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Effects of interactions on the topological classification of free fermion systems
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We describe in detail a counterexample to the topological classification of free fermion systems. We deal
with a one-dimensional chain of Majorana fermions with an unusual 7' symmetry. The topological invariant for
the free fermion classification lies in Z, but with the introduction of interactions the 7 is broken to Zg. We
illustrate this in the microscopic model of the Majorana chain by constructing an explicit path between two
distinct phases whose topological invariants are equal modulo 8, along which the system remains gapped. The
path goes through a strongly interacting region. We also find the field-theory interpretation of this phenomenon.
There is a second-order phase transition between the two phases in the free theory, which can be avoided by
going through the strongly interacting region. We show that this transition is in the two-dimensional Ising
universality class, where a first-order phase transition line, terminating at a second-order transition, can be
avoided by going through the analog of a high-temperature paramagnetic phase. In fact, we construct the full
phase diagram of the system as a function of the thermal operator (i.e., the mass term that tunes between the
two phases in the free theory) and two quartic operators, obtaining a first-order Peierls transition region, a

second-order transition region, and a region with no transition.
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I. INTRODUCTION

The discovery of the quantum spin Hall effect!~* and of
the strong three-dimensional (3D) topological insulator,>3
both of which are novel band insulators, has prompted re-
newed interest in the study of topological phases of free fer-
mion systems. Indeed, a full classification of all possible
topological phases in such systems has been put forward in
Ref. 9, where it is related to the enumeration of symmetry
classes of matrices,'? and in Ref. 11, which uses the math-
ematical machinery of K theory. This classification is rather
successful, with physical representatives of the nontrivial to-
pological classes listed for dimensions one, two, and three,
including the quantum spin Hall system HgTe and the 3D
topological insulator BiSb.

The big open question now is how the presence of inter-
actions changes this classification. Specifically, it is possible
that phases that were distinct in the free classification can
actually be adiabatically connected through a strongly inter-
acting region. Now, for certain systems the topological in-
variants can be defined in terms of physically measurable
quantities, and hence are stable to interactions. This occurs,
for example, in the integer quantum Hall effect, where the
integer Chern number is proportional to the Hall conductiv-
ity, as well as in two-dimensional (2D) chiral superconduct-
ors and 2D topological insulators and superconductors. Also,
the 7, classification of the 3D topological insulator reflects
the presence or absence of a 7 theta term in the effective
action for the electromagnetic field, extending the definition
of this invariant to include systems with interactions.!>!3

In this paper we give an example where the free classifi-
cation breaks down. The system is one dimensignal, with an

unusual 7 symmetry: 72=1 instead of 72=(~1)". For a con-
crete model, we consider the Majorana chain and its varia-
tions, where T acts on odd sites by 7¢ jT“1=—6 ; so that terms
like i¢;¢; are only allowed between sites of different parity.

1098-0121/2010/81(13)/134509(9)

134509-1

PACS number(s): 71.10.Pm, 64.60.ae

In the free fermion setting, this symmetry is described by one
positive Clifford generator, hence p=-1, g=p+2=1, and for
d=1 we get a topological invariant k € m(R,_;)=Z.

We can get some intuition for this integer by thinking
about boundary states. We start by comparing it to the usual
7, classification of one-dimensional systems without symme-
try. The 7, classification of systems without symmetry is
reflected in the fact that for a pair of Majorana chains ¢,
a=1,2, we can gap out the dangling Majorana operators ¢{
and ¢y at the ends of the chain by introducing the terms

i¢]é* and ié\éy, (the i is necessary to make these terms

Hermitian). However, these terms are not 7 invariant:

f”(ié}é?)f‘*:—ié}éf. Thus, in the f—symmetric case, we can-
not gap out the dangling Majorana operators with quadratic
interactions, for any number of chains—this is the origin of
the 7 invariant, which just counts the number of boundary
states in this setup. However, it turns out that we can use
nontrivial quartic interactions to gap out the dangling Majo-
rana modes for the case of eight Majorana chains—this is
what we will focus on in this paper.

