an
external magnetic field �0Ha=86 mT was applied with a
ramp rate of 0.3 mT/s. A series of images, with a time reso-
lution of 120 ms, of the normal component of the magnetic
induction Bz, were taken after the external magnetic field is
kept constant. The images are in magnetic relaxation regime
and in partly penetrated state. The measured light intensities
are calibrated into flux densities as described in Ref. 23.
Figure 4 depicts the highly homogeneous Bz�x ,y� distribu-
tion at t=0.731 s after the external ramp rate was stopped.

First, we present the reconstruction of the Ei and Ep fields
from magneto-optical imaging. The resulting inductive elec-
tric field distributions Ei,x�x ,y� and Ei,y�x ,y�, at t=0.731 s
after the external magnetic field Ha sweep, are visualized in
the panels �a� and �b� of Fig. 5, respectively. They were
obtained after a back fast-Fourier transformation of the Eqs.
�12� and �13�. One can observe the same features of the
corresponding distributions, Ei,x�x ,y� and Ei,y�x ,y�, pre-
sented in Ref. 7 �compare with Fig. 11�. The slight asymme-
try of the experimental Ei,x�x ,y� and Ei,y�x ,y� distributions
comes from the finite measurement accuracy for Bz�x ,y , t� in
MO measurements. Even very small measurement errors in

the order of 0.5% over the entire �x ,y� plane may give rise to
a significant asymmetry in the induced electric field because
of the volume integration over the temporal derivative of the
flux density distribution. The components Ep,x�x ,y� and
Ep,y�x ,y� of the potential electric field distribution, at the
plane z=0, are depicted in panels �a� and �b� of Fig. 6. They
were obtained after fast-Fourier backtransform of the Eqs.
�24� and �25�. The potential �electrostatic� field is one order
of magnitude less than the induced electric field Ei. It pre-
sents a wigglelike structure which is not related to experi-
mental artifacts and is richer than the induced electric field
distribution �compare with Fig. 5�.

In order to compare the induced electric field determined
from MO experiments with the results of flux simulations for
the flux creep state in a superconducting thin film of finite
thickness, the panels �c� and �d� of Fig. 5 depicts the induced
electric field components, Ei,x,2D and Ei,y,2D, obtained solving
the Eq. �26�. The sheet current has been obtained by numeri-
cal simulations based on the power law Eq. �1�. The model
sample has the same thickness d and width a as the experi-
mental one. In addition the critical current density jc and the
external magnetic field value �0Ha=86 mT exactly meets
the experimental situation. One can observe that the distribu-
tions Ei,x and Ei,y reproduce the main characteristics of the
corresponding obtained with experimental data �compare
panels �a� with �c� and �b� with �d� of Fig. 5�. Most signifi-
cant differences occur at the Meissner zone, where Ei ob-
tained from flux simulations is much smaller than the experi-
mental one.

In addition, the induced Ei,2D and potential Ep,2D electric
fields for a infinitesimal thin superconducting film derived
from numerical simulations are shown in panels �e� and �f� of
Fig. 5 and �c� and �d� of Fig. 6, respectively. The 2D sample
has the same lateral extension a=1.2 mm of the experimen-
tal one and the same value for the external magnetic field
�0Ha=86 mT was considered. Once the simulated magnetic
induction Bz distribution is obtained, the Helmholtz decom-
position of the material law is be performed. Note that the
Helmholtz decomposed Ei,2D and Ep,2D are not zero in the
Meissner zone �and at the exterior of the sample�, in contrast
to the total electric field E2D.

