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Recent experiments show that spin-polarized current may influence the state of generally accessory element
of spin valves, an antiferromagnetic (AFM) layer, which is used for “pinning.” Here we study the dynamics of
AFM component of the “pinned” ferromagnetic (FM) layer induced by simultaneous application of the spin-
polarized current and external magnetic field. We find stability range of such a configuration of FM/AFM
system in which orientation of FM magnetization is parallel to AFM vector. We calculate the field dependence
of the critical current for different orientations of the external magnetic field with respect to the crystal axes of
FM/AFM bilayer. We show the possibility of stable current-induced precession of AFM vector around FM
magnetization with the frequency that linearly depends on the bias current. Furthermore, we estimate an
optimal duration of the current pulse required for switching between different states of FM/AFM system and
calculate the current and field dependencies of switching time. The results obtained reveal the difference

between dynamics of ferromagnets and antiferromagnets subjected to spin transfer torques.
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I. INTRODUCTION

Spin transfer torque (STT) is the torque that is applied by
nonequilibrium spin-polarized conduction electrons onto a
magnetic layer.!~ This effect creates, for example, the ability
to switch nanoscale magnetic devices at gigahertz frequen-
cies and stimulate emission of microwaves by steady electric
current.*? Key elements of the spintronic devices, that enable
an information coding, control, and manipulation by an elec-
tric current, are two ferromagnetic (FM) layers. The
“pinned” layer acts as a polarizer for conduction electrons
while the state of a “free” layer may be altered by STT.
However, recent experiments®'? give an indirect evidence
that the spin-polarized current may also influence the state of
another, generally accessory, element, an antiferromagnetic
(AFM) layer, which is used for “pinning.”

The characteristic value of current density at which the
switching of AFM state takes place varies from 10° A/cm?
(for an insulating AFM and current-in-plane geometry®) to
10 A/cm? (for a metallic AFM and current-perpendicular-
to-plane geometry®) and, in principle, can be smaller than the
critical current density in the similar giant magnetoresistive
structures without an AFM layer («10’—10° A/cm?, Refs.
11-13). Spin-polarized current also affects both the exchange
bias and the coercive field of free FM layer.!* Combined
application of spin-polarized current and external magnetic
field gives rise to various switching scenarios depending on
the thickness, sequence, and material of FM and AFM
layers.'* On the other hand, the physical mechanism and de-
tails of such a nontrivial dynamics are still unclear.

Due to the efforts of several theoretical groups'>~'8 the
concept of STT is extended to the systems with (i) different
types of magnetic ordering, including nonuniform and disor-
dered FM (that, in principle, could be further extended to the
magnetic systems with noncollinear and, probably, AFM spin
ordering); (ii) different nature of the magnetic ordering and
interaction between the charge carriers and spins, i.e., sd
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exchange in the magnets with localized spins or itinerant
magnetism in the transition metals. It also became clear that
the STT phenomena could result from the atomic-scale spin-
dependent scattering (i.e., hopping of a conduction electron
between the sites with different directions of the magnetic
moments). In some particular cases an AFM can even work
as a polarizer for conduction electrons and exert spin torque
on the adjacent FM or AFM layer, as it was predicted in
Refs. 16 and 17. However, all of the published calculations
are based on assumption of quantum coherence and so, are
applicable to the perfect samples with ideal interfaces.

In our previous paper'® we proposed the phenomenologi-
cal model that describes the current-induced phenomena in
AFMs on the same footing as in FM materials. It was as-
sumed that the total angular momentum is conserved during
an interaction of spin-polarized transport electrons with each
of magnetic sublattices.

In the present paper we apply this model for the descrip-
tion of the precessional switching processes induced by si-
multaneous application of the spin-polarized current and ex-
ternal magnetic field to an AFM component of the pinned
layer depicted in Fig. 1(a). Our chief aim is to study the
different static and dynamic regimes of AFM layer and to
find the way to induce a stable precession of an AFM vector
starting from a certain configuration of FM/AFM bilayer. We
also try to find similar and different features in the current-
induced dynamics of FM/FM and FM/AFM bilayers. We an-
ticipate our approach to be a starting point for a more com-
prehensive analysis of the multilayered magnetic systems in
the presence of high-density current. For example, joint be-
havior of the FM and AFM layers could be analyzed with
account of the exchange-bias coupling.

II. SPIN TRANSFER TORQUE IN THE

MULTISUBLATTICE MAGNETS
According to Berger! and Slonczewski,>® the physical

mechanism of STT in ferromagnets can be explained in the
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FIG. 1. (Color online) Effect of spin transfer torque within a
pinned layer. (a) General structure of a pinned layer. Due to ex-
change coupling, an AFM layer pins the direction of magnetization
Peur Of the adjacent FM layer. In turn, the FM layer polarizes the
spin current flowing to AFM. (b) Transfer of spin torques T , from
free electrons (e”) to sublattice magnetizations M; and M, (solid
arrows, before and dotted arrows, after an interaction with the con-
duction electrons). STT produces small FM moment m which, in
turn, sets up a solidlike rotation of M, M, around m (arc arrows),
according to Eq. (6). [(c) and (d)] Sketch of eigenmodes of an AFM
vector for different orientations of the external magnetic field. Easy
axes (EA) are parallel to the film plane.

following way. When a free electron transverses (or reflects
from) an interface between the nonmagnetic and FM layers,
its spin state can be reversed due to exchange interaction
with the localized magnetic moments of FM. This process
results in rotation of the localized moments in a way that
ensures conservation of the total spin of the system.