Thus we study the setting of eight parallel Majorana
chains, which has a phase transition characterized by k=8.
We will see how the two phases separated by this transition
are actually adiabatically connected through an interacting
phase. This means that the two phases are actually the same,
and that the 7 topological invariant is actually broken down
to Zg. Below we will demonstrate this fact by constructing an
explicit path in Hamiltonian space connecting the two phases
of eight parallel Majorana chains. Adiabatic transformation
along this path connects the two phases through a strongly
interacting, but everywhere gapped, region. We do the analy-
sis first for the microscopic model in Sec. II, where we con-

struct a quartic T-invariant interaction that gaps out the eight
boundary Majoranas, and then for the continuum theory in
Sec. III.
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II. MICROSCOPIC MODEL

We consider eight parallel Majorana chains E;’, where
a=1,...,8 is the chain index. The 7 symmetry still acts by

f"c”j’f“lz—éf. The Hamiltonian is the sum of the Hamilto-
nians for the individual chains

8
H=2H, (1)

a=1

. n n—1
A 1 . . v A
Ha=5<’42 ng—lcgﬁvz Cgﬁ?m)- (2)

=1 =1

We construct a path from a representative Hamiltonian of the
u<<v phase to one of the u>uv phase. While, in principle, we
could start with any representative Hamiltonians for the two
phases, it will be especially convenient to choose so-called
fully dimerized ones, i.e., u=1, v=0 and u=0, v=1. This
choice turns off the odd (or even) bond couplings and thus
breaks down the chains into easy to analyze independent
finite-size systems. For example, for u=1, v=0, the finite-

dimensional subsystems consist of the Majoranas
{é%l_l,éé,, ,Ezl_l,égl}, and for u=0, v=1 they consist of
AT Al A8 A8 . .

{65,¢50415 -+ -+ 65.65,,1 - Both are 256 dimensional and we

will generically denote their Hilbert space H,.

The key idea is now to work with these finite-dimensional
systems, in order to make a fully analytic treatment possible.
Indeed, to connect the two phases, we start with one fully
dimerized Hamiltonian, say, u=1, v=0, and turn on an in-
teraction W which contains quartic terms, but only ones that
are products of Majoranas with the same site index (but dif-
ferent chain indices), i.e., terms of the form ¢"c;2¢;3¢;™. The
virtue of such an interaction is precisely that it does not
couple the finite-dimensional subsystems; also, as required, it
is T invariant. We show that as we ramp up our specially
constructed W, we can turn off the kinetic terms entirely (i.e.,
turn off u so that both u,v=0) while maintaining a gap in H,
(and hence in the full system). We then reverse the proce-
dure, turning on the opposite kinetic term v and turning off
W to get the opposite dimerized Hamiltonian u=0, v=1.

A. Construction of the interaction term W

We have described the path in Hamiltonian space that will
connect the two phases; all that is left now is to construct the
interaction term W in such a way that as W is turned on and
the kinetic term turned off, the gap in H, is maintained. We
have thus reduced the problem to a completely finite-
dimensional one.

W must couple different chains but only at the same site;
thus it is made up of eight Majorana fermions ¢, ...,¢s. To
motivate the construction, we must first delve a bit into some
representation theory. In general, we can consider 2n
Majorana’s ¢y,...,¢,, forming a 2"-dimensional Hilbert
space H (so in our case of interest n=4). H is a representa-
tion of so(2n) as follows: given a skew-symmetric matrix
A € s0(2n), we let
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. 2n
l A A
p(A)=— E AjijCk~ (3)
4
J.k=1
The i in front is to make the matrix Hermitian, in order to
obtain a unitary representation. It is easy to check that
[—ip(A),—ip(B)]=-ip([A,B]), so that p defines a map of Lie
algebras. The induced action on the ¢;

¢ — ilp(A),c/] (4)

is just the standard ¢, =2 A,c;.

Before considering so(8), we warm up by studying so(4).
Note that so(4)=s50(3) ®so(3). Under p, the generators of
the two s0(3)’s are

Don aay b b
(816 = €384), 7 (184 = C2C3), 2 (E1C3 + Coly) (5)
2 2 2

and
PPN U IR
5(0162"'C3C4),5(6104+62€3),§(—C1C3+Czc4) . (6)

The condition for a state |¢)eH to be annihilated
by all generators of the first so(3) is equivalent to
¢16265Cq| Wy =—|1p), and there are two states that satisfy this
condition, forming a spin-1/2 representation of the other
so(3). Similarly, ¢,¢,¢5¢4|¥)=|) for |¢) annihilated by the
second so(3). Indeed, under so(3) ® s0(3), H decomposes as

