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The phenomena of low-field hysteresis of the magnetoimpedance �MI� in zero-magnetostrictive amorphous
wires are studied theoretically and experimentally. We developed a mathematical model for magnetization
reversal and impedance field dependence. The presented model considers the low-field hysteresis and the effect
of circular bias magnetic field. It is demonstrated that the hysteresis originates from a nonzero angle � between
the anisotropy easy axis and transversal plane. The bias field, which is produced by current running through the
wire, considerably affects the MI dependence making it anhysteretic and highly asymmetric. The validity of the
model is confirmed by the experiments. The main characteristics of the studied amorphous wire such as
anisotropy field HA, angle between the anisotropy easy axis with the transversal direction �, and Gilbert
damping constant �G were obtained from the experiment in accordance with the presented model.
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I. INTRODUCTION

The giant magnetoimpedance effect �GMI� consists of
significant change of the impedance of a magnetically soft
conductor upon the application of an external magnetic field.
The GMI effect is intrinsically related with magnetic softness
and requires low magnetic anisotropy constant and high cir-
cumferential magnetic permeability. In particular, these con-
ditions are fulfilled in magnetically soft amorphous wires
with low and negative magnetostriction constant ��s�
−10−7�.1 It was reported the sensitivity to magnetic field as
high as 1 �Oe �Ref. 2� and up to hundreds of percents of the
impedance changes in amorphous wires1,3,4 that, combined
with low cost and simple fabrication method, have made
them very attractive for prospective application where local-
ized weak magnetic field is especially important such as bio-
medical, geological, environmental, navigation, and indus-
trial highly sensitive magnetic field sensing.

Recently a novel family of amorphous wires with reduced
dimensionality—glass-coated microwires consisting on
much thinner metallic ferromagnetic nucleus �usually of the
order of 1–30 �m� coated by glass—has been developed.4,5

These microwires fit much better for utilization in magnetic
sensors mostly because of their thinner dimensions and
therefore lower effect of demagnetizing stray fields. At cer-
tain conditions such microwires exhibit quite good magnetic
softness, high GMI �Refs. 5 and 6� and stress-impedance7

effects.
Another emerging application of amorphous microwires

is tunable and self-sensing composite materials with micro-
wave electromagnetic properties depending on the imped-
ance of the microwires embedded in the dielectric matrix.8–12

The use of microwires with high GMI and stress impedance
effects in composites gives the possibility to realize the ma-
terials which dielectric permittivity is determined by the
structural scaling, external stimuli or internal state of the
material. For example, a material with self-monitoring prop-
erties could be able to evidence invisible structural damages,
defects, excessive loadings, local stress, and temperature dis-
tribution, thus considerably facilitating the in situ health
monitoring of large scale objects such as infrastructure
�bridges, buildings, etc.�.

Obviously, for both GMI applications in magnetic field
sensors and tunable composites, the highly sensitive MI and
its low hysteresis are required. Consequently, improvement
of these parameters is essential for these applications. At the
same time, the hysteresis up to 100 A/m or even higher was
found in amorphous microwires13 that considerably limit the
sensor’s precision.14

Though the MI effect has been rather extensively studied
over the last two decades, most of the performed investiga-
tions were devoted to MI in high fields �above 1 kA/m�. To
the best of our knowledge, the problem of low-field hyster-
esis in amorphous wires was consider only in a few
works.15,16 It these papers it was shown that the MI hyster-
esis is related with static circumferential magnetization and
the application of circumferential dc bias field HB is required
to suppress this hysteresis. Nevertheless, a complete model
describing all aspects of MI dependence such as hysteresis,
asymmetry induced by the bias field, influence of anisotropy
constant, and so on has not been given. Thus, rigorous theo-
retical and experimental studies of MI effect with consider-
ation for the low-field anomalies are of considerable interest
and importance.

