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We develop an effective low-energy, long-wavelength theory of a bulk supersolid—a putative phase of
matter with simultaneous crystallinity and Bose condensation. Using conservation laws and general symmetry
arguments we derive an effective action that correctly describes the coupling between the Bose condensation
and the elasticity of the solid. We use our effective action to calculate the correlation and response functions for
the supersolid, and we show that the onset of supersolidity produces peaks in the response function, corre-
sponding to propagating second sound modes in the solid. With a further study on the dissipative hydrody-
namics of supersolids we show that the Brillouin peaks of the second sound modes in the response function
actually originate from the splitting of the central Rayleigh peak corresponding to the defect diffusion mode
under the supersolid transition. Light scattering may provide a direct measure of this splitting.
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I. INTRODUCTION

In 1969 Andreev and Lifshitz proposed a novel phase of
matter in quantum Bose crystals wherein a Bose condensate
of point defects would coexist with the crystallinity of the
solid.1 This is perhaps the most conceptually clear picture of
what we now call a “supersolid” although suggestions of the
coexistence �or noncoexistence� of Bose condensation and
crystallinity can be traced to the earlier work of Penrose and
Onsager,2 and Chester.3 Andreev and Lifshitz provided an
elegant �albeit incomplete� formulation of the hydrodynam-
ics of supersolids and predicted propagating modes analo-
gous to second �or fourth� sound in liquid 4He. Their hydro-
dynamic formulation was further extended by Saslow4 and
by Liu.5 Experimental searches for signatures of the super-
solid phase proved fruitless6 until recently, when Kim and
Chan7–9 observed rotational inertia anomalies in solid 4He
that they interpreted as evidence for supersolidity. Their
work fueled extensive searches for further evidence of this
elusive phase of matter10–17 and there are now a number of
comprehensive reviews of the experimental and theoretical
progress in this area—see Refs. 18–21.

The present work is a detailed study of the hydrodynam-
ics of bulk supersolids, of the type originally proposed by
Andreev and Lifshitz, for which we derive an effective La-
grangian density. The advantages of calculating a Lagrangian
density are twofold. First, the effective action constructed
from the Lagrangian density is a powerful tool for calculat-
ing and elucidating the collective modes of the supersolid
phase, and the correlation and response functions in the su-
persolid phase. Second, beyond linearized hydrodynamics,
the effective action can also be use to study the dynamics
and interaction of topological defects—vortices and
dislocations—in the supersolid. In this paper we focus on the
former point whereas the latter will be dealt with in subse-
quent publications.22

Recently there have been several works to derive
Lagrangians for supersolids.23–26 Son23 expressed a Lagrang-
ian for supersolids in terms of Galilean invariant hydrody-
namic variables set by conservation laws and broken sym-

metries. Josserand et al.24 derived another Lagrangian
density by using the homogenization procedure to a nonlocal
version of the Gross-Pitaevskii equation. Ye25 proposed a
phenomenological supersolid Lagrangian by introducing an
arbitrary coupling constant between elasticity and superfluid.
Peletminskii26 used Poisson-bracket formalism with Galilean
invariance, and derived the Andreev and Lifshitz hydrody-
namics. However, their Lagrangian densities either are re-
stricted to zero temperature behavior,23 do not generate the
Andreev and Lifshitz hydrodynamics,24 violate Galilean
invariance,25 or incorporate additional auxiliary fields.26 In
contrast, our derivation of the Lagrangian density for a su-
persolid relies extensively on a variational principle used to
obtain the dynamic equations in various continuum systems:
normal fluids,27–29 superfluids,29–34 normal solids,27,35 liquid
crystals,36 trapped superfluid gases,37 and relativistic fluids.38

This approach starts with a Lagrangian density of physically
well-defined kinetic and potential-energy densities depend-
ing upon hydrodynamic variables set by conservation laws
and broken symmetries. The hydrodynamic variables, in gen-
eral, are not independent from each other but related by sev-
eral constraints, e.g., conservation equations. These con-
straints are added to the Lagrangian density by using
Lagrange multipliers which later are identified as Clebsch
potentials for the velocities and also can be removed from
the Lagrangian density by using some of the Euler-Lagrange
equations.27 Finally, the resulting Lagrangian density, which
is manifestly Galilean invariant, becomes a function of all
the physical hydrodynamic variables and describes nonzero
temperature hydrodynamics.

Once the Lagrangian density of a system is constructed
one can also investigate linear responses to external distur-
bances from equilibrium by calculating time-dependent cor-
relation functions from the Lagrangian density. One of our
important results is the calculation of the density-density cor-
relation function of supersolids. Collective modes generated
by slow disturbances appear as peaks in the correlation func-
tion. Analogous to superfluids under a supersolid transition, a
new propagating second sound mode appears, and we calcu-
late the contributions of the second sound modes of super-
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solids in the density-density correlation function. We also
extend the analysis to the dissipative hydrodynamics of An-
dreev and Lifshitz, and show that light scattering, which
measures fluctuations in the local dielectric constant,39 may
provide a direct measure of the density-density correlation
function.

We should also state what this work is not—it is not an
explanation of the recent experiments on possible supersolid-
ity in 4He as the prevailing wisdom suggests that structural
disorder plays a key role in most of the experiments and our
simplified model assumes an ordered solid.

This work is organized as follows. In Sec. II we derive the
supersolid hydrodynamics and the effective Lagrangian den-
sity using the variational principle. We show that the Euler-
Lagrange equations obtained from the Lagrangian density
are equivalent to the hydrodynamic equations of motion de-
rived by Andreev and Lifshitz1 including a term nonlinear in
the elastic strain which they omitted in their analysis. We
also discuss the connection to the work of Saslow,4 Liu,5

Son,23 and Josserand et al.24 In Sec. III we use a quadratic
version of the Lagrangian to investigate the linearized hydro-
dynamics of a supersolid. Finally, in Sec. IV the collective
modes and the density-density correlation function of a
model supersolid are calculated in detail. The appendices
provide additional detail as an aid to the reader.