1 1
ol o

From this analysis, we can already see that the above
strategy for constructing the path through the space of
gapped Hamiltonians connecting the two phases would fail
for the case of four Majorana chains. This is because for four
Majorana chains the only possible quartic interaction W is
proportional to ¢,¢,¢3¢4, and regardless of its sign leaves a
doubly degenerate ground state for each group of four corre-
sponding sites, leading to a gapless system at the midpoint of
the path when the kinetic terms are turned off. Indeed, a
field-theory analysis shows that the corresponding marginal
quartic interaction in the continuum limit is a sum of two
quartic terms, one for each so(3), but with opposite signs.
One of these is irrelevant and the other relevant, leading to
one of the so(3) sectors being gapped out but the other re-
maining, producing the (gapless) antiferromagnetic Heisen-
berg model. We will have more to say about the field-theory
analysis in the next section.

The analysis of four chains does, however, lead to a natu-
ral way to gap out the eight-chain system. Indeed, we can
split the eight chains up into two groups of four, turn on a
quartic interaction in each group of four to create low-energy
spin 1/2’s as in the above paragraph, and then couple these
spin 1/2’s into a nondegenerate singlet via an antiferromag-
netic interaction. We will now flesh out this intuition and
give an explicit construction of W.

To facilitate the analysis, we make use of the so(8) sym-
metry. Per the construction above, we have eight Majoranas
forming a 16-dimensional representation so(8). This repre-
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sentation is actually a direct sum of two spinor representa-
tions, 8, and 8_, of so(8), both of which are equivalent to the
eight vector representation in the sense that there is a group
of so-called triality automorphisms of so(8),'* which inter-
change the 8, 8_, and 8. Now, while it turns out that a W that
is fully so(8) symmetric does not work, we can find one that
is symmetric under the so(7) Cso(8) that fixes a particular
element of, say, 8.. This is the triality conjugate of one of the
familiar so(7) subalgebras.

The goal for the remainder of this section is to show that
the following explicit expression for W:

W =€ 650384+ C5C6CqCg + C1CaCsCe + C3C4C7C5 — CoC3CaCq
— C1C4C5Cg + C1C3C5Cq + C3C4C5Cq + C1CaCrCg — CoCaCsCy
— C1C4C4Cq + CoCylely — C1C3C6Cs — CoCyalsCq (8)
is so(7) invariant. The proof that turning on W and turning
off the kinetic terms leaves H gapped will be left for the next
section.
To show that W is so(7) invariant, we first have to specify

the so(7) we are talking about. To do this, we first combine
the Majoranas into regular fermions as follows:

éZj—l :(aj'i‘a;), (9)

Ezjz_l.(aj—a;). (]0)

We thus have four regular fermions. Let |0) be the state
where all of them have occupation number 0, and let
|¢>=%(|O>—al{a£a§a£|o>). |4 is a spinor in 8,, and we claim
that it is the unique ground state of W, and that W is invariant
under the s0(7) subgroup of so(8) that leaves |¢) fixed.

Let us start by proving |#) is the unique ground state of
W. To do this, we first consider

W = 8162838, + CsColrly + C1Colsle + C1C3C5¢7.  (11)
Note that each of the four terms in W, has eigenvalues *1.
Rewriting the terms in W; in terms of creation and annihila-
tion operators, it is easy to see that |¢) is an eigenstate of
eigenvalue —1 for all of them. It is also easy to see explicitly
that | ) is the only state with this property—assuming eigen-
value (—1) for the first three terms immediately gives a state
that is a linear combination of |0) and ajajala}|0), and the
correct linear combination yielding |¢) is fixed by the last
term.

The key point now is that each term in W can be written
as a product of terms in W,—this immediately shows that | )
is an eigenstate of each term of W, with eigenvalue *1. In
fact, it can be explicitly checked that all the eigenvalues are
-1, so that |¢) is a ground state of W. Uniqueness follows
from the fact that it is already a unique ground state of W;.