Let us sum up the essential features of the induced electric
field Ei,2D presented in panels �e� and �f� of Fig. 5: at the
nonpenetrated area, the antisymmetric Ei,x,2D�x ,y� and
Ei,y,2D�x ,y� functions have a sign inversion, as the experi-
mentally obtained Ei components �compare with panels �a�
and �b� of the same figure�. The distributions in panels �e�
and �f� have profiles in the Meissner zone more pronounced
than those presented in panels �c� and �d�. However, the
Ei,x,2D�x ,y� and Ei,y,2D�x ,y� components, derived from the
power law in the infinitely thin-film components are domi-
nated by the y and x current domains, respectively, display a
nonmonotonous behavior and a sign reversal. This can be
seen, e.g., in the profiles of the Ei,y,2D component, whereas
an oscillatory behavior occurs absent in the experimentally
determined Ei,y distribution �compare panel �f� with panel �b�
of Fig. 5�. Thus, the induced electric field Ei,2D derived from
the power law reproduces qualitatively the main features of
the experimentally determined Ei and has the right order of

0.1
0.08

0.06

0.04

FIG. 4. Calibrated magneto-optical image showing the Bz mag-
netic induction distribution of a square-shaped YBaCuO film as a
gray-scale image. The thin film has a thickness d=500 nm and
width a=1.2 mm. The image is taken 0.731 s after ramping up the
external field from a zero-field-cooled state at T=8 K to �0Ha

=86 mT.
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FIG. 5. �Color online� Gray-scale map of the induced electric field components calculated for three cases: �1� Ei,x�x ,y� and Ei,y�x ,y� in
panels �a� and �b�, respectively, were obtained from thermally activated flux creep data from the sample in Fig. 4 via the Eqs. �12� and �13�;
�2� Ei,x�x ,y� and Ei,y�x ,y� in panels �c� and �d�, respectively, were obtained from flux simulations for a square film of finite thickness, via the
Eq. �26�; �3� Ei,x,2D�x ,y� and Ei,y,2D�x ,y� in panels �e� and �f�, respectively, were obtained via the Helmholtz decomposition of the total
electric field derived in 2D flux simulations based on the material law E2D=��J��J� for an infinitely thin film.
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magnitude �quantitative agreement within a factor of 2�.
There are significant differences in the detailed quantitative
distributions and additional sign reversals which are not con-
sistent with the result obtained from Faraday law in finite
thickness.

Panels �c� and �d� of Fig. 6 show the potential field dis-
tributions Ep,x,2D and Ep,y,2D based on the power law in a film
of finite thickness. First of all, they have opposite sign with
respect to the Ep,x and Ep,y reconstructed from the experi-
mental data and the current domain boundaries represent
lines of symmetry �compare panels �a� with �c� and �b� with
�d� in Fig. 6�. The magnitude 
Ep
 from power law presents
the same maximum at each of the four current domain
boundaries. In the y�x� direction, the Ep,x,2D�Ep,y,2D� distribu-
tion has an oscillatory behavior including a sign reversal

with respect to the line y=0�x=0�, absent in the experimen-
tally reconstructed Ep,x and Ep,y distributions �e.g., compare
panels �b� and �d� of Fig. 6�. Thus, the potential field distri-
butions derived from experiment and from the numerical
simulations strongly disagree.

IV. DISCUSSION

According to the Faraday law, the induced electric field is
determined by the time variation in the flux density in the
area enclosed by the electric field lines and thus strongly
depends on the sample geometry. Comparing Ei in Figs.
5�a�–5�d� obtained by applying the Faraday equation to mea-
sured and simulated time-dependent flux density distribu-
tions, respectively, one may notice that they are very similar

FIG. 6. �Color online� Potential electric field components: �a� Ep,x and �b� Ep,y, obtained by a reconstruction with experimental data; �c�
Ep,x,2D and �d� Ep,y,2D, obtained via the Helmholtz decomposition of the material law E2D=��j�J.
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in magnitude and symmetry. In contrast, the Ei,2D distribu-
tion obtained from Helmholtz-decomposition of the electric
field �Figs. 5�e� and 5�f�� exhibits significant differences. A
qualitatively new feature is an additional sign reversal of
Ei,x,2D and Ei,y,2D in the jy and jx current domains, respec-
tively, which is in contradiction to the result of Faraday law.
It results from locally applying a material law obtained by
macroscopic measurements of stationary transport currents
to the problem of time-dependent magnetization decay. The
only difference between Ei in Figs. 5�a�–5�d� is that the time
evolution of the flux density and sheet current is either ob-
tained from experiment or from flux simulations, respec-
tively. Although the flux simulations are based on the local
application of the materials law for the electric field, the
resulting time evolution of flux density and sheet current
nicely agree with the experiment. This also applies for the
induced electric field Ei, since it is determined by the Fara-
day law from the time evolution of the flux density in the
correct geometry. This emphasizes that the determination of
Ei in thin films represents a nonlocal problem, where the
details of the sample geometry, i.e., the finite sample thick-
ness, has to be taken into account.