In the paper we developed the mathematical model for the
magnetization reversal and MI field dependence for zero-
magnetostrictive amorphous microwires and compared it
with the experiment. The paper is organized as follows. First,
we considered the equilibrium magnetization state in the sur-
face layer of the wire. We assume �i� a nonzero angle be-
tween the anisotropy easy axis and transversal plane and �ii�
the presence of a dc circular field that is created by the bias
current. Second, the tensors of magnetic permeability and
surface impedance are discussed. Finally, the model is com-
pared with the experimental measurements from which the
main characteristics of the microwire such as anisotropy field
HA, angle between the anisotropy easy axis with the trans-
versal direction �, and Gilbert damping constant �G were
obtained.

II. MAGNETIC STRUCTURE

The outer shell of amorphous glass-coated microwires
with vanishing magnetostriction is characterized by the cir-
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cular magnetization that can be divided into magnetic do-
mains forming bamboolike structures. However, the bamboo
domain structure in the outer shell is unfavorable for short
and uniform samples having low magnetostriction.17 But
even if the bamboo domain structure is present, the applica-
tion of a sufficiently high circular magnetic field HB will
eliminate it. Therefore, we can assume that the outer shell,
where the high-frequency current is concentrating due to
skin effect, is a single domain particle. Also, at high frequen-
cies �well above 1 MHz�, the domain-wall motion is severely
dumped by the eddy currents and magnetic-moment rotation
is the dominant mechanism responsible for the MI.18

For further analysis, it is convenient to introduce the local
coordinate system situated at arbitrary point on the surface as
shown in Fig. 1 where x axis is parallel to the wire’s longi-
tudinal axis; y and z are tangent and normal components.
Here, � and � are the polar and azimuthal angles of the
magnetization vector M0 in this local coordinate system.

Magnetic characterization of the surface magnetic shell
can be naturally performed in according with classical elec-
trodynamics in terms of the multipole expansion of magne-
tization �or the Ampere’s currents� distribution that involves
the following components:

�i� dipole magnetic moment M� = �Mx ,0 ,0�, Mx
=Ms sin � sin ��Ms sin �;

�ii� toroidal magnetic moment T� =1 /2��r��Msurf
� �. Evi-

dently T� = �� ,0 ,0� where �=	aMs
 sin � cos �
=	aMs
 cos �, a is the wire radius, and 
 is the thickness of
the outer shell �Fig. 1�;

�iii� the components of the quadruple magnetic moment
D=�Mxrx which pulls the spins out-of-plane tangential to
the surface. They are described by a small angle ��=	 /2
−�. In equilibrium D=0 but in dynamics: Dzz=�Mzrr
=Msa2	��.

Thereby, the local angles � and � completely describe the
equilibrium magnetization distribution and dynamics of the
studied system. We consider below the coherent remagneti-
zation processes; i.e., the local angles � and � are the same
in all points of the surface shell. Obviously, in the laboratory
coordinate system the orientations of the magnetic vectors
are different in different points of the surface due to its cur-
vature. The condition of feasibility of this assumption is de-
fined by the following inequality:

a � Lm, �1�

where Lm=�A /2	Ms
2 is the characteristic magnetic length.

The dynamics of the studied magnetic system is governed
by Landau-Lifshitz equations with the following Lagrangian
function:

L =
MS


�1 − cos ���̇ − U��,�� �2�

and the dissipative Rayleigh function,

R =
�GMs

2
��̇2 + sin2 ��̇2� , �3�

where =2�b /� is the gyromagnetic ratio, �G is the dimen-
sionless Gilbert damping constant, and U�� ,�� is the total
magnetic energy of the system.

III. EQUILIBRIUM MAGNETIZATION STATE

The total energy U can be expressed as the sum of mag-
netostatic energy, energy of magnetic anisotropy, Zeeman en-
ergy, and the energy supplied by the circular bias magnetic
field,

U��,�� = − K1 sin2 � + KA sin2 � sin2�� + ��

− MsHE sin � sin � + MsHB sin � cos � , �4�

where K1=2	Ms
2, � and � are the polar and azimuthal angle

of the magnetization vector, � is the angle between the an-
isotropy easy axis with the transversal direction �see Fig. 1�,
KA is the anisotropy constant, HE is the external magnetic
field applied along the x axis, and HB is dc bias field that is
produced by the current IB running through the wire.