Now that we have proved that |¢) is the unique ground
state of W, we can finally show that W is invariant under the
s0(7) that leaves |¢) fixed. First, we identify the generators
of so(7). Note that there are 28 linearly independent bilinears
¢i¢;. Take any one of the 14 terms in W, say, ¢;¢,Cé),
transposing a pair of ¢é’s if necessary to make the sign
positive. We then claim that the set of all bilinears
3(8i8;=E181), 5(Ci61=C,60) 5 (6 +65¢), as &¢,64¢, ranges
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over the 14 terms in W, spans so(7). To see this, first notice
that all these bilinears annihilate |¢/)—this follows from the
fact that |¢) is an eigenvector of eigenvalue —1 for the cor-
responding terms in W. Thus the bilinears span a subset of
so(7). To see that they actually span all of so(7) we use a
dimension argument—>by brute force we compute the rank of
the relevant 28 X 28 matrix and find it equal to 21, the di-
mension of so(7). With this description of so(7), checking
the invariance of W amounts to computing its commutator
with all the generators of so(7). This is actually rather trac-
table, because for any given generator constructed in this
paragraph, its commutator with all but four terms of W is
trivially O and can be easily done via computer.

B. Adiabatic continuation using W

We now explicitly verify that we can connect the two
phases adiabatically. As explained, this amounts to showing
that we can turn on a quartic interaction and turn off the
kinetic terms completely while maintaining a gap in the 256-
dimensional Hilbert space H,. That is, we have the 16 Ma-

jorana fermions c”i,cA,-' ,i=1,...,8, and consider the following
interactions:
W= W+ W', (12)
T=2 ¢!, (13)
i=1
H=wW,,+1T, (14)

where W is as above and W' is given by replacing all the ¢;’s
with ¢/’s. Thus T is the kinetic term and W the quartic po-
tential.

We have explicitly diagonalized this Hamiltonian numeri-
cally. The eigenvalues are plotted in Fig. 1, where we take
the path w=1-r, re[0,1]. As we can see, the system re-
mains gapped throughout.

However, it is nice to also have a clear analytical argu-
ment that the system remains gapped. To do this, let us first
analyze the symmetries. The 256-dimensional Hilbert space
'H, for these 16 Majorana fermions has an action of the Lie
algebra so(8) ®s0(8), with one so(8) acting on the ¢;’s and
the other on the ¢/’s. The potential term W, is invariant
under an so(7) @ so(7) subalgebra, whereas the kinetic term
T is invariant under the diagonal so(8). In fact, to construct
an easy to analyze Hamiltonian, it will be useful to add in a
fully so(8) ®so(8) invariant quartic term V,,,=V+V’. V and
V' are quartic in the fermions such as W and W’, and are
proportional to the quadratic Casimirs of the corresponding
s0(8)’s (plus some constant term); we will set the constant of

proportionality below. The Hamiltonian H thus is

H=1tT+wW, + 0V (15)

The plan for the remainder of this section is to use the sym-

metries to reduce the problem of finding the spectrum of Hto
something more manageable. We first study the actions of 7,

Wi and V, separately, and then block decompose H with

134509-3



LUKASZ FIDKOWSKI AND ALEXEI KITAEV

10 - il

-10+ 4

=20 4

_307“‘\“‘\“‘\‘“\“‘F

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 1. (Color online) Eigenvalues of H=tT+(1-1)W,, as a
function of ¢. The system remains gapped throughout the path.

the blocks corresponding to different representations of the
diagonal so(7), which is a symmetry of all three terms, and

hence H. Then we construct a path through (¢,w,v) space
which connects (1,0,0) and (-1,0,0).

A convenient basis for understanding better the action of
T is as follows. We define b[,biT through

é=(bi+b)), (16)

¢l =—i(b;=b)). (17)

We note that each term i¢;¢; :bfbi+bibf is equal to *£1, de-
pending on the occupation number of the b fermion on site i.
Thus the possible eigenvalues of 7 are =8, =6, =4, £2, and
0. Under the diagonal so(8), the corresponding eigenspaces
have dimension 8-choose-k, where k is the number of occu-
pied sites, i.e., 1, 8, 28, 56, and 70. It will be convenient to
consider superpositions of the m and —m eigenvalues of T
and deal with representations 1;,8;,28;,56; and
1%,8%,28,.56f, where L and R are exchanged under the ac-
tion of 7. All of these are irreducible, whereas 70=35°
@ 35Y, where 35° and 35" are distinct 35-dimensional repre-
sentations.