Generalization of the Berger’s and Slonczewski’s ideas to
the case of multisublattice materials is not straightforward
due to more complex character of the magnetic ordering.
Particularly, in AFMs the direction of the atomic magnetic
moments varies on the length scale of atomic distances lead-
ing to zero net magnetization if averaged over few lattice
constants. However, just as in FMs, the spin-polarized elec-
trons transfer spin torques on each of atomic sites.!¢18-20-21

The magnetic structure of AFM may be described with
the use of a few macroscopic vectors M; (in the simplest
case j=1,2) called the sublattice magnetizations (per unit
volume) that are formed due to strong exchange coupling.
So, it seems reasonable to assume that while entering an
AFM, the conduction electron transfers spin angular momen-
tum to any of the magnetic sublattices [see Fig. 1(b)]. Cor-
responding STT T; exerted by the jth sublattice is then pre-
sented in a standard form as follows:

oiJ
Tj= —L[M] X (Mj X pcur)]’ (1)

where J is the current spin polarized in p,, direction, |pey|
=1, the constant o;=&fy/(2M;Ve) is proportional to the
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efficiency € of scattering processes, V is the volume of AFM
region, # is the Plank constant, e is the electron charge, 7 is
the modulus of the gyromagnetic ratio, and My;=|M| is the
saturation magnetization of jth sublattice (the value of M, is
supposed to be unchanged under external fields). Positive
current (J>0) corresponds to injection of electrons into
AFM layer.

Then, the dynamics of AFM can be described by a set of
Landau-Lifshitz-Gilbert equations for M; vectors supple-
mented with the Slonczewski term (1),

. o .
M, =~ y(M; X H)) + M—?(Mj X M,)

0j
O'ZJ
+ M _[Mj X (Mj X pcur)]’ (2)
0j

where H;=-dw/JM; is the “generalized force” (an effective
local field acting on the magnetic moment of a sublattice)
and w is free energy (per unit volume) of an AFM layer. For
the sake of clarity we describe relaxation of an AFM layer in
the simplest form with the use of a single Gilbert damping
parameter ag; equal for all magnetic sublattices (although the
relaxation mechanisms in AFM crystals are very complicated
and diverse??).

The last two terms on the right-hand side (rhs) of Eq. (2)
are responsible for dissipation processes in the AFM layer.
To illustrate this fact we calculate the rate of free energy
losses in assumption that dissipation is small and in zero

approximation M ;=—YM, X H;]. Thus,

dw .
—=-2(H;-M)
dt o

ag - oJ .
== 2| M- e M XM | (3)
J ] ]

In principle, Egs. (2) and (3) could be used for description
of different complicated magnetic structures (compensated
AFMs, weak FMs, ferrimagnets). In the limiting case of the
completely equivalent sublattices (M;=M,=---) the set of
Eq. (2) turns into a standard Landau-Lifshitz-Gilbert-
Slonczewski equation for FMs.

In the particular case of AFM with two magnetic sublat-
tices it is more suitable to rewrite Eq. (2) in terms of mac-
roscopic magnetization (FM vector) m=M,+M, and AFM
order parameter (AFM vector) I=M,-M,,

m = [ (Hy, X m) + (H, X D]+ —C-[(m X m) + (1 X )]
2M,

el o))+ 0 ol (@

= 9[(H,, X 1)+ (H, X m)]+ —2[(m X 1) + (1 X m)]
2M,

ol O pu X mxpa) 9

Here Hy,=—dw/dm is an effective magnetic field within an
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AFM layer that includes an external magnetic field, H;
=—dw/dl is a magnetic anisotropy field conjugated to an
AFM order parameter, and |M,|=|M,|=M,,.

Equations (4) and (5) describe the dynamics of FM and
AFM vectors in the presence of spin-polarized current and
generalize the Landau-Lifshitz-Gilbert-Slonczewski equation
for the systems with more than one magnetic sublattice. In
what follows we base our considerations on these equations.

III. MODEL

Let us consider a pinned layer [Fig. 1(a)] of a typical
exchange-bias spin valve that includes an AFM layer whose
thickness dapy 18 much smaller than the characteristic scale
of the magnetic inhomogeneity. On the other hand, dpy is
large enough to ensure an AFM ordering within the layer.
High current densities are achieved in a small region (10—
100 nm in diameter), in which both FM and AFM layers
could be considered as a single domain. In the case of a
moderate pinning (i.e., when the magnetic anisotropy of FM
is comparable with the unidirectional anisotropy induced by
exchange bias) the FM works as a spin polarizer whose state
is not affected by the precession of AFM vector in the adja-
cent layer. So, magnetization of the FM layer is assumed to
be fixed and is described by the vector p..

In our analysis we take into account the fact that AFMs
(e.g., FeMn and IrMn) widely used in spintronic devices
show strong exchange coupling (corresponding exchange
field H;> H,) between the different magnetic sublattices that
keeps magnetizations M; and M, almost antiparallel even in
the presence of the external field Hy<<Hp. In this case the
state of AFM is described by the only vector order parameter
1, and far below the Neel temperature [I|=2M,. Spin-
polarized current and/or external magnetic field induce small
tilt of the sublattice magnetizations [Fig. 1(b)] formally de-
scribed by the FM vector m. Vector |m|<|l| is a slave vari-
able and can be expressed from Eq. (5) as follows (see
Appendix A for details),

ax1) 1
m= +
2'}/M0HE 2M0HE

(I X (Hy X D], (6)

where Hj, is the external magnetic field (which, particularly,
can be induced by Oersted field of a current).

Substitution of the expression (6) into Eq. (4) gives rise to
a closed equation for AFM vector,

(I X 1) = ¥{21(H,,1) = [1 X (Hy X D]} = y(Hy X 1)(Hy,1)
+2yMoHy(H; X 1) + agH(1 X 1)
+ 0JH[1 X (1 X pey) ]} (7)

Equation (7) describes a solidlike motion of AFM vector in
which |1| is almost unchanged. Nevertheless, due to addi-
tional (compared to FM) degrees of freedom, this equation
differs from the standard Landau-Lifshitz-Gilbert-
Slonczewski equation for FM vector M [see Eq. (2) for j
=1] in order (includes the second-order derivative of the dy-

namic variable, 1 instead of M).
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Analysis of the last term in Eq. (7) shows that the current-
induced contribution is proportional to the AFM order pa-
rameter (vector 1). Thus, one can expect the influence of
spin-polarized current on the dynamics of AFM vector to be
at least as strong as in FM materials (other things being
equal). Moreover, the current-dependent (STT) term on the
rhs of Eq. (7) contains large multiplier H. This is manifes-
tation of the so-called effect of exchange enhancement when
some interactions (e.g., gap values and spin-phonon cou-
pling) are more pronounced in AFMs than the analogous
interactions in FMs.??