II. VARIATIONAL PRINCIPLE AND AN EFFECTIVE
LAGRANGIAN OF SUPERSOLIDS

We start with a Lagrangian density for a supersolid in the
Eulerian description �in which all quantities are depicted at
fixed position x and time t�

LSS =
1

2
�sijvsivsj +

1

2
���ij − �sij�vnivnj − USS��,�sij,s,Rij� ,

�1�

where �sij is the superfluid density tensor, � is the total den-
sity, vs is the velocity of the supercomponents, vn is the
velocity of the normal components, s is the entropy density,
and

Rij � �iRj �2�

is the deformation tensor, with R the coordinate affixed to
material elements ��i�� /�xi and �t�� /�t in what follows�.
The first two terms in the Lagrangian density are the kinetic-
energy densities of the supercomponent and the normal com-
ponent, respectively, and the third term is the internal energy
density which is a function of �, �sij, s, and Rij. In contrast to
a superfluid, Rij appears explicitly in USS for a supersolid, a
reflection of the solid’s broken translational symmetry. As
shown in Appendix B, the internal energy density satisfies
the thermodynamic relation

dUSS = Tds + �� +
1

2
�vni − vsi�2�d� − �ikdRik

−
1

2
�vni − vsi��vnj − vsj�d�sij , �3�

where � is the chemical potential per unit mass and �ij the

stress tensor. Given the Lagrangian density in Eq. �1�, the
action is

SSS =� dt� d3xLSS. �4�

The equations of motion for a supersolid are obtained from
variations of SSS with respect to the dynamical variables.
However, as illustrated in Appendix A, the dynamical vari-
ables are not independent and one must insure that conser-
vation laws and broken symmetries are incorporated in the
action through the use of auxiliary fields �Lagrange multipli-
ers�. For a three-dimensional supersolid there are five con-
served quantities: the mass, the entropy, and the three com-
ponents of the momentum. Among these constraints we
impose only the mass and entropy conservation laws, and
show below that the momentum conservation is the byprod-
uct of the variational principle. Conservation of mass is ex-
pressed through the equation of continuity

�t� + �i ji = 0, �5�

where the mass current ji is

ji = �sijvsj + ���ij − �sij�vnj . �6�

The entropy conservation law is

�ts + �i�svni� = 0 �7�

in which only vn is involved because the entropy is trans-
ported by the normal component. Finally, we account for the
broken translational symmetry using Lin’s constraint29

DnRi

Dt
= 0, �8�

where Dn /Dt��t+vni�i. This constraint states that the La-
grangian coordinates �i.e., the initial positions of particles�
do not change along the paths of the normal component.
Indeed, Lin’s constraint was first introduced to generate vor-
ticity in the Lagrangian description of an isentropic normal
fluid.29 We incorporate all of the constraints, Eqs. �5�–�8�,
into the Lagrangian density Eq. �1� by using the Lagrange
multipliers �, �, and �i, with the result

LSS =
1

2
�sijvsivsj +

1

2
���ij − �sij�vnivnj − USS��,�sij,s,Rij�

+ ���ts + �i�svni�� + �	�t� + �i��sijvsj + ���ij

− �sij�vnj�
 + �i��t�sRi� + � j�sRivnj�� . �9�

Note that in our formulation Lin’s constraint is combined
with the entropy conservation law.

We are now in a position to derive the hydrodynamic
equations of motion for supersolids. First of all, the variation
in the action with respect to vsi produces

vsi = �i� . �10�

Therefore, the superfluid component of the velocity is a po-
tential flow as expected �rotational flow can be obtained by
introducing another constraint; see Ref. 32�. The remaining
equations of motion are
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�a� ��

1

2
vn

2 −
�USS

��
− �t� − vnivsi = 0, �11�

�b� ��sij

�USS

��sij
= −

1

2
�vsi − vni��vsj − vnj� , �12�

�c� �s

Dn�

Dt
+ Ri

Dn�i

Dt
+

�USS

�s
= 0, �13�

�d� �vni

�i� + Rj�i� j =
1

s
���ij − �sij��vnj − vsj� , �14�

�e� �Ri

Dn�i

Dt
−

1

s
� j� �USS

�Rji
� = 0. �15�

In the above equations of motion we have eliminated the
gradient of � by using Eq. �10�. In addition to the derived
equations of motion, the variations with respect to the
Lagrange multipliers reproduce the imposed constraints, Eqs.
�5�–�8�. Therefore, Eqs. �5�–�8� and �10�–�15� are the hydro-
dynamic equations for supersolids.

In the following we demonstrate that the equations of mo-
tion derived above are equivalent to the nondissipative su-
persolid hydrodynamics developed by Andreev and Lifshitz,1

Saslow,4 and Liu.5 First, the taking the gradient of Eq. �11�
produces the Josephson equation

�tvsi = − �i� −
1

2
�ivs

2, �16�

where we have used the thermodynamic relation for �USS /��
given in Eq. �3�. Second, we derive the momentum conser-
vation equation; the following identity simplifies the deriva-
tion:

D�a�ib�
Dt

= �ib
Da

Dt
+ a�i�Db

Dt
� − a� jb�iv j , �17�

where D /Dt��t+vi�i. Take Dn /Dt of Eq. �14�, and elimi-
nate the Lagrange multipliers by using Eqs. �7�, �8�, and
�13�–�15�. The result is

Dn

Dt
����ij − �sij��vnj − vsj�� = − s�i� �USS

�s
� − �iRj�k� �USS

�Rkj
�

− ���ij − �sij��vnj − vsj��kvnk

− ��� jk − �sjk��vnk − vsk��ivnj .