Now that we understand the action of 7, let us figure out
the actions of W, and V., As a representation of
50(8) ®s0(8), we can think of H, as a tensor product of two
16-dimensional Hilbert spaces, one for the ¢;’s and one for
the ¢/’s (in fact, it is a graded tensor product, but this dis-
tinction will not make a difference in our analysis). This
decomposition is useful because it is preserved by W,. As
representations of so(8) we also have 16=8_@ 8., where 8_
and 8, are the two different chirality spinors. These are dis-
tinguished by the sign of the fermion parity operator with 8,
having even fermionic parity and 8_ having odd parity. In-

A

deed, we have two fermion parity operators, (-DF L=H?=lci
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and (=1)"r=T1% ¢/, as well as the total fermion parity opera-
tor (=1)F=(=1)Fc*F&, The potential terms W,, and V,,, re-
spect both parities, whereas the kinetic term respects only
(=1)F and flips (=1)7t and (=1)7~,

We can now expand the tensor product

Ho=B_®8,)® (8_®8,)

=8_.®8_)p(8_.®8,)d(8,®8_ ) (8,®8,).
(18)

With this description of the Hilbert space, it is easy to figure
out the actions of W, and V. Indeed, W, is a sum of two
terms, W and W', that act independently of the left and right
hand factors in the tensor product. Both W and W' are qua-
dratic in the Lie algebra generators and commute with so(7)
[which means they are proportional to the quadratic Casimir
of so(7), plus a possible constant]. We note that under the
so(7), 8_—8 and 8,—1@7. Using these facts and doing
some computation, we find that W annihilates 8_ has eigen-
value —14 on the state |¢) € 8, that is fixed by the so(7) and
has eigenvalue 2 on the remaining vector multiplet 7 of
so(7), and similarly for W’. The actions of V and V', which
are so(8) invariant, are even simpler: they assign a different
energy to 8, and 8_. We choose the coefficients so that this
energy is equal to O for 8, and 1 for 8_.

We now want to relate the two descriptions in Egs. (16)

and (18) of H,, to find the action of H=1T+wW,,+0v V. As
a first approximation to a connecting path, we attempt to
connect the phases in a purely so(8) invariant way. That is,
we connect the points (1, 0, 0) and (-1,0,0) in the (z,w,v)
space of Hamiltonian (15) by varying only 7 and v. Specifi-
cally, the path is

(t,w,v) = (cos 6,0,sin 6),60 < [0,7]. (19)

The computation of the spectrum along this path reduces, by
so(8) symmetry, to diagonalizing the blocks corresponding
to the 1, 8, 28, 56, and 35 representations.

Now, we have the following decomposition of the tensor
factors in Eq. (18) as representations of the diagonal so(8)

8.®8.=1328@ 35, (20)
8_.®8,=8 56, (21)
8, ®8_ =856, (22)

8,®8,=1@28®35". (23)

Let us figure out the action of 7. By looking at the fermion
number, we see that T exchanges in Egs. (20)—(23). The ei-
genvalues of T on the pairs of 1, 8, 28, 56, and 35 represen-
tations are =8, *£6, =4, *2, and 0, and vV just assigns an
energy v to Egs. (21) and (22), and an energy 2v to Eq. (20).
So H is represented by the following 2 X 2 matrices on these
pairs of representations

8 cos 0)
, (24)

1-( 0
‘\8cos 6 2sin6
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sin @ 6cos 6
8: . , (25)
6cos 6 sin 6
0 4 cos 0
28: . , (26)
4cos 6 2sin 6
sin @ 2cos 6
:( . ) (27)
2cos @ sin @

with the two 35’s splitting up into the 1 X 1 matrices 2 sin 6
and 0, respectively. Diagonalizing these, we see that
the lowest eigenvalue occurs in the 1 sector; it is
sin 6—8 cos® f+sin® 4.

The problem with this path is that there is a large degen-
eracy at f#=m/2, where the lowest eigenvalues for the 1, 28,
and 35 representations are 0. To break this degeneracy, we
will turn on the so(7)-symmetric Wy, term. We can work
locally around #=/2, where (with a suitable rescaling) we
can set v=sin =1 and keep t=cos € infinitesimal. With
such infinitesimal #, the space of low-energy states is well
approximated for our purposes by 8,®8,=1®28® 35, see
Eq. (23). To second order in ¢, the eigenvalues of V+¢T are
—3272 on the 1, =872 on the 28, and 0 on 35. To understand
the action of W, on 8,®8,, we note

g, @8, =(le7) (17
=1le(le7a7®1)d(77). (28)

From the discussion above, we know that the action of W,
on this decomposition is as follows: W, has eigenvalue
28won 1®1, -12won 1®7®7®1, and 4w on 7®7. To
relate this decomposition to Eq. (23), we first use the fact
that under so(7), 28—7@21 and 35— 1&7327.15 Now,

7@7=1®21®27. Let H=V+iT+ wW. We immediately
have the eigenvalues 4w on the 27 and 4w—8¢* on 21. Also,
the two 7’s have the eigenvalues —12w and —12w—872. All

that is left is to compute the eigenvalues of H on the two 1’s,
and show that one of them is lower than the other and any of
the above.