IV. DYNAMICS OF AFM VECTOR WITHIN THE
LAGRANGE APPROACH

An effective formalism for investigation of AFM dynam-
ics is based on the use of Lagrange formalism.?* Equation (7)
can be regarded as an Euler-Lagrange equation of the second
kind in the presence of dissipative external forces (see Ap-
pendix B). Corresponding Lagrange function has a form

1. 1 .
1>- H,-[1X]1
49*MoHp 2'yM0HE( o-[11])

‘CAFM =

2
* X Bl =, (). ®)
Here w,,(l) is the energy of magnetic anisotropy (per unit
volume).

To take into account the effect of STT that can work both
as a source or drain of energy for an AFM layer, we deduce
from Eq. (3) the dissipative Rayleigh function (see Appendix
B)

ag o ol

Rarm = 2- %1 9
AFM 4yM, zyMo(pcur [ D )
that describes the rate of the energy losses
d . [ IR
e e ) (10)
dt ol

Analysis of dissipative function (9) shows that STT phe-
nomena in AFM have one general property which is not
peculiar to FM. While STT always changes the energy of FM
layer, some types of motions in AFM could be nondissipative
even in the presence of spin-polarized current. Linearly po-
larized oscillations of the vector 1, sketched in Fig. 1(c), give
an example of nondissipative mode (neglecting the internal
damping). And, vice versa, the most effective energy pump-
ing induced by the current takes place for any precessional,
circular polarized motion of AFM vector in the plane perpen-
dicular to the direction of current polarization p,,, [see Fig.

1(d)].

V. STABILITY DIAGRAM

To illustrate the peculiarities of nondissipative and dissi-
pative current-induced dynamics, we analyze stability of the
state with parallel orientation of AFM and FM vectors,
P.ulll, for two different configurations of the external mag-
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FIG. 2. (Color online) Stable magnetic configurations with dif-
ferent macroscopic properties. In FM/AFM bilayer [(a) and (b)] the
magnetization (llpe,) of FM layer is fixed, AFM vector can be
switched from (a) parallel to (b) perpendicular orientation with re-
spect to po, by application of the external magnetic field H,
= H,; within an AFM layer. In FM/FM bilayer [(c) and (d)] the
magnetization of free layer can be switched from (c) parallel to (d)
antiparallel orientation with respect to p,, by the external magnetic

field H applied antiparallel to p,. In both cases (c) and (d) the
switching can be also induced by current.

netic field Hy, depicted schematically in Figs. 1(c) and 1(d).
For the definiteness, an AFM layer is supposed to have
slightly tetragonal (almost cubic) anisotropy induced, e.g., by
the shape effects or/and interaction with the neighboring lay-
ers (including possible influence of the exchange bias). Two
easy axes (Z and Y) are parallel to the film plane. In this case
the magnetic anisotropy energy w,, is modeled with the fol-
lowing expression:

H,, H,,

Wan= B Bl 1), (11)
where H,, is the intrinsic anisotropy field within the film
plane and the small out-of-plane anisotropy field H,,
< H,, is responsible for weak tetragonality of the sample.

In the absence of field and current a single AFM layer has
two equivalent equilibrium orientations of AFM vector [see
Figs. 2(a) and 2(b)]: 111Z and 11|Y [as can be easily obtained
from minimization of the magnetic energy, Eq. (11)]. Corre-
spondingly, a FM/AFM bilayer has two stable
configurations? with 1lp,, [Fig. 2(a)] and with 1 L p.,, [Fig.
2(b)]. These two configurations should have different macro-
scopic properties (e.g., different magnetoresistance, different
exchange-bias field, etc.) and in this sense are analogous to
the parallel (P) and antiparallel (AP) configurations of
FM/FM multilayers [Figs. 2(c) and 2(d)]. In analogy with
FM/FM systems, the reversible switching between the 11Ip.,,
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and 1.1 p,, states can be achieved by application of the ex-
ternal magnetic field to the free (in our case, AFM) layer.

The switching field should be oriented parallel to AFM
vector, its critical value coincides with the spin-flop transi-
tion field Hs_f=2\e“'HanHH  for AFM layer (also exchange en-
hanced).

When the current is injected into bilayer, configuration
with p,, Il is still equilibrium, but not necessarily stable. To
find the values of critical current and field, we analyze the
frequencies of eigenmodes of AFM layer (magnetization of
FM layer p., and, correspondingly, the current polarization
being fixed).

A. Configuration Hy L1

In the crossed initial orientation H,, L1 [Fig. 1(c)] the lin-
earized equations of motion for the generalized coordinates
Iy, Iy [l;~2My—(I3+1%)/(4M,)] take the following form:

.Z.X+ Z’YAFMI.X-'_ ((1)?("‘ C!)?_])lx'f '}/HEU'JIY = O,

Iy + 2yapmly + wly — YHpoJly = 0. (12)

Here yapm= YHpag/2<wyy is a damping coefficient that
can be estimated from the linewidth of AFM resonance, wy
=vyH,. The values wy=2y(H,, | +H)Hp, wy=2yVH, Hg
are the eigenfrequencies of free oscillations in the absence of
field and current that also could be measured in AFM reso-
nance experiments. It is worth noting that the values of
eigenfrequencies are enhanced due to exchange coupling
(multiple Hy) compared to analogous values in FM with the
same value of anisotropy field.

Equations (12) describe the case when the magnetic field
is directed along the hard anisotropy axis, HyllX. Configura-
tion with HyllY [field is parallel to an easy axis (EA)] is
treated in an analogous way.

It can be easily seen from Eq. (12) that below the critical
current

=7y =

; (13)

|y — wy + wp
2')’H EO

the eigenmodes have linear polarization and correspond to
oscillations of vector 1 within XZ or YZ plane [Fig. 1(c)]. In
this case the spin torque transferred from the current affects
the eigenfrequencies of spin excitations

1 / 7\
2 2, 2, 2 22, 2
Qtzi wy + 0y + 0y £ oy — 0y + oy 1_(,](1)) ]
cr

(14)

but does not affect the effective damping coefficients (as it is
the case in FM).