�18�

Third, combine Eq. �18� with the thermodynamic relation,
Eq. �3�, the continuity equation, Eq. �5�, and the Josephson
equation, Eq. �16�. After some algebra, we obtain the
momentum-conservation law

�t ji + � j�ij = 0, �19�

where ji is the mass current given in Eq. �6� and �ij is the
�nondissipative� stress tensor

�ij = �vsivsj + vsipj + vnjpi − Rik� jk

− �	 − Ts − �� − �vnj − vsj�pj��ij , �20�

where pi����ij −�sij��vnj −vsj� and 	 satisfies a thermody-
namic relation given by Eq. �B3�. Note that the Josephson
equation, Eq. �16�, and the momentum conservation equa-
tion, Eq. �19�, are Eqs. �9� and �12� of Andreev and Lifshitz1

�Andreev and Lifshitz neglected nonlinear strain terms, ef-
fectively replacing Rik by �ik in the last term of Eq. �20�
above�. Moreover, the momentum conservation equation is
equivalent to Eq. �4.16� of Saslow4 when vs is taken as a
Galilean velocity, and Eq. �3.40� of Liu5 in the case where
the superthermal current vanishes.

The Lagrangian density used to derive the hydrodynamics
of supersolids, Eq. �9�, can be recast into a more familiar and
compact form by using the equations of motion, as illustrated
for an ideal fluid in Appendix A. To see this, we integrate the
terms involving the Lagrange multipliers by parts �neglecting
boundary terms� and use Eqs. �10� and �13� to eliminate �
and �i. We then obtain

LSS = − ��t� −
1

2
�sij�i�� j� +

1

2
���ij − �sij�vnivnj

− ���ij − �sij�vnj�i� − f��,�sij,T,Rij� , �21�

where f �USS−Ts satisfies the thermodynamic relation

df = − sdT + �� +
1

2
�vni − vsi�2�d� − �ikdRik

−
1

2
�vni − vsi��vnj − vsj�d�sij . �22�

When cast in this form, we see that the coupling between the
superfluid and the normal fluid �the fourth term in Eq. �21��
is −���ij −�sij�vnivsj; this is a “current-current” interaction,
where the coupling constant is the normal fluid density. This
coupling coefficient is universal—it is determined by conser-
vation laws and Galilean invariance.

We conclude this section by discussing possible connec-
tions of Eq. �21� with the Lagrangian densities derived by
Son23 and by Josserand et al.24 To connect to Son’s results,
we first invert Lin’s constraint, Eq. �8�, to obtain

vni = − Rji
−1�tRj , �23�

where Rji
−1��xi /�Rj and RijRjk

−1=�ik. Substituting this into
Eq. �21�, we obtain a Lagrangian similar in form to Eq. �23�
of Son’s paper �however, our energy density f depends upon
�, �s, and T in addition to Rij extending to nonzero tempera-
ture hydrodynamics�. On the other hand, as we pointed out
earlier the hydrodynamics derived by Josserand et al. are not
of Andreev and Lifshitz so that their Lagrangian density is
different from ours. However we can compel our Eq. �21� to
agree with their Eq. �4�, once we identify their ��n� with our
normal fluid density ��ij −�sij and replace their convective
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derivative Du /Dt with the velocity of normal components
vn.

III. QUADRATIC LAGRANGIAN DENSITY AND THE
LINEARIZED HYDRODYNAMICS OF SUPERSOLIDS

In this section we discuss the propagation of collective
modes in supersolids by examining the response to small
fluctuations away from equilibrium. The number of collec-
tive hydrodynamic modes of a system can be inferred by
enumerating the system’s conservation laws and broken
symmetries.40 Since we are more interested in the effect of
density or defect fluctuations than thermal fluctuations, for
simplicity we ignore thermal fluctuations in what follows.
For a three-dimensional supersolid there are conservation
laws for mass, three components of momentum, and energy;
however, by ignoring thermal fluctuations we can omit the
energy-conservation law. In addition the conservation laws,
there are three broken translational symmetries �due to the
crystallinity� and one broken gauge symmetry �due to the
Bose-Einstein condensation�. Thus, a three-dimensional su-
persolid without thermal fluctuations has eight conservation
laws and broken symmetries �nine, if conservation of energy
is included�. Correspondingly, there are eight hydrodynamic
modes: two pairs of the ordinary transverse propagating
modes, a pair of longitudinal first sound modes, and a pair of
longitudinal second sound modes �note that a solution of the
hydrodynamic equations with dispersion 
= �ck would
count as two modes—a pair of modes with one propagating
and a second counterpropagating�. The appearance of the
longitudinal second sound modes is one of the key signatures
of a supersolid.

We start by establishing the notation for the small fluctua-
tions away from equilibrium. The equilibrium value of the
densities will be denoted with a subscript of “0,” and the
density fluctuations will be denoted by �� so that
�=�0+�� and �sij =�s0ij +��sij. For the lattice fluctuations,
let u denote the �small� deformation field away from the
unstrained solid �i.e., the difference between the Lagrangian
and the Eulerian coordinates�

x = R + u . �24�

Then the deformation tensor becomes

Rij = �ij − wij , �25�

where wij ��iuj. Finally, the velocity of the normal compo-
nent is obtained by linearizing the inverted Lin’s constraint,
Eq. �23� so that to lowest order in the strain field the normal
velocity is the time derivative of the displacement field

vni = �tui. �26�

Expanding the Lagrangian density, Eq. �21�, up to second
order in the small quantities ��, ��sij, wij, �i�, and �t�, we
obtain

LSS
quad = − �0�t� − �0ijwij − �0�� − ���t�

−
1

2
�0��i��2 − ��

�wij


�

��wij −
1

2
 ��

��


wij

����2

+
1

2
�n0ij��tui − �i����tuj − � j�� −

1

2
 ��ij

�wlk


�

wijwlk,

�27�

where �n0ij ��0�ij −�s0ij and the thermodynamic relation for
f , Eq. �22�, is used. In the above expansion we have dropped
constants which do not contribute to the equations of motion
and have neglected terms proportional to �f /��sij because
they are of higher order �see Eq. �12��; consequently, the
quadratic Lagrangian turns out to be independent of fluctua-
tions of the superfluid density. However, we have kept the
first two terms in Eq. �27�; although they are total derivatives
and would seem to be irrelevant to the equations of motion,
they are nontrivial for topological defects such as vortices or
dislocations. In fact, one can show22 that the first term pro-
duces the Magnus force on a vortex41 and the second term
generates the Peach-Koehler force on a dislocation.42,43 We
will defer the discussion of these effects to a subsequent
publication.22