The minimum of the total energy U is achieved when �
=	 /2 �i.e., the magnetization vector is parallel to the surface
of the cylinder�. Then Eq. �4� minimizes to

U�� = 	/2,�� = KA sin2�� + �� − MsHE sin � + MsHB cos � .

�5�

The magnetization orientation can be found by minimization
of the total energy U over the angle �. The equilibrium angle
�0 between the magnetization vector and the transversal di-
rection is calculated from Eq. �5� as dU /d�=0,

2HE cos �0 = HA sin 2��0 + �� + 2HB sin �0, �6�

where HA=2KA /Ms is the surface anisotropy field. Equation
�6� describes the rotation of magnetization vector under the
applied magnetic field HE.

The magnetization reversal process in the system with
arbitrary angle between the anisotropy easy axis and direc-
tion of applied magnetic field is described by the Stoner-
Wohlfarth model.19 Figure 2 shows the solution of Eq. �6� as
function �0�HE� for angle �=30° and for two value of bias
field HB of 0.3 HA and 0.5 HA. The dependence �0�HE�,
shown in Fig. 2�a�, is hysteretic. Increasing the bias field up
to 0.5 HA results in the disappearance of the hysteresis, as it
can be seen from the dependence in Fig. 2�b�.

Knowing the dependence �0�HE�, the longitudinal magne-
tization component Mx �magnetization projection on x axis�
can be easily obtained as
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FIG. 1. Principal directions in microwire.
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Mx = Ms sin �0, �7�

which is shown in Fig. 3 for different values of � and HB.
When HB=0 �Fig. 3�a��, the Mx�HE� dependence is an hys-
teretic if �=0 and with hysteresis if � is not zero which is
consistent with the Stoner-Wohlfarth model. With application
of HB, the hysteresis is not observed at �=10° and HB=0.3
HA �Fig. 3�b�� and at �=30° and HB=0.5 HA�Fig. 3�c�� as
arcsin�0.3�=17.4° and arcsin�0.5�=30°. To suppress the hys-
teresis when �=50°, the bias field as high as sin�50°�
=0.77 HA will be required. Therefore, we can conclude that
the hysteresis of �0�HE� and Mx�HE� originates from the easy
axis’s deviation from circular direction and can be sup-
pressed by applying the bias field HB�HA · sin �.

IV. TENSORS OF MAGNETIC PERMEABILITY AND
SURFACE IMPEDANCE

The Landau-Lifshitz equations for magnetization dynam-
ics in spherical coordinates read as

�̇ + �G sin ��̇ = H�

�G�̇ − sin ��̇ = H�, �8�

where

H� = − ��0Ms sin ��−1�U

��
= HA sin � sin 2�� + ��

− HE cos � + HB sin � ,

H� = − ��0Ms�−1�U

��
= − �2K1/Ms�sin � cos �

+ HA sin 2� sin2�� + �� − HE cos � sin �

− HB cos � cos � �9�

Let us represent � and � as

� = �0 + �1, � = �0 + �1, �10�

where �0 and �0 are the equilibrium values and �1 and �1 are
the small ones describing the magnetization precession under
the high-frequency magnetic field, which can be found from
the following linear equation:

�̇1 + �G sin ��̇1 = �H���1 + H���1�

�G�̇1 − sin ��̇1 = �H���1 + H���1� , �11�

where

H�� =
�H�

��
= HA sin � cos 2�� + �� + HE sin � + HB cos � ,

H�� =
�H�

��
= H�� =

�H�

��
= HA sin 2� sin 2�� + ��

− HE cos � cos � + HB cos � sin � ,

H�� =
�H�

��
= −

2K1

Ms
cos 2� + HA cos 2� sin2�� + ��

+ HE sin � sin � + HB sin � sin � . �12�

Assuming that �1�t�=�1e−i�t, �1�t�=�1e−i�t and hx�t�
=hxe

−i�t, hy�t�=hye
−i�t are the axial and circumferential mag-

FIG. 3. �Color online� Mx�HE� with � and HB