It should be stressed that in the absence of external field
the value of critical current depends upon anisotropy (wi
—wzy) o« H,,  of the magnetic interactions within and perpen-
dicular to the film plane. The magnetic field applied perpen-
dicular to the vector 1 enhances (if Hy is parallel to an easy
axis) or weakens (if Hj is parallel to a hard magnetic axis of
AFM) the effective anisotropy. So, magnetic field can be
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used for control of the critical current. If anisotropy is weak
(Hpy | <H,y, or, equivalently, |oy—wy| <wy), it can be ef-
fectively reduced with the field whose value is much less
than the spin-flop one, Hy<<H.

Above the critical current, |J]| EJS), polarization of free
oscillations changes from linear to circular (elliptic) and STT
contributes into the energy dissipation. For one of two modes
of free oscillations the current-induced pumping competes
with the internal damping. Starting from the critical value

Jg) = \/(Jg))2 + —;ﬁzez(wi"' a)2Y + a),z_l), (15)
E

the average energy losses per oscillation period are negative
(pumping is greater than damping) and the state with the
parallel alignment of current polarization and AFM vector
becomes unstable.

As seen from Eq. (15), the value of critical current Jg) is
independent on the directions of current, field, and spin po-
larization (p.,.), in contrast to the threshold current for FM.

B. Configuration Hy||1

Another type of dynamics is observed in the case when
the field is applied parallel to 1 [Fig. 1(d)]. In this case po-
larization of eigenmodes is circular (or elliptic) even for J
=0, as follows from symmetry considerations and from
analysis of equations of motion written in terms of appropri-
ate generalized coordinates [ =Iy = ily,

. . 1
I+ +2(Yapm F iog)lo + E(w)z(+ w%,) - w%, ¥ iyHgol |l

1
+ E(wf(— wh)l= =0. (16)

So, oscillations of 1 can actively take up an energy from the
current and STT affects the damping coefficient, not the fre-
quency of oscillations. Instability point is attained as soon as
the spin-polarized current overcomes the effect of internal
friction.

Figure 3(a) shows the field-current stability diagram for
the case of isotropic AFM (H,,, =0 and, correspondingly,
wy=wy). Within the shaded area

2 H 2 H,
‘J_ Yarmiio = YARM sf’ |H0|SHs_f, (17)
O'HE (THE
the static state with 1||p.,/|Z is stable. Above the critical
value, [J|=|J|, where
2
Jo= 2, 4 H g sign D), (18)
Olig

the current may keep up a stable rotation of AFM vector
around p,, [Fig. 3(b)]. Sign reversal of STT (resulted from
the reversal of either direction of current, J— —J, or direction
of polarization, p.,,— —Pey) giVes rise to rotation in opposite
direction. If the field value is greater than spin-flop field,
|Ho|=Hg, the state with 1H, is unstable even in the ab-
sence of current and in the final state the AFM vector is
perpendicular to Hy, and p,,. These results also keep true for
small but nonzero anisotropy H,, .
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FIG. 3. (Color online) Dynamics of AFM vector induced by
steady spin-polarized current. (a) Stability diagram under combined
action of field and current. Static states of the bilayer (schematically
shown with an arrow for p,, and double arrow for AFM vector) are
stable within the shaded area. Strong current (|J|>|J.]) induces
precession of an AFM vector around the current polarization p,
direction of rotation depends on the sign of J. Strong field (|H,
>H, ;) induces spin-flop transition combined with the current-
induced precession. (b) Three-dimensional evolution of AFM vector
1 in overcritical regime (J>J,,) in the presence of magnetic field
H,. In the initial state the AFM vector is slightly misaligned from Z
axis. Under the action of STT the vector 1 spirals away from Z axis
with a steadily increasing precession angle and the angular fre-
quency (). Final state corresponds to precession with the stable
frequency within XY plane (I,=0). [(c) and (d)] Time dependence
of the angular frequency () and [/, projection. Arrows indicate the
moment, 7., at which monotonic decrease in [, switches to the
decaying oscillations. Envelope (dash line) corresponds to relax-
ation [«exp(—yapmt)] caused by internal damping. AFM vector is
normalized as [I|=1. r and Q are expressed in the dimensionless
units as explained in text.

The current-induced precession of 1 vector is also stable in
the “high-field” region, |Hy| = H, ;. However, detailed analy-
sis of the dynamical phases and transition lines in this region
is out of scope of this paper.

Some features of the current-induced instability in con-
figuration with 1//H,, are similar to those observed in FM/FM
bilayers. First, in both cases the stability region is defined by
an internal friction which stands up against the current-
induced rotations.2® Second, the value of critical current lin-
early depends on the field.'>?” Thus, application of the mag-
netic field results in variation in the critical current and opens
a possibility to reduce J,, as seen from Fig. 3(a).

On the other hand, there are still few principal differences
between FM/FM and FM/AFM bilayers listed below. (1) In
the FM/FM bilayer (one FM layer being fixed) switching
between P and AP states can be achieved by application of
either field or current [Fig. 4(a)]. In contrast, in the FM/AFM
bilayer switching between lllp,, and 1.1 p., states can be
achieved by a combined application of field and current [Fig.
4(b)]. Namely, the current induces transition only from 1l/p,,
to 1 L p.,, because the last state is stable in the presence of
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FIG. 4. (Color online) Switching between the different configu-
rations of (a) FM/FM and (b) FM/AFM bilayers. Magnetization of
the fixed layer is shown with magenta (thick) arrow, that of the free
layer with violet (thin arrow), double arrow shows orientation of
AFM vector. (a) Switching between P and AP states can be
achieved by the field or current applied in two opposite directions.
(b) Transition from parallel to perpendicular configuration can be
induced by current (arbitrary direction) and field applied along ini-
tial orientation of AFM vector. Transition from perpendicular to
parallel configuration can be induced by the field only.