Now we are in a position to study the hydrodynamic
modes of a supersolid. The quadratic Lagrangian density, Eq.
�27�, produces three linearized equations of motions which
are equivalent to the continuity equation, the Josephson
equation and the momentum-conservation equation. Before
proceeding further, it is useful to rewrite the quadratic La-
grangian density in terms of the defect density fluctuation by
using one of the equations of motion. By varying the action
with respect to �� we obtain

�� = ��

�wij


�

wij + ��

��


wij

�� , �28�

where we have used the linearized Josephson equation
��t�=−�0−��� and the identity

 �x

�y


z

= − �z

�y


x
 �x

�z


y

. �29�

From Eq. �28� it is clear that the density fluctuation is an
independent hydrodynamic variable—it is not slaved to the
lattice deformation, as would be the case for a commensurate
solid, where ��=−�0� ·u. Indeed, in a real �incommensu-
rate� crystal a density fluctuation can be produced by lattice
deformations or by point defects �vacancies and interstitials�.
To highlight the role of defects we will introduce the defect
density fluctuation ��� as our independent hydrodynamic
variable, instead of ��. The local defect density is defined as
the difference between the density of vacancies, �V, and the
density of interstitials, �I

�� = �I − �V. �30�

The minus sign is necessary so that the total defect density is
conserved—in the bulk of the crystal vacancies and intersti-
tials are created and destroyed in pairs �ignoring surface ef-
fects�. Then we have
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�� = ��

�wij


��

wij + ��

���


wij

��� �31�

and from Eq. �28� we obtain

�� = ��

�wij


��

wij + ��

���


wij

���, �32�

where we have used Eq. �29� and the identity

 �x

�y


0
= �x

�y


z

+ �x

�z


y
 �z

�y


0
. �33�

Equation �32� shows that a density fluctuation in an isother-
mal supersolid is caused either by a lattice deformation or by
a defect density fluctuation ���, just as in a normal
solid.44–46 Following Zippelius, Halperin, and Nelson
�ZHN�,45 we can identify ��� /�wij���

=−�0�ij and
��� /����wij

=1. We finally obtain

�� = − �0wii + ���, �34�

which illustrates the roles of the lattice deformation wii
=� ·u and the defect density fluctuation in determining the
total-density fluctuation. We note in passing that in a higher
order expansion of the Lagrangian density the terms propor-
tional to the superfluid density fluctuation must also be re-
tained in Eq. �34�. This would resemble the “three-fluid”
scenario proposed by Saslow47 in which the lattice density
and velocity are introduced for the third fluid component.

We can now use Eq. �34� to rewrite the quadratic La-
grangian density in terms of the defect density with the result

LSS
quad = �0wii�t − �n0ij�tui� j −

1

2
�0

2 ��

��


wij

wii
2 − ����t

−
1

2
�s0ij�i� j − ��

�wij


�

���wij + �0 ��

���


wij

wii���

−
1

2
 ��

���


wij

���
2 −

1

2
 �� ji

�wlk


�

wijwlk + �0 ��

�wij


�

wijwkk

+
1

2
�n0ij�tui�tuj , �35�

where we introduced =�+�0t. Next, we derive the linear-
ized equations of motion from the Lagrangian density. First,
note that the variation with respect to ��� reproduces Eq.
�31� because �t is −��. Second, taking the variation with
respect to  produces the linearized equation of continuity,
expressed in terms of ���

�t��� + �i ji
� = 0, �36�

where the defect current density is given by

ji
� = �s0ij�� j − �tuj� . �37�

We see that the defect current arises from counterflow be-
tween the superfluid velocity � and the normal fluid

velocity �tu, and vanishes when �s0ij =0, in the normal state.
In other words, �t���=0 in the normal state, in agreement
with the nondissipative description of normal solids45 in
which defect currents are only produced through diffusion
�i.e., the defect current is dissipative in the normal solid�.
The last equation of motion derived from the variation in ui
is

�n0ij�t
2uj − � ��

�wji


�

− �n0ij ��

���


wij

�� j���

− � �� ji

�wlk


�

− �n0ij ��

�wlk


��

− �0 ��

�wij


�

�lk�� jwlk = 0.

�38�

When the time derivative of Eq. �36� is combined with Eq.
�31�, we obtain

�t
2��� − �s0ij ��

���


wij

�i� j��� − �s0ij�i�t
2uj

− �s0ij ��

�wlk


��

�i� jwlk

= 0. �39�

Our linearized equations of motion, Eqs. �38� and �39�, are
equivalent to Eq. �19� of Andreev and Lifshitz.1

In the particular case in which the lattice sites are fixed
�so that u=0� we recover from Eq. �39� the fourth sound
modes obtained by Andreev and Lifshitz,1 which have the
dispersion relation


2 = �s0ij ��

��


wij

qiqj , �40�

where we have used �� /����wij
= �� /���wij

. On the other hand,
when there are no defect fluctuations ����=0�, Eqs. �38� and
�39� are combined into

�0�t
2ui = �� ji

�wlk


�

� jwlk − �0 ��

�wlk


��

�iwlk − �0 ��

�wij


�

� jwkk.

�41�

A mode analysis of this equation would produce six sound
modes of an anisotropic normal solid. We see that without
defects there are no additional sound modes as expected.