To do this, let us denote the 1 in 8,=1&7 by |#), and let
|2y =) ® |). Then the so(8) invariant 1 in 8, ® 8_ can be
written as

7
|130(8)>=#(|¢2>+2 |§/>® |§]>) (29)
V8 j=1

Let P=1,,(3)){1,0(s)|- The effective Hamiltonian on the two-
dimensional space of 1’s is then

Her==320P = 28w|y2) (¢ + 4w (1 = [y2)(¥7)),  (30)
which is represented in matrix form by
—28w—4r2 477

- N (31)
—4NT7 4w =281

We graph the eigenvalues of this matrix, as well as those for
the 7, 21, and 27 representations, in Fig. 2.
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FIG. 2. (Color online) Eigenvalues of H=V+iT+wW,, along
the path (z,w)=(0.1 cos 6,0.1 sin 6), 0 [0, 7]. The degeneracy is
broken and the system remains gapped.

III. CONTINUUM ANALYSIS

We now turn to a field-theory analysis of the above phe-
nomenon. In the free system, the transition is simply that of
eight parallel decoupled Majorana chains, so its field theory
description is

Hy.=Hy+H,, (32)
o8

=§J=E1 (7; 0 7;— 7; 0 7;)dx (33)
o8

+ é]:zl m;7;dx. (34)

Here the mass m is a free parameter, and the phase transition
occurs at m=0, where the system is described by the confor-
mal field theory (CFT) of eight free Majorana fermions, or,
equivalently, the so(8); WZW model. We have shown in the
previous section how to smoothly connect the phase with
positive m to one with negative m through a strongly inter-
acting region in a microscopic lattice model. In this section,
we construct a field theory analog of that path.

To study the field theory of the transition, we will need to
understand the structure of the critical point in more depth.
As we said, this is just the CFT of eight free Majorana fer-
mions, which, in addition to the fermions also contains spin
fields, and these will be useful in our constructions. For the
case of one free fermion, there are the conformal weight
(1/16, 1/16) order and disorder operators o(z,z) and u(z,Z7).
For the case of eight free fermions, we can form the
28=256 possible products of o; and w(i=1,...,8). These
have conformal weights (1/2,1/2) and are precisely (linear
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combinations of) the 16 primary fields 1, X,¥j, ¥iXj» XiX)»
i,j=1,...,8, where ¢, x, zz, and Y are the two chiral left and
right moving spinor representations of so(8)—indeed, this is
a manifestation of the equivalence between the WZW s0(8),
and free fermion models.'®

The so(8); WZW model has a triality symmetry which
permutes the 7, ¢, and x fields. The fact that Hamiltonian
(32) is invariant under triality, as well as other facts we will
need, can be seen from bosonizing the system. We pair up
the eight Majorana fermions 7; into four Dirac fermions and
bosonize those

My T i =exp(Zigy)), (35)

i1 * iy =exp(Xi)). (36)

The 16 (1/2, 1/2) fields

expé(r bt byt by~ by) (37)

are then the spinors ¢ and y, with chirality distinguished by
the parity of the number of minus signs in Eq. (36). By doing
a change in coordinates in ¢ space, we can go to a basis in
which the spinors look like the vectors, etc.—indeed, we can
implement the entire triality symmetry group by appropriate
rotations in ¢ space.

Now that we have an understanding of the critical point,
we look at perturbing it with the quartic interaction W [Eq.
(8)] from the previous section. Let us first determine the
continuum limit of this interaction. From the action
c”;—> (—l)jéj- of the T symmetry we see that at low energies

&= mi(2k) + 7(2K), (38)

S = 72k = 1) = 72k = 1) (39)

with T just swapping 7; and 7. Now, W is a sum of 14
quartic terms; to start off we analyze just one of these, and

we will take the sum over two adjacent sites:
Al A A3 ad Al A2 A3 A4
Cokm1Copm1 Copt Copy +CoCopCopCoy- We have
Al A2 A3 A Al A2 A3 Ad
Cor—1C2%=1C2%=1C2%=1 T CorC2UCOUC o (40)
4 4
=H(7]i+ 7li)+H(77i—7_li)~ (41)
i=1 i=1