(2)

(b)

current. To reverse 1 vector back to 1llp.,, configuration, one
needs to apply an external field Hy= H parallel to 1 (spin-
flop transition). (2) In the FM/FM bilayer the direction of
current (from fixed to free layer or opposite) is important,
P— AP and AP— P transitions take place at opposite direc-
tions of current [Fig, 4(a)]. In contrast, in the FM/AFM bi-
layer destabilization of 1lIp,, state takes place irrespective of
the current direction [Fig. 4(b)]. However, an external mag-
netic field removes such a degeneracy. (3) The bilayers with
AFM should show exchange reduction in the critical current
compared to FM/FM bilayers providing that the free FM and
AFM layers have the same magnetic resonance frequencies
(or anisotropy field of FM is close to spin-flop field of AFM)
and the same quality factor (=w/yspm), as can be seen from
Eq. (18).

VI. DYNAMICS IN OVERCRITICAL REGIME

A FM layer subjected to the direct spin-polarized current
shows one interesting effect, stable precession of magnetiza-
tion with the angular frequency close to the frequency of
spin-wave mode.*> To find out whether such an effect could
be observed in AFM, we consider in details the dynamics of
AFM vector in overcritical regime (|J|>|J|) assuming that
pcur“HO”Z'

We use the standard parametrization of AFM vector with
the spherical angles 6 and ¢, [y=2Msin 6cos ¢, [y
=2M, sin @ sin ¢, [;=2M cos 6, to deduce the following
dynamic equations:
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6+ 2ypp0+ sin 6 cos 6[ wy— (¢ — wp)?

2 2 2 2
Wy — wy—
%(1 +cos 2¢) — %’sin2 0(7 + cos 4(,0)}

d
= O,Zt[(qb — wp)sin’ 4] + sinzﬁ[Z'yAFMgb - yHpJo

2 2 2 2
wy— wy—
Y —Xin2p+ %sinzﬁsin 490} =0. (19)

As it was already mentioned, an AFM under consideration is
an oscillator with the high quality factor (wyy> yapw). In
other words, energy dissipation takes place on the time scale
much greater than the characteristic period of free oscilla-
tions. In this case for analytical treatment of Eq. (19) one can
apply the asymptotic method of rapidly rotating phase origi-
nated by Bogolyubov and Mitropolskii.”®

According to this method, the motion of AFM vector is
decomposed into rapid rotation with the frequency )= wy y
and slow variation in amplitude and frequency with the char-
acteristic time scale o<1/ y,py. In the simplest case of isotro-
pic AFM (H,, , =0 or wy=wy) the only rapid variable is ¢
=Q(1)t. Equations for slow variables Q(¢) and 6(z) (Q,6
<()) are obtained from Eq. (19) by averaging over the pe-
riod of rotation,

.. . 7
6+ 2yapm0 + sin 6 cos 6] wf— (Q — wy)* - Zw(z) sin> 6| =0,

d
E[(Q — wyy)sin® 0]+ sin® A2 yapQ — yHpJo) = 0.
(20)

If, in addition, O< 9, the first of Eq. (20) describes one-
dimensional motion (dynamic variable 6) in a potential well
(see Fig. 5)

1 7
U(6;Q) = Esinz 6| wi— (O — wp)* - ng sin® 8| (21)

with the friction defined by coefficient y,gy. The second of
Eq. (20) describes the current-induced variation in both vari-
ables 6 and ().

Equation (20) have two interesting solutions. The first
one, corresponds to the circular polarized free oscillations of
AFM vector with an amplitude #=6,<<1 and eigenfrequency
0= wyx+ wy. However, in overcritical regime an amplitude
6, growth with an increment proportional to the offset from
the critical current value,

(1 + ﬂ) (22)

Hs-f

]_Jcr
Jor

1 j—
;o YAFM

The second solution with #=m/2 corresponds to steady
rotation of AFM vector in XY plane (/,=0) with the angular
frequency Q..=(J/J,) . Energy dissipation per period of
rotation is zero due to the pretty balance between the mag-
netic damping and current-induced pumping. This solution is
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FIG. 5. (Color online) Profile of the effective potential well, Eq.
(21), arbitrary units. 1-Q =0, and 2—-Q>Q,. Arrows indicate
static solution (#=0) unstable in overcritical regime and stable sta-
tionary solution (6=m/2).

stable when |J|>|J,|, as can be seen from analysis of the
potential U(6;{)). Small deviations of AFM vectors from XY
plane (|6—/2|<1) relax due to internal friction as

cos 6 oc e YA cos(Q ot + 1), (23)

where ¢ is a phase that depends upon initial conditions and

3
Qy= \/Qozo—ZrowH+ Z(wé—wz). (24)

So, the state of steady precession is approached during the
time 1/y5py that depends upon the internal magnetic damp-
ing.

To illustrate all the described peculiarities of AFM dy-
namics in the presence of spin-polarized current we solve the
original Eq. (19) numerically with the initial conditions 6
=6,=0.001, o=1/2, 6=0, and ¢=0. In other words, at ¢
=0 an AFM vector deflects from equilibrium orientation 1/|Z
through the small angle 6,<1 within the ZY plane. Initial
velocity corresponds to that mode of free oscillations which
is unstable for the chosen current direction. For calculations
we used the following dimensionless values: wy=wy=6.28
and yapy=0.314 (that corresponds to the quality factor 20).
Time unit equals to the period of free oscillations in the
absence of field and current.

Figure 3(b) shows a typical trajectory of AFM vector
(normalized to a unit length) in the presence of steady cur-
rent J=2.5J.,<0 and field H=0.2H ;. With the described
initial conditions, the motion of 1 vector starts as a rotation
around Z axis with the eigenfrequency (), of free oscilla-
tions. Due to the energy pumping from STT, an amplitude of
oscillations (I projection on XY plane) slowly increases with
an increment 7 [see Eq. (22)].