IV. DENSITY-DENSITY CORRELATION FUNCTION
OF A MODEL SUPERSOLID

In this section we will calculate the density-density corre-
lation function of a model supersolid, a measurable quantity
in a light scattering experiment. However, before delving
into the calculations for a supersolid let us first review what
is revealed by scattering light from a structureless, normal
fluid �for example, see Ref. 48�. The mode counting for the
fluid is simple—there are five collective modes due to con-
servation of mass, energy, and three components of momen-
tum �in three dimensions�. The five collective modes are a
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pair of transverse momentum diffusion modes and three lon-
gitudinal modes: a pair of propagating sound modes and a
thermal diffusion mode. The density fluctuations important
for light scattering only couple to the longitudinal modes so
three modes are observed: the diffusion mode appears as the
Rayleigh peak 
=0 and the pair of sound modes as the Bril-
louin doublet at 
= �cq �with a sound speed c�. In the ab-
sence of dissipation these peaks are � functions; dissipation
turns each � function into a Lorentzian of width Dq2 with D
being an attenuation coefficient.

What happens in a superfluid? In addition to the five con-
served densities that exist in a normal fluid there is a broken
gauge symmetry so from mode counting we conclude there
are six collective modes. Two of these are transverse mo-
mentum diffusion modes �just as for the normal fluid�, leav-
ing four longitudinal modes for the superfluid: a pair of
propagating first sound modes and a new pair of propagating
second sound modes. In essence, the central Rayleigh peak
in the normal fluid splits into a new Brillouin doublet upon
passing into the superfluid phase. This remarkable phenom-
enon has been observed in light scattering experiments on
4He.49,50 We show below that an analogous splitting occurs
in a supersolid and should be observable in a light scattering
experiment.

A. Dynamics of supersolid without dissipation

To facilitate the calculation of the density-density correla-
tion function for a supersolid we will make two simplifying
assumptions: the solid is isotropic and two dimensional. The
isotropy causes the transverse and longitudinal modes to
neatly decouple; the two dimensionality results in only one
pair of propagating transverse modes, rather than two pair.
Since we are interested in longitudinal fluctuations, the latter
simplification is of little consequence to the main results of
this section. With these assumptions, the thermodynamic re-
lations are

 �� ji

�wlk


�

= �̃� ji�lk + �̃��il� jk + �ik� jl� , �42�

 ��

�wij


�

= ��ij , �43�

 ��

���


wij

= ��

��


wij

=
1

�0
2�

, �44�

where � is the isothermal compressibility at constant strain,
� is a phenomenological coupling constant between the

strain and the density, and �̃ and �̃ are the bare Lamé coef-
ficients at constant density. Then in Fourier space the La-
grangian density, Eq. �35�, reduces to

LSS =
1

2
�����Q� �Q� uL�Q� �A�����− Q�

�− Q�
uL�− Q�

�
+

1

2
��n0
n

2 + �̃q2�uT�Q�uT�− Q� , �45�

where 
n= i
, Q= �q ,
n�, uL= �q ·u� /q with q= �q�,
uT=u− �uL /q�q, and

A =�
1

�0
2�

− 
n − iq�� −
1

�0�
�


n q2�s0 i
nq�s0

iq�� −
1

�0�
� i
nq�s0 �n0
n

2 + q2�� +
1

�
− 2�0��� ,

�46�

where �� �̃+2�̃. The collective modes are determined from
the determinant �A of A

�A = �n0
n
4 + �� + �n0� 1

�0�
− 2���q2
n

2 − �s0��2 −
�

��0
2�q4.

�47�

Setting �A=0, we find the longitudinal first sound speed cL
and second sound speed c2

cL
2 =

�

2�n0
+

1

2�0�
− �

+
1

2
�� �

�n0
+

1

�0�
− 2��2

−
4�s0

�n0
� �

��0
2 − �2� ,

�48�

c2
2 =

�

2�n0
+

1

2�0�
− �

−
1

2
�� �

�n0
+

1

�0�
− 2��2

−
4�s0

�n0
� �

��0
2 − �2� .

�49�

In particular, when �s0=0 �normal solids�, c2 vanishes, and
we only have

cNS
2 = ��̃ + 2�̃ + 1/��/�0 − 2� , �50�

which agrees with the longitudinal sound speed obtained by

Zippelius et al.45 once we identify �̃=�ZHN+2�ZHN+1 /� and
�= ��ZHN+1 /�� /�0. Moreover, when the Lamé coefficients
and the coupling constant � vanish we recover the sound
speed of a normal fluid. As discussed earlier, there is one pair
of transverse sound modes with speed

cT =� �̃

�n0
. �51�

Finally, we can calculate the correlation functions from Eq.
�45�
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�����Q�����− Q�� = �s0q2�0
n
2 + �� − 2�0� + 1/��q2

�A
,

�52�

�����Q�uL�− Q�� = iq
�s0

�0

�0
n
2 − ��0� − 1/��q2

�A
�53�

and

�uL�Q�uL�− Q�� =
1

�0
2�

�0
2�
n

2 + �s0q2

�A
. �54�

Since the density fluctuation is related to the defect density
fluctuation and the strain tensor by Eq. �34�, the density-
density correlation function becomes

����Q����− Q�� = A� 1

i
 − cLq
−

1

i
 + cLq
�

+ B� 1

i
 − c2q
−

1

i
 + c2q
� , �55�

where

A = − q
�0�n0cL

2 − �s0�

2cL�n0�cL
2 − c2

2�
, �56�

B = − q
�0�n0c2

2 − �s0�

2c2�n0�c2
2 − cL

2�
. �57�

Then, by performing the analytic continuation i
n=
+ i�,
the density-density response function can be obtained from
the imaginary part of the density-density correlation function

���� �q,
� = − �A���
 − cLq� − ��
 + cLq��

− �B���
 − c2q� − ��
 + c2q�� , �58�

where we have used the identity

1


� − 
 − i	
= P

1


� − 

+ i���
 − 
�� . �59�

It is easy to show that the response function satisfies the
thermodynamic sum rule �for the derivation of the static cor-
relation function see Appendix B�

�
−�

� d


�

���� �q,
�



=
�0

2��

� − �0
2�2�

�60�

and the f-sum rule

�
−�

� d


�

���� �q,
� = �0q2. �61�

B. Dynamics of supersolid with dissipation

We continue our discussion of the density correlation and
response functions by including dissipative terms in the
equations of motion. As mentioned above, the dissipative
terms will broaden the �-function peaks in the density re-

sponse function. In addition, as noted by Martin et al.,40 the
dissipation is necessary to identify the “missing” defect dif-
fusion mode in normal solids. The dissipative hydrodynamic
equations of motion for a supersolid were first obtained by
Andreev and Lifshitz,1 who used standard entropy-
production arguments to generate the dissipative terms. For
an isotropic supersolid �including the nonlinear term ne-
glected by Andreev and Lifshitz� we have �with the new
dissipative terms on the right-hand side�

�t� + �i ji = 0, �62�

�t ji + � j�ij = ��i�kvnk + ��2vni − ��i�k��s�vnk − vsk�� ,

�63�

�tui − vni + vnk�kui + ui�kvnk = ��k�ki, �64�

�tvsi + �i�� +
1

2
vs

2� = − ��i�k��s�vnk − vsk�� + ��i�kvnk,

�65�

where j=�nvn+�svs is the total mass current, � and � coef-
ficients of viscosity, � the bulk viscosity coefficient, � the
shear viscosity coefficient, and � the diffusion coefficient for
defects.

We next linearize the dissipative hydrodynamic equations
by considering small fluctuations from the equilibrium val-
ues. Writing �� and �ij in terms of �� and �wij

�� =
1

�0
2�

�� + �wii, �66�

��ij = ��ij�� + �̃�ijwkk + �̃�wij + wji� . �67�

We replace �� and ��ij into Eqs. �62�–�65�, and divide them
into transverse and longitudinal parts. The equations of mo-
tion for transverse parts are

�n0�tvn
T − �̃�2uT − ��2vn

T = 0, �68�

where ����i
2 and

�tu
T − vn

T − �̃��2uT = 0. �69�

These equations support a propagating transverse sound
mode with the transverse sound speed cT=��̃ /�n0, as ob-
tained in the previous section, and an attenuation constant
�T=�+�n0�̃�. Next, the longitudinal equations of motion
are

�t�� + �s0 � vs
L + �n0 � vn

L = 0, �70�

�n0�tvn
L + � �n0

�0
2�

− ���� − �� − �n0���2uL

− ��̃ − 2�s0� − �s0
2 ���2vn

L − �s0��2vs
L = 0, �71�

�tu
L − vn

L − �� � �� − ���2uL = 0, �72�
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�tvs
L +

1

�0
2�

� �� + ��2uL − ��2vn
L − �s0��2vs

L = 0, �73�

where ���−�s0� and �̃��+�. The Laplace-Fourier trans-
form of Eqs. �70�–�73� yields

C�
���q,z�
vn

L�q,z�
uL�q,z�
vs

L�q,z�
� =�

���q�
vn

L�q�
uL�q�
vs

L�q� ,
� , �74�

where

C =�
− iz iq�n0 0 iq�s0

iq� 1

�0
2�

−
�

�n0
� − iz + q2 1

�n0
��̃ − 2�s0� − �s0

2 �� q2 1

�n0
�� − �n0�� q2 �s0

�n0
�

− iq�� − 1 − iz + q2�� 0

iq
1

�0
2�

q2� − q2� − iz + q2�s0�
� . �75�

From Eq. �75� we calculate two sound speeds cL, Eq. �48�,
and c2, Eq. �49�, with two attenuation constants

DL = −
1

�n0�cL
2 − c2

2�
�cL

2n1 + n2� , �76�

D2 =
1

�n0�cL
2 − c2

2�
�c2

2n1 + n2� , �77�

where

n1 � �̃ − 2�s0� + �n0�� + �s0��n0 − �s0�� , �78�

n2 �
1

�0
2�

	2�0�s0��0�� − 1�� + �0�n0�� − �0
2��2�� + �s0�̃

+ �0�s0��n0 − �s0 + �0��� − 2��n0���
 . �79�

Now we can see that when �s=0 �a normal solid�, the second
sound modes disappear but there remains the defect diffusion
mode with the diffusion constant D2= ��−�0

2��2�� /�0�cL
2.

We also calculate the density-density Kubo function from
Eq. �75� �Ref. 51�

K���q,z� =
����q�

kBT

iz3 + b��z2 + d��q2z + e��q2

Z

+
�uL��q�

kBT

d�uL
q2z + e�uL

q2

Z
, �80�

where the static susceptibilities ��� and �uL� in Eq. �80� are
given in Appendix B, and

Z � �z2 − cL
2q2 + izq2DL��z2 − c2

2q2 + izq2D2� , �81�

b�� = − ��q2 −
�s0��n0 − �s0�

�n0
�q2 −

�̃ − 2�s0�

�n0
q2, �82�

d�� = − i
�

�n0
+ i� , �83�

e�� =
�s0��

�n0
q2 − �s0��q2 +

�s0��

�n0
q2, �84�

d�uL
= �� − �0��q , �85�

e�uL
= i�s0�� −

�

�n0
��q3

+ i
�s0

�n0
�2��0 − �̃ − �0���0 − 2�s0���q3. �86�

Then the susceptibility ���� �q ,
� can be obtained from the
real part of Eq. �80� �Refs. 44 and 51�

���� �q,
�



= −
iq4cL

2DLI1�q�
�
2 − cL

2q2�2 + �
q2DL�2

−
iq4c2

2D2I2�q�
�
2 − c2

2q2�2 + �
q2D2�2

+
�
2 − cL

2q2�I3�q�
�
2 − cL

2q2�2 + �
q2DL�2

+
�
2 − c2

2q2�I4�q�
�
2 − c2

2q2�2 + �
q2D2�2 , �87�

where I1�q�, I2�q�, I3�q�, and I4�q� are given in Appendix C.
Equation �87� is one of the central results of this paper, it

is worth exploring some of its features and limits. First, one
can show that Eq. �87� satisfies both the thermodynamic sum
rule, Eq. �60�, and f-sum rule, Eq. �61�. Second, the first and
second terms in Eq. �87� produce two Brillouin doublets cen-
tered at 
= �cLq and 
= �c2q with widths DLq2 and D2q2,
respectively. The third and fourth terms in Eq. �87� are neg-
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ligible near the Brillouin doublets and in fact these terms
vanish in the limit of zero dissipation. Therefore the nondis-
sipative density-density correlation function, Eq. �58�, is ob-
tained from the first two terms in the limit DL ,D2→0. Fi-
nally, for normal solids ��s=0�, the second term in Eq. �87�
vanishes and there is only one Brillouin doublet due to the
longitudinal first sound modes. In this case the fourth term in
Eq. �87� becomes the Rayleigh peak of the defect diffusion
mode centered at 
=0. Therefore, we see that in analogy
with a superfluid,49 the defect diffusion peak that exists in a
normal solid will split into a Brillouin doublet of second
sound modes upon entering the supersolid phase.

To get a sense of the size of this effect, let us substitute
some physically realistic numbers into the correlation func-
tion. Assuming �s��0 and �=�=�=0, we have

I1�q� = − I2�q� + i�
�0

cNS
2 = i

�0

cNS
2 − 2i

�� − 1�2

�2

�s0

cNS
2 + O��s0

2

�0
2 � ,

�88�

I3�q� = − I4�q�

= −
�� − 1�2

�

�0

cNS
2 D�q2

+ 2q2� − 1

�2 � �� − 1�2�� − 3�
�

D� + Dl� �s0

cNS
2 + O��s0

2

�0
2 � ,

�89�

where the longitudinal sound speed of normal solid cNS is
given in Eq. �50�, the defect diffusion constant D��� /�,
and ���0�cNS

2 . We show in Fig. 1 the normalized density-
density correlation functions of a normal solid and a super-
solid. We have used the first sound speed cNS=550 m /s, the

density �=0.19048 g /cm3, the isothermal compressibility
�=0.29615�10−8 cm s2 /g for 4He solid52,53 at the molar
volume 21 cm3 /mole, the viscosity of 4He fluid of
2�10−5 g /cm s, the typical wave number involved in light
scattering q−1=100 nm, and �=8�10−11 cm3 s /g. In Fig. 2
we show the splitting of the Rayleigh peak due to defect
diffusion in a normal solid into a Brillouin doublet of second
sound modes, for two values of the supersolid fraction.

V. CONCLUSION

Starting from general conservation laws and symmetry
principles we derived the effective action for a supersolid—a
state of matter with simultaneous broken translational sym-
metry and Bose condensation. The resulting effective action
in Eq. �21� is one of the two important results of this work,
and will be further developed in subsequent work on vortex
and dislocation dynamics in supersolids. In this work, how-
ever, we used the linearized version of this action to calculate
the second of our important results—the density-density cor-
relation and response functions for a model supersolid �with
isotropic elastic properties�, see Eq. �87�. In complete anal-
ogy with a superfluid, we showed that the onset of superso-
lidity causes the zero-frequency defect diffusion mode to
split into propagating second sound modes and from our cal-
culation we can determine the spectral weight in these modes
as well as the weight in the “normal” longitudinal sound
waves in a solid.
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FIG. 1. �Color online� Density-density correlation functions of a
normal solid ��black� dashed line� and a supersolid ��blue� solid
line�. The supersolid fraction is assumed to be 10%.
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FIG. 2. �Color online� Splitting of the Rayleigh peak ��black�
dashed line� due to the defect diffusion mode in the normal solid
phase into the Brillouin doublet of the second sound modes in the
supersolid phase. The �red� dash-dot line is for �s /�=1% and the
�green� solid line �s /�=2%.
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APPENDIX A: VARIATIONAL PRINCIPLE FOR AN IDEAL
FLUID AND THE GROSS-PITAEVSKII ACTION

This appendix demonstrates the simplicity of the varia-
tional principle for deriving the hydrodynamic equations of
motion and the Lagrangian density for continuum systems.
Consider the simplest case of an ideal fluid �IF� which is
irrotational, inviscid and incompressible. The Lagrangian
density for the ideal fluid is

LIF =
1

2
�v2 − UIF��� , �A1�

where � is the mass density, v the velocity field, and UIF the
internal energy density which satisfies dUIF=�d�. From the
Lagrangian density we construct the action S=�dt�d3xLIF.
The variational principle states that the equations of motion
are derived from variations in the action with respect to all
the dynamical variables. The naive application of this prin-
ciple to the ideal fluid leads to the trivial equation of motion
v=0. The difficulty is that the dynamical variables � and v
are not independent but constrained by the conservation of
mass

�t� + �i��vi� = 0. �A2�

This constraint is incorporated into the Lagrangian density
by introducing a Lagrange multiplier �

LIF =
1

2
�v2 − UIF��� + ���t� + �i��vi�� . �A3�

Then the equations of motion are obtained from variations in
the action S�� ,v ,�� with respect to �, v, and �

�S

��
=

1

2
v2 −

�UIF

��
−

D�

Dt
= 0, �A4�

�S

�vi
= �vi − ��i� = 0, �A5�

�S

��
= �t� + �i��vi� = 0. �A6�

From Eq. �A5� we obtain the velocity field

vi = �i� , �A7�

which implies that there is no vorticity as expected for an
ideal fluid. We can derive the Euler equation from Eq. �A4�
by taking its gradient, using Eq. �A7�, and then the Gibbs-
Duhem relation to obtain

�
Dvi

Dt
= − �iP , �A8�

where P is the pressure. The Lagrangian density may be cast
into an equivalent form by substituting v=�� into Eq. �A3�
and integrating by parts with the result

LIF = − ��t� −
1

2
���i��2 − UIF��� . �A9�

For comparison, consider a system of weakly interacting
bosons with a condensate wave function ��r , t� that satisfies
Gross-Pitaevskii equation54

i�
��

�t
= −

�2

2m
�2� + g���2� . �A10�

This equation of motion can be derived from the Lagrangian
density

LGP =
i�

2
����t� − ��t�

�� −
�2

2m
����� · ���� −

g

2
�����2.