Expanded out, this gives eight terms, six of which are non-
chiral, with the other two being products of all #’s or all 7’s.
Instead of trying to argue that these last two are irrelevant,
we will simply ignore them—after all, we have the freedom
to choose whatever continuum Hamiltonian we wish. The
remaining six terms can be reorganized suggestively as
follows:
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1 o

5(771 M+ 130) (9 7 + 374) (42)
1 o

- 5(771 m— 7737]4)(771 m— 7]3774), (43)
1 o

+ z(m Ny + ) (9 g + 0 773). (44)
1 o

- E(m = M) (91 74— 72 773). (45)
1 o

+ 5(771 3= 1) (91 773 = T 74).s (46)
1 _

- E(m 73+ ) (91 773+ o 74). (47)

This can be compactly rewritten as

- -

2 2 duda=5 20, (48)
with J, and J| being the generators of the two SU(2) groups
in the so(4) of the four chains.

Now, when we take the sum over all 14 such quartic terms
in W, we get a more complicated expression. However, we
know that it is a sum of terms of the form 77,77, i.e., a
sum of products of right moving and left moving so(8) cur-
rents. We also know that it is so(7) invariant, where the so(7)
leaves a spinor ;g fixed. In addition, we know that it is 7
invariant. Using the fact that the so(8) currents can be
equally well expressed as bilinears of the spinors ¢; [this
follows from bosonization Egs. (34) and (36)], we see then
that the only allowed interactions are of the form

7 2 7
Him=—A(E wj%) —B(E wjz?fj) Yeihs.  (49)
j=1 J=1

This follows from the fact that, with the 7 symmetry, the
allowed interactions are quadratic forms on so(8). As a rep-
resentation of so(7), so(8)=s0(7) &7, and both of these irre-
ducible factors have exactly one invariant quadratic form.

For the remainder of the analysis, it will be convenient to
use triality to re-express the free Hamiltonian (32) in terms
of the ¢, i.e., treat the ¢ as the fundamental fields. Without a
mass term, it is

.8
=13 [won-ata 60
=l

We now view both in Eq. (47) and the mass term mZ?z V7
as interactions, and construct a three-dimensional phase dia-
gram in A, B, and m [the parameters A, B, and m will have
nontrivial renormalization group (RG) flows, and for the pur-
poses of the phase diagram are all defined at some fixed
energy scale]. To do this, we first need to express the mass
term in terms of the free fermions ¢;. If we look at the ¢; as
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fundamental vectors, the 7; and %; are then spinors and can
be expressed as linear combinations of products of order and
disorder operators. Comparing the bosonized form of the or-
der and disorder operator bilinears!'”:!8

b= i
2

02)-1072; = Sin

b= P
2

Moj—1 Mok = COS (51)

and the bosonization of the mass term via Egs. (34) and (36)
we can show that (up to a constant factor)

.8 8 8

1

52 71/7Zi=‘H‘7j+HMi- (52)
Jj=1 j=1 j=1

Note that here the o; and u; are order and disorder operators
for the ¢; fermions.
The total Hamiltonian is thus

8
I:I=§E (0 4= 4 0 ), (53)
j=1
8 8
—mf(Hq—HM;)dx’ (54)
=l el

7 2 7
—A(E W,-) —B(E W,») Y. (55)
Jj=1 Jj=1

The goal for the remainder of this section will be to show
that we can smoothly connect the region m >0 to the region
m<0 by turning on A and B. To accomplish this, we first
work out some features of the phase diagram—the full phase
diagram is shown in Fig. 5. We can get some information
about the phase diagram by studying specific special points.
Indeed, the line B=2A, (A>0) gives the marginally relevant
interaction

2

8 2 8
—A<E lﬂj‘lj) =—A<E 7717_7,‘) . (56)
j=1 =1

This is the Gross-Neveu model, which is known to be
integrable and gapped, and in which (7,7)=MJ;
condenses, spontaneously breaking the Z, chiral symmetry
7;m;——n;7; (indeed, the spectrum of the model and the
action of triality on the different types of excitations is well
understood—see Ref. 14). The two vacua have opposite
signs of M and are adiabatically connected to the +m and —m
gapped phases, respectively. Thus, to connect the +m and —m
phases, all we have to do is connect these two vacua, which
we can think of as corresponding to infinitesimal points
m==Xe.