The potential electric field Ep reconstruction emerges as
an inverse problem, where the induced charge density nin is
an unknown quantity. Therefore, is necessary for the theoret-
ical calculation to establish an additional condition, in order
to find a solution: this is the assumption of a planar total
electric field, with Ei,z+Ep,z=0, which is in agreement with
the sheet current approximation. This can be achieved by
introducing a symmetry condition for the induced charge
density which is assumed to form a surface charge �in, at z
= 

, and nin, at the plane z=0. However, we emphasize that
the functional behavior of nin in the entire sample is actually
unknown. In our ansatz, we determine nin�x ,y ,z=0� by tak-
ing into account a symmetry condition b=−2 in Eq. �23�.
This guarantees the planarity of the total electric field and the
charge neutrality of the sample. It is however notable that the

shape of the obtained Ep distribution does not significantly
depend on the chosen values b�0, b�0, or 0�b�1. It is
mainly determined by the spatial distribution of Ei,z, which
represents the underlying physical cause of the surface
charge.

The potential electric field distribution Ep,2D, obtained
from the irrotational contribution of the total electric field
E2D�x ,y�=��J�J�x ,y� strongly differs from Ep. Most re-
markably, in accordance with the direction of the current
flow, Ep is oriented clockwise, whereas Ep,2D displays areas
of counterclockwise orientation in the vicinity of the current
domain boundaries. Such behavior is evident in Fig. 7, where
the vector field of both potential electric fields, Ep and Ep,2D,
are compared. This nonuniform orientation of Ep,2D is related
to a much higher charge density in the z=0 plane compared
to Ep �see Fig. 8�. Since the most important physical origin
of the potential electric field is the shear motion of the hop-
ping vortex ensemble, the nonuniform orientational behavior
of Ep,2D is in disagreement with the physical expectation of a
monotonously changing shear velocity field of the vortices in
those regions. Both, a higher degree of homogeneity of the
vortex shear motion field as well as less Coulomb energy
related to the nin distribution gives evidence that the Ep�x ,y�
reconstruction based symmetry arguments of the boundary
conditions is physically more realistic than Ep,2D�x ,y�.

The induced charge density nin is calculated by the equa-
tion � ·Ep=nin /�0. Notice that the boundary conditions on nin

are contained in the way, how Ep is determined. One can
observe that, at the plane z=0, nin is not zero. At the current
domain boundaries it decays smoothly to zero. Three charge
density subdomains are induced in each current domain with
uniform current flow. Since the surface charge distribution at
the lateral sample edges is two order of magnitude larger
than in the bulk, we only display nin at the interior of the thin
film. Some features are similar to Brandt’s predictions,14

however, obtained for longitudinal geometry �compare with
Fig. 2 of Ref. 16�.

(b)(a)

FIG. 7. �Color online� Comparison of the potential electric field distribution determined by reconstruction from experiment �a� and from
2D flux simulation based on the isotropic materials law �b�. �a� Ep�x ,y� is reconstructed from the same experimental data used for the
determination of Ei in Figs. 5 and 6. �b� Ep,2D, obtained via the Helmholtz decomposition of the total electric field E2D=��j�j using a power
law for ��j�. Shown are the superposition of the magnitude �gray scale� and the vector field plot of Ep and Ep,2D, respectively.