�A11�

Taking �=�nei�̃ with the number density n, the Gross-
Pitaevskii Lagrangian density becomes

LGP =
i�

2
�tn − �n�t�̃ −

�2

8mn
��in�2 −

�2

2m
n��i�̃�2 −

g

2
n2.

�A12�

The first term contributes i�N /2 to the action �with N the
number of particles� and does not contribute to the dynamics.
Identifying �=mn and �= �� /m��̃, we see that the Gross-
Pitaevskii Lagrangian density, Eq. �A12�, is identical to the
ideal fluid Lagrangian density, Eq. �A9�, with

UIF��� =
�2

2m2 �����2 +
g

2m2�2. �A13�

APPENDIX B: THERMODYNAMIC RELATIONS
AND THE STATIC CORRELATION FUNCTIONS

OF SUPERSOLIDS

In this appendix we calculate the thermodynamic relation
for the potential energy density in Eq. �1�. Given the La-
grangian density, Eq. �1�, the total-energy density for a su-
persolid is defined as the sum of the kinetic-energy densities
and the internal-energy density

ESS =
1

2
�sijvsivsj +

1

2
���ij − �sij�vnivnj + USS��,�sij,s,Rij� .

�B1�

Following Andreev and Lifshitz,1 this total-energy density
can be related to the energy density 	 measured in the frame
where the supercomponent is at rest as

ESS =
1

2
�vs

2 + ���ij − �sij��vnj − vsj�vsi + 	 , �B2�

where 	 has a thermodynamic relation
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d	 = Tds + �d� − �ikdRik + �vni − vsi�d����ij − �sij��vnj

− vsj�� . �B3�

We can obtain the thermodynamic relation for the total en-
ergy ESS by differentiating Eq. �B2� and using Eq. �B3� for
d	 with the result

dESS = Tds − �ikdRik − �vni − vsi�vnjd�sij

+ �� +
1

2
�2vni

2 − 2vnivsi + vsi
2 ��d� + �sijvsjdvsi

+ ���ij − �sij�vnidvnj . �B4�

This thermodynamic relation agrees with Eq. �2.18� of
Saslow4 and Eq. �2.1� of Liu5 after identifying
	Saslow,Liu=ESS and �Saslow,Liu=�−vnivsi+vsi

2 /2. Then the dif-
ferentiation of Eq. �B1� and the use of Eq. �B4� give the
thermodynamic relation for USS, Eq. �3�.

For a supersolid at rest we can expand the free energy
FSS=ESS−TS up to the second order in the density fluctua-
tions �� and the strains wij =�iuj

FSS =
1

2
 ��

��


wij

����2 + ��

�wij


�

��wij +
1

2
 ��ij

�wlk


�

wijwlk.

�B5�

Using Eqs. �42�–�44� for an isotropic supersolid, the free
energy �in Fourier space� can be written as

FSS =
1

2
�̃q2uT

2 +
1

2
����q� uL�q� �B����− q�

uL�− q� � , �B6�

where

B = � 1

�0
2�

− iq�

iq� q2�
� . �B7�

Then the static correlation functions can be easily read off
from Eq. �B6�

����q� = �����q����− q�� =
�0

2��

� − �0
2�2�

, �B8�

�uL��q� = ��uL�q����− q�� =
i�0

2��

q�� − �0
2�2��

. �B9�

APPENDIX C: CALCULATION OF THE DENSITY-
DENSITY CORRELATION FUNCTION

Each term in the Kubo function given in Eq. �80� can be
separated into the first sound part and the second sound part
by performing a partial-fraction expansion

ajkz
3 + bjkz

2 + djkq
2z + q2ejk

�z2 − cL
2q2 + izDLq2��z2 − c2

2q2 + izD2q2�

=
Ãjkz + B̃jk

z2 − cL
2q2 + izDLq2 +

C̃jkz + D̃jk

z2 − c2
2q2 + izD2q2 , �C1�

where j ,k= �� ,uL�. Then, Ãjk, B̃jk, C̃jk, and D̃jk can be written
in terms of ajk, bjk, djk, and ejk along with the sound veloci-
ties �cL and c2� and the attenuation coefficients �DL and D2�

Ãjk =
ajk�cL

4 − c2
2cL

2 + q2DL�DLc2
2 − D2cL

2��
�cL

2 − c2
2�2 + q2�DL − D2��DLc2

2 − D2cL
2�

+
ibjk�c2

2DL − D2cL
2� + djk�cL

2 − c2
2� + iejk�DL − D2�

�cL
2 − c2

2�2 + q2�DL − D2��DLc2
2 − D2cL

2�
,

�C2�

B̃jk =
iajkcL

2q2�DLc2
2 − D2cL

2� + bjkcL
2�cL

2 − c2
2�

�cL
2 − c2

2�2 + q2�DL − D2��DLc2
2 − D2cL

2�

+
idjkcL

2q2�DL − D2� + ejk�cL
2 − c2

2 + q2DL�D2 − DL��
�cL

2 − c2
2�2 + q2�DL − D2��DLc2

2 − D2cL
2�

.

�C3�

The coefficients C̃jk and D̃jk are the same as Ãjk and B̃jk,
respectively, but two sound velocities and two attenuation
coefficients must be interchanged. Then the functions defined
in the density-density correlation function, Eq. �87�, are
given by

I1�q� = ����q�Ã�� + �uL��q�Ã�uL
, �C4�

I2�q� = ����q�C̃�� + �uL��q�C̃�uL
, �C5�

I3�q� = ����q�B̃�� + �uL��q�B̃�uL
− iq2DLI1�q� , �C6�

I4�q� = ����q�D̃�� + �uL��q�D̃�uL
− iq2D2I2�q� . �C7�
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