The final state (z— ) corresponds to the above described
steady rotation of AFM vector in XY plane (I,=0) with the
angular frequency (). In analogy with FM, such a preces-
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FIG. 6. (Color online) Relaxation dynamics of slow amplitude

l; at t=t,;, Points, numerical simulation, solid line—

approximation according to Eq. (23), dashed line, envelope
ocexp(—yapmt) Both I and 7 are dimensionless as explained in text.

sional state of an AFM layer can be a source of spin waves.
In contrast to FM, the angular frequency ()., is proportional
to the current value. The absolute value of )., is greater than
the characteristic spin-wave frequency (%<{),) which in AFM
can range terahertz values [e.g., for bulk FeMn the energy
gap is 7 meV (Ref. 29) that corresponds to linear frequency
2 THz]. So, FM/AFM bilayer can be considered as a po-
tential emitter of high-frequency spin waves.

Figures 3(c) and 3(d) illustrate the time evolution of the
rotation frequency () and the component /, between the ini-
tial and final states. Due to nonlinear effects, deflection of 1
from the initial direction is accompanied by decrease in ().
At a certain moment 7=t,;, [shown by arrow in Figs. 3(c)
and 3(d)] a monotonic decrease in I, changes into decaying
oscillations around the average value /,=0. Relaxation of I to
XY plane is due to internal damping and follows the law
ocexp(—yapmt) [see Eq. (23) and envelope in Fig. 3(d)]. The
details of relaxation to the precessional state are shown in
Fig. 6 where we compare an exact solution (points) of Eq.
(19) with the asymptotic form (solid line) calculated from the
expressions (22) and (23).

In our simulations of AFM dynamics we found that not
only [, but the rotation frequency (), energy dissipation rate
and the effective potential energy averaged over a period of
rotation (=277/()) has an extremum at the moment f=f;,.
This means that the system passes through the crossing be-
tween two attraction points in the phase space. So, we inter-
pret the time interval 7,,;, as a switching time between two
stable states of the FM/AFM bilayer [see Figs. 2(a), 2(b), and
4(b)]. The exact value of t,,;, depends upon the initial deflec-
tion 6, of AFM vector from Z axis (or, in other words, from
the amplitude of spontaneous fluctuations and, hence, from
temperature). However, the current and field behavior of 7.,
is the same for different initial conditions and correlates with
the current [Fig. 7(a)] and field [Fig. 7(b)] behavior of the
characteristic time 7 of destabilization, Eq. (22). Though the
absolute values of 7,,;, and 7 are different, they show good
correlation [see inset in Fig. 7(a)] in rather wide range of
current values. Both values decrease moving far from the
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FIG. 7. (Color online) Switching time from parallel to perpen-
dicular configurations shown in Figs. 2(a) and 2(b). (a) Current
dependence of the calculated switching time, ,;, (dimensionless, as
explained in text), and the effective pumping coefficient 7o¢|J
—J|™!, external magnetic field Hy=0.2H is parallel to Z. Inset
shows correlation between 7 and 7,,, (b) Field dependence of
switching time 7., at fixed bias current (points). Solid line shows
approximation o|H ¢+ Ho|™.

stability point J. This opens a way to diminish the switch-
ing time by increasing the current value or by decreasing the
critical current with the magnetic field.

VII. CONTROLLABLE SWITCHING OF AFM STATE

From practical point of view it is important to achieve a
controllable switching between the different equilibrium
states of the FM/AFM bilayer (say, llpcy—1L pey or 1l
—Peu) Using the current pulses of minimal duration and am-
plitude. We investigate dynamics of AFM vector under the
rectangular current pulses (schematically shown by thin or
red line in Fig. 8) of different duration and amplitude in
overcritical regime (|J|>|J|). If pulse duration is below
tmin» AFM vector returns back to its initial state after the
current is switched off.

Figure 8 demonstrates the switching processes initiated by
the current pulse J=2.5J with the duration slightly greater
than #,,;,.- The chosen pulse duration ensures maximum de-
flection of AFM vector from the initial direction as seen from
time dependence of [, [Fig. 8(a)]. After the current is
switched off, the AFM vector relaxes to the final static state
within XY plane through the damping oscillations during the
time 1/y,py. Regular rotation around Z axis supported by
current also vanishes with the end of current pulse, as seen
from () behavior [Fig. 8(b)]. The final orientation of AFM
vector is parallel to one of the easy axes within XY plane [in
the presence of field, Fig. 8(c)] or can be also antiparallel to
the initial 1 direction (180° switching to Z easy axis) in the
absence of external field [Fig. 8(d)]. Due to degeneracy, the
final state is very sensitive to the initial conditions and pulse
duration and can be predicted only statistically.

VIII. CONCLUSIONS

In summary, we studied the dynamics of AFM layer in the
presence of spin-polarized current and external magnetic
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FIG. 8. (Color online) Dynamics of AFM vector induced by a
pulse of spin-polarized current. (a) Time dependence of [, (thick or
blue line) under the rectangular current pulse (thin or red line).
Pulse duration close to t,,;, is enough to ensure maximal deflection
of I, from the initial value. (b) High frequency rotation of AFM
vector persists as long as current induces STT, as seen from time
dependence of (). Just after the current is switched off the fre-
quency of rotation goes down to zero and AFM vector lies down to
XY plane. Relaxation time (=1/ysgy) of both Q and [, is due to
internal damping. (c) Magnetic field applied parallel to the initial
orientation of 1 induces 90° switching, the final state of AFM vector
is parallel to XY plane. (d) In isotropic AFM in the absence of field
a spin-polarized current may induce 180° switching. AFM vector is
normalized as [I|=1. t and ) are expressed in the dimensionless
units as explained in text.

field. On the basis of a simple model of slightly tetragonal
AFM with two magnetic sublattices we demonstrated the
following features of current-induced behavior in the FM/
AFM bilayer. (1) Spin transfer torque induces the loss of
stability in the FM/AFM system if AFM vector is parallel to
FM magnetization. Configuration with AFM vector perpen-
dicular to FM magnetization is stable in the presence of cur-
rent and field (in accordance with the prediction made in Ref.
17). This means that the high-density current can induce re-
orientation of AFM vector if an angle between 1 and p.,,
differs from /2.

(2) Such a current can also induce a stable precession of
AFM vector in the plane perpendicular to FM magnetization.
The frequency of precession is on the order of frequency of
free oscillations and linearly depends on current.

(3) The value of critical current can be tuned by applica-
tion of the external magnetic field. The value of switching
time can be tuned by both field and current.

We anticipate the same features in noncollinear AFM with
three (such as IrMn; and Mn;NiN) and more (such as FeMn)
magnetic sublattices. On the other hand, our model predicts
irreversible current-induced switching between the parallel
and perpendicular orientations of 1 and p,,,. This result is the
consequence of the chosen tetragonal magnetic anisotropy. In
the case when an angle between easy axes of AFM differs
from 77/2 (such as in NiO or FeMn), the current-induced
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FIG. 9. (Color online) Current dependence of the exchange-bias
field. (a) Exchange-bias spin-valve structure with multidomain
AFM layer. AFM vector in some of domains deflects from the ini-
tial orientation due to STT. (b) The shift of bias for typical spin
transfer (AFM layer is not affected by current). (c) The shift of bias
in the case when spin torque is transferred to AFM layer.

switching seems to be possible between all the configura-
tions of 1 and p,, as long as 1 has a nonzero projection on
Pcur-

The described response of AFM vector to electron current
may change the properties of the pinned layer. Due to the
weak but nonzero exchange coupling between AFM and FM
layers, reorientation or precession of AFM vector results in
variation in the exchange-bias field and, consequently, gives
rise to the shift of switching fields of spin valve. We illustrate
this effect qualitatively in Fig. 9. Consider a typical spin
valve with the pinned FM layer. Suppose, an AFM layer is
inhomogeneous (multidomain) and high-density current
gives rise to reorientation of AFM vector in some of domains
[Fig. 9(a)]. The ratio of the rotated domains is proportional to
the integral current. On the other hand, reorientation of some
AFM domains results in diminishing of the exchange-bias
field that keeps FM magnetization of the pinned layer. Varia-
tion in the bias field is also proportional to the ratio of the
rotated AFM domains. So, in the presence of current the
critical field at which magnetization of the pinned layer is
reversed decreases linearly. However, linear shift of the bias
field can be also induced by STT between FM layers. If AFM
layer is not affected by spin transfer torque, the stability
region of AP configuration increases for one current direction
and diminishes for an opposite, as shown in Fig. 9(b). On the
contrary, if spin torque is transferred to an AFM layer and is
not transferred between two FM layers, the stability region
of antiparallel configuration of FM layers diminishes for any
current direction [Fig. 9(c)]. The last type of current depen-
dence (among others) was observed in the experiments, Ref.
14. Decrease in the exchange-bias field irrespective of cur-
rent direction was also observed in Ref. 9.
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Linear shift of the bias field induced by the current was
observed in nanopillars’ that included coupled permalloy
(FM) and FeMn (AFM) layers. In these experiments a com-
bined application of the magnetic field and high-density cur-
rent resulted in an increase in the exchange-bias field from
—100 to 100 Oe.

Another evidence of STT effects in AFM could be found
from the detailed analysis of the field/current dependence of
magnetoresistance, as it was done in Refs. 6 and 8—10. Mag-
netoresistance of spin valve should depend on the angle be-
tween FM and AFM vectors (in addition to the dependence
from mutual orientation of FM vectors in free and pinned
layers) and can change due to the current-induced switching
of AFM vector.

APPENDIX A: RELATION BETWEEN MAGNETIZATION
AND AFM VECTOR

Small macroscopic magnetization |m|<|l| of AFM layer
can be excluded from Eq. (5) in the following way.’*" Free
energy of AFM layer is modeled as

Hg
w=—m"+w, — Hym,
0

(A1)

where Hp, is the spin-flip field of the exchange nature, w,, is
anisotropy energy, and Hj is external magnetic field. In as-
sumption that HM,>w,, (or, equivalently, Hy>H;) and
Hy>H, (strong exchange coupling), the effective magnetic
field is expressed as follows:

aw Hy

(A2)
Jm 2M0

We substitute Eq. (A2) into Eq. (5), neglect dissipative terms
(with ag and J) and get

. Hy

1= y([Ho X 1] 2Mo[m X l]) (A3)
To obtain an explicit expression (6) for m we multiply both
sides of Eq. (A3) by the vector 1 and take into account that
1X[m X l]=mlzz4M(2)m. The last relation follows from the
fact that below the Neel temperature both vectors 1 and m are
bound by the constraint >+m?=4M;, (1,m)=0 (that is
equivalent to the requirement [M;|=|M,|=M,).

APPENDIX B: LAGRANGE AND RAYLEIGH FUNCTIONS
FOR ANTIFERROMAGNET

The Lagrange function (8) and the Rayleigh function (9)
are selected in such a way that to fulfill the following re-
quirements:

(i) The dynamic Eq. (7) are the Euler-Lagrange equations
of the second kind with dissipative forces,

oL oL IR
d ARM | ARML ARM |
ol ol

dt ﬁi
(B1)
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(ii) The effective potential energy in Lagrange function
coincides with the magnetic anisotropy energy, Eq. (11).

(iii) Rayleigh function is related with the rate of energy
losses, Eq. (3), according to Eq. (10). Expression for energy
losses is obtained from Eq. (3) by substitution M;=-M,
=1/2. Contribution from m-depending terms into Rayleigh

PHYSICAL REVIEW B 81, 144427 (2010)

function is small and so, is neglected.

Lagrange approach makes it possible to account for the
constraint [I|=2M, (valid far below the Neel point) by ap-
propriate choice of two generalized coordinates ¢; (k=1,2)
instead of three components of vector 1, as described in the

paper.

L. Berger, Phys. Rev. B 54, 9353 (1996).

2J. C. Slonczewski, Phys. Rev. B 39, 6995 (1989).

3J. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).

4S. Kaka, M. R. Pufall, W. H. Rippard, T. J. Silva, S. E. Russek,
and J. A. Katine, Nature (London) 437, 389 (2005).

SA. Slavin and V. Tiberkevich, IEEE Trans. Magn. 45, 1875
(2009).

7. Wei, A. Sharma, A. S. Nunez, P. M. Haney, R. A. Duine, J.
Bass, A. H. MacDonald, and M. Tsoi, Phys. Rev. Lett. 98,
116603 (2007).