RECONSTRUCTION OF THE ELECTRIC FIELD IN TYPE-… PHYSICAL REVIEW B 81, 144506 �2010�

144506-9



In order to obtain the induced surface charge density in
the case of the flux simulation based on the materials law,
one can utilize the Helmholtz decomposed Ep,2D
=−��� ·W�, where the identity � ·W is identified as the sca-
lar potential �. In 2D, it is related to the surface charge
density by �in /�0=−�2�. The induced surface charge den-
sity �in obtained from Ep,2D is quite different from nin �com-
pare panels of Fig. 8�. Energetically, �in presented in panel
�b� of Fig. 8 is not favorable compared to nin because the
accumulation of charge at the current domain boundaries im-
plies that the pattern of vortex creep must sustain a higher
amount of Coulomb energy. Nevertheless, both distributions

show no induced charge distribution inside the nonpenetrated
area. This represents an important physical test of our
method since the Meissner area displays a time-dependent
shielding current density without any vortex penetration.
Due to the absence of moving vortex cores in the Meissner
area, the induced charge density must be zero. In contrast,
peaks of nin and �in are present at the phase boundaries be-
tween the Meissner and the flux penetrated areas.

Figure 9 presents the total electric field E=Ei+Ep com-
ponents. In 2D Fourier space, for the particular case at the
z=0 plane and under the approximation k
�1, one yields

FIG. 8. �Color online� �a� Induced charge density nin�x ,y ,z=0� obtained from the potential electric field Ep based on experimental data.
�b� Induced surface charge density obtained from the potential electric field Ep,2D.

FIG. 9. �a� Total electric field distribution E�x ,y�=Ei�x ,y�+Ep�x ,y� reconstructed from experimental data. �b� Total electric field
distribution E2D�x ,y�=��J�x ,y��J�x ,y� in the 2D simulation.
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Comparing E with the total electric field E2D obtained by
materials law, significant differences are found. The former
displays a finite magnitude in the Meissner zone and mini-
mum but finite values at the current domain boundaries. This
is in contrast to the material law ansatz, where the magnitude
of the electric field E2D distribution falls drastically to zero at
the current domain boundaries and in the Meissner area be-
cause of the power-law ansatz for the resistivity. However, it
is well known that a temporally varying Meissner current
exhibits a finite electric field.

To detail the discussion, Fig. 10 shows the in-plane devia-
tion angle between the total electric field E and the sheet
current j. Inside the current domain boundaries with uniform
current flow we find that the total electric field is parallel to
the sheet current within the limits of experimental accuracy.
In contrast, in the vicinity of the current domain boundaries,
large deviation angles up to approx. 41° are present. At this
state of the work, we cannot completely rule out that Hall-
anglelike features at the current domain boundaries are a
result of the chosen approximations, i.e., the assumption of
z-independent current density and the boundary conditions
for the induced charge density. For example, the presence of
lens-shaped remnant Meissner holes at the domain boundary
could be the origin of a more pronounced z dependence of
the current density at those regions. However, the observa-
tion that Ep and nin exhibit a much more reasonable behavior
than Ep,2D and �in obtained in 2D from an isotropic materials
law supports the possibility of an Hall angle at the current

domain boundaries. A main argument in favor of a finite Hall
angle would be the drastic reduction in the Coulomb energy
compared to a flux creep mode, where the total electric field
remains strictly parallel to the current and a significant
charge density builds up at the current domain boundaries
�see, e.g., Ref. 7, Fig. 13�.

Usually, significant Hall angles in high-temperature super-
conductors are mainly observed in the vicinity of Tc and in
the flux-flow regime or in transport measurements.8,24,25

However, we want to emphasize that the detailed structure of
a current domain boundary and the mode of flux creep in that
complex region is not at all understood until now. The pres-
ence of a significant flux creep Hall angle at that region
would allow for vortex motions parallel to the domain
boundary. In contrast, a creep mode which is dominated by
the Lorentz force, a related vortex velocity which is strictly
directed perpendicular to the current flow and a resulting
isotropic flux creep resistivity has the consequence that the
dissipative vortex motion at the domain boundary would be
strongly suppressed. This is the underlying reason for the
zero total electric field at the domain boundaries in the iso-
tropic approximation. However, dissipative motion in the
flux creep state is inevitably related to thermalization pro-
cess. This supports a homogenization of the dissipated power
j ·E and thus will suppress strong gradients in the total elec-
tric field. Indeed, the observation of higher, finite electric
field values at the domain boundaries obtained by recon-
struction the total electric field by experimental data strongly
supports this argument.