The line B=-2A, (A>0) gives another Gross-Neveu
point, related to the previous one by the chiral transformation

g — —ig, hy— i, and the lines B=2A and —2A for A<0
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Ising transition
region

FIG. 3. Smoothly connecting the m>0 and m <0 phases
through an Ising transition region.

give rise to marginally irrelevant interactions that flow to the
gapless so(8), theory. Also, the line B=0 gives rise to the
so(7) symmetric Gross-Neveu model

7 2
—A<E WZJ.) : (57)
j=1

This line provides the most important insight into the
problem. It has a gapless Majorana mode, i3 and we can
explore its neighborhood by turning on an infinitesimal B

7 2 7
Himz_A<2 lﬂ,l_ﬂ]) —B<E lﬁﬂ?ﬁ) s ifs (58)
=1 =1

with B<<A. We can solve this Hamiltonian by treating the B
term as a perturbation. Thus we have an expectation value
E;:llﬂj(_ﬂj=M ', and tl}e effectiye low-energy theory is simply
that of the free fermion i with mass BM’

H = éj (5 9 s — b 9 g)dx (59)

—m((0) o5 — () ug) = BM' ihy  (60)

There are two possibilities: if the condensate

M’=E}=1¢//j¢?/j>0 then the Uj,j=1,...,7 gain expectation
values and m couples to the Ising order parameter oy,
whereas if M’ <0, then MjsJ= 1,...,7 gain expectation val-
ues and ug plays the role of the order parameter. Either way,
the low- and high-temperature phases of the effective Ising
model are realized at B>0 and B <0, respectively.

We now have enough information to connect the two
phases—see Fig. 3. First of all, the two phases are connected
to the m= * € points on the B=2A, A >0 line. From the RG
diagram (see discussion below), unless something
unexpected happens at strong coupling we see that these
points are adiabatically connected to the points 0 <B <A,
m=*e. But here we can work with the effective
Hamiltonian (57). If we go from (B, +e€) to (B,—€) by going
around the origin in the (B,m) plane, through the B<<0 re-
gion (so as to avoid the positive B axis), the quantity
Z=33" 7]j7]j=—H§:10j+H§:1MJ- [see Eq. (50)] will vary

j .
smoothly. This is the desired path that connects the two
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B=-2A B=2A

~

PR
N w
\\\\\",,;/

FIG. 4. RG flow for B (x axis) and A (y axis).

vacua. Thus, because B controls the thermal operator and m
the order (or disorder) field, the critical theory turns out to be
in the universality class of the 2D Ising transition.

For completeness we now work out the entire
renormalization-group flow diagram. The two operators

7 2
X= <2 l/ﬁ"?’j) s
j=1

(61)

7
Y= (E lﬁ,lz,) iy (62)
j=1
form a closed set under RG flow, as they are the only so(7)
invariant (1, 1) operators available. To track the flow of the
coupling constants A and B we use Polyakov’s formula'®

d
& _—27TC£qugq+O(g3),

d In(A/k) (63)

where the C?? are the coefficients of the three-point function
of the corresponding operators. Thus we are reduced to com-
puting three-point functions of products of X and Y. This is
trivial, since we are in a free fermion theory and can apply
Wick’s theorem. We immediately see that, since Y is the only
operator containing ¢, we must have an even number of Y’s
for a nonzero coefficient. So the only nonzero coefficients

are Cy~, Cy¥, CY¥, and C}'. The RG flow equations then
read

dA

————— =SA*+TB?,
d In(A/k)

(64)
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B=-2A B=0 B=2A
h t order
no transitio ransition

region

second order
transition
region

FIG. 5. Phase diagram for the transition from negative to posi-
tive m, indicating dependence on B (x axis) and A (y axis).

dB

dnavn - UAB (65)

for some constants S,7, U>0. Because B=2A is a fixed line,
U=S+4T. We do not calculate S and T; all positive S and T
give qualitatively similar results for the RG flow diagram,
which is reproduced in Fig. 4.

From the flow diagram [Fig. 3], we can construct an entire
phase diagram for the transition from positive to negative m.
Indeed, all points with B>0 that are above the line
B=-2A flow to the same fixed point and correspond to a
first-order transition. As we saw, there is no transition in the
B <0 region, and this extends to all points above the line
B=2A. Finally, the remaining points flow to the origin,
which corresponds to free fermions and thus indicates a

second-order transition. The situation is summarized in Fig.
5.
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