7S. Urazhdin and N. Anthony, Phys. Rev. Lett. 99, 046602
(2007).

8X.-L. Tang, H.-W. Zhang, H. Su, Z.-Y. Zhong, and Y.-L. Jing,
Appl. Phys. Lett. 91, 122504 (2007).

9N. V. Dai, N. C. Thuan, L. V. Hong, N. X. Phuc, Y. P. Lee, S. A.
Wolf, and D. N. H. Nam, Phys. Rev. B 77, 132406 (2008).

107 Bass, A. Sharma, Z. Wei, and M. Tsoi, J. Magn. (Korean
Magnetics Society) 13, 1 (2008).

I'M. Tsoi, A. G. M. Jansen, J. Bass, W.-C. Chiang, M. Seck, V.
Tsoi, and P. Wyder, Phys. Rev. Lett. 80, 4281 (1998).

121, Grollier, V. Cros, H. Jaffrés, A. Hamzic, J. M. George, G.
Faini, J. B. Youssef, H. Le Gall, and A. Fert, Phys. Rev. B 67,
174402 (2003).

13D, C. Ralph and M. D. Stiles, J. Magn. Magn. Mater. 320, 1190
(2008).

147, Basset, A. Sharma, Z. Wei, J. Bass, and M. Tsoi, Proc. SPIE
7036, 703605 (2008).

15, Tserkovnyak, H. J. Skadsem, A. Brataas, and G. E. W. Bauer,
Phys. Rev. B 74, 144405 (2006).

1A, S. Nifiez, R. A. Duine, P. Haney, and A. H. MacDonald,
Phys. Rev. B 73, 214426 (2006).

7P. M. Haney and A. H. MacDonald, Phys. Rev. Lett. 100,
196801 (2008).

18y, Xu, S. Wang, and K. Xia, Phys. Rev. Lett. 100, 226602
(2008).

9E. V. Gomonay and V. M. Loktev, Low Temp. Phys. 34, 198
(2008).

20p. M. Haney, D. Waldron, R. A. Duine, A. S. Nunez, H. Guo, and
A. H. MacDonald, Phys. Rev. B 75, 174428 (2007).

2P, M. Haney, D. Waldron, R. A. Duine, A. S. Nunez, H. Guo, and
A. H. MacDonald, Phys. Rev. B 76, 024404 (2007).

22V. G. Bar’yakhtar, Sov. Phys. JETP 60, 863 (1984).

23 A. 1. Akhiezer, V. G. Bar’yakhtar, and S. V. Peletminskii, Spin
Waves, North-Holland Series in Low Temperature Physics Vol. 1
(North-Holland, Amsterdam, 1968).

241, Bar’yakhtar and B. Ivanov, Sov. J. Low Temp. Phys. 5, 361
(1979).

2In the bilayer structure the orientation of AFM vector is gov-
erned by competition between the intrinsic magnetic anisotropy,
Eq. (11), and exchange coupling with the adjacent FM layer.
However, in the typical cases an effective field of exchange
coupling is much smaller than the spin-flop field of AFM and
thus can be neglected.

268, 1. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Emley, R. J.
Schoelkopf, R. A. Buhrman, and D. C. Ralph, Nature (London)
425, 380 (2003).

7Y, V. Gulyaev, P. E. Zil’berman, E. M. Epshtein, and R. J. Elliott,
Sov. Phys. JETP 100, 1005 (2005).

28N. N. Bogolyubov and Y. A. Mitropolskii, Asymptotic Methods
in the Theory of Nonlinear Oscillations (Taylor & Francis, Lon-
don, 1961).

»Y. Endoh, G. Shirane, Y. Ishikawa, and K. Tajima, Solid State
Commun. 13, 1179 (1973).

30A. V. Kimel, B. A. Ivanov, R. V. Pisarev, P. A. Usachev, A.
Kirilyuk, and T. Rasing, Nat. Phys. 5, 727 (2009).

144427-10


http://dx.doi.org/10.1103/PhysRevB.54.9353
http://dx.doi.org/10.1103/PhysRevB.39.6995
http://dx.doi.org/10.1016/0304-8853(96)00062-5
http://dx.doi.org/10.1038/nature04035
http://dx.doi.org/10.1109/TMAG.2008.2009935
http://dx.doi.org/10.1109/TMAG.2008.2009935
http://dx.doi.org/10.1103/PhysRevLett.98.116603
http://dx.doi.org/10.1103/PhysRevLett.98.116603
http://dx.doi.org/10.1103/PhysRevLett.99.046602
http://dx.doi.org/10.1103/PhysRevLett.99.046602
http://dx.doi.org/10.1063/1.2786592
http://dx.doi.org/10.1103/PhysRevB.77.132406
http://dx.doi.org/10.1103/PhysRevLett.80.4281
http://dx.doi.org/10.1103/PhysRevB.67.174402
http://dx.doi.org/10.1103/PhysRevB.67.174402
http://dx.doi.org/10.1117/12.798220
http://dx.doi.org/10.1117/12.798220
http://dx.doi.org/10.1103/PhysRevB.74.144405
http://dx.doi.org/10.1103/PhysRevB.73.214426
http://dx.doi.org/10.1103/PhysRevLett.100.196801
http://dx.doi.org/10.1103/PhysRevLett.100.196801
http://dx.doi.org/10.1103/PhysRevLett.100.226602
http://dx.doi.org/10.1103/PhysRevLett.100.226602
http://dx.doi.org/10.1063/1.2889408
http://dx.doi.org/10.1063/1.2889408
http://dx.doi.org/10.1103/PhysRevB.75.174428
http://dx.doi.org/10.1103/PhysRevB.76.024404
http://dx.doi.org/10.1038/nature01967
http://dx.doi.org/10.1038/nature01967
http://dx.doi.org/10.1134/1.1947325
http://dx.doi.org/10.1016/0038-1098(73)90559-0
http://dx.doi.org/10.1016/0038-1098(73)90559-0
http://dx.doi.org/10.1038/nphys1369