Other possible origins of a nonparallel relation between
the total electric field E and the current density j are an
anisotropic crystal structure or flux guiding at anisotropic
defects. However, the experimental results are obtained for a
purely c-axis-oriented film with a-b twinning on a length
scale smaller than the spatial resolution of the magneto-
optical method. Moreover, the position and symmetry of the
area with finite � rules out crystallographic or microstruc-
tural origins of this effect.

V. CONCLUSIONS

In this paper, we present results on thermally activated
flux creep in a superconducting thin film with finite thickness
magnetized in a partly penetrated state. Electric field distri-
butions are obtained by reconstruction from experimentally
measured time-resolved flux density distributions in a
square-shaped YBaCuO thin film and by flux simulations for
a infinitesimal-thin-model sample. In the latter case the 2D
problem was solved considering a power law for the resis-
tivity with a homogeneous and isotropic critical sheet current
Jc. The reconstruction of the potential and induced electric
field from experimental data is based on the sheet current
approximation for finite but small thickness d�� and as-
suming a symmetry of the induced charge density which
guarantees that the total electric field lies in plane in the
quasistationary state. The obtained solution for the potential
electric field is more general than the approach of Ref. 7
since it depends only on symmetry arguments and the as-
sumption of an isotropic material law for ��j� is not em-

cos θ

FIG. 10. Relative angle � between the current density j�x ,y� and
the total electric field E�x ,y� represented via cos �=E · j / �
E

j
�.
Both j�x ,y� and E�x ,y� are reconstructed from experimental data
shown in Fig. 5.
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ployed. Our tests that the obtained Ep does not strongly vary
by using different assumptions on the z dependence of nin

�parameter b in Eq. �23�� give strong support to the general
validity of the solution for Ep.

The obtained Ei and Ep distributions for a partially pen-
etrated state deviate significantly from former theoretical
works. We find evidence for a finite Hall angle in the vicinity
of the domain boundaries, where the flux dynamics is more
complex. General qualitative features remain similar when
the induced electric field is compared with the corresponding
2D field Ei,2D, obtained from the Helmholtz decomposition
of the material law. However, drastic differences in the sym-
metry and orientation are observed for Ep and Ep,2D, respec-
tively, where nonrealistic Ep,2D�x ,y� and large induced sur-
face charge are a result of the isotropic materials law.

An important difference of this work to the 2D calculation
with infinitesimal thin films13,14,26 is that the presence of non-
zero Bx and By components of the magnetic induction at
the planes z�0 is taken into account. These components
generate the Ei,z component of the electric field and thus
allow for a quasi-3D reconstruction in the thin-film limit in
the quasistationary state, if the z dependence of the current
density can be �at least to some degree of approximation�
disregarded. This method leads to insights into the electric
field structure and possible inhomogeneous modes of vortex
creep at special locations such as domain boundaries which
are beyond the approximation of an isotropic uniform mate-
rials law. Our results give evidence that such an isotropic
uniform materials law which is obtained from macroscopic
transport measurements under stationary conditions cannot
be applied with restrictions to the local magnetization decay
of a superconductor due to flux creep. Important conse-
quences are expected for the flux creep nearby inhomogene-
ties, where additional current domain boundaries and local
inhomogeneities of the electric field distribution evolve.
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APPENDIX

Evaluation of the function �

The calculation of Ẽi,z requires the integration of

� = �
−	

+	

dz�−k
z−z�
�e−k
z�−

 − e−k
z�+

	 .

By definition, the absolute value of the integral � can be
written as follows:

� = �1 + �2,
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	 .

We are interested on the electric field inside the supercon-
ductor, therefore, we will assume that z� �−
 ,
�. With this
condition the integral �1 is given by

�1 = �
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−
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and �2 by
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Adding �1 and �2 we obtain

� =
e−k


k
�D sinh�kz� − 2kz cosh�kz�	 ,

where

D = 2e−k
 sinh�k
� + 1 + 2k
 + e−2k
 = 2k
 + 2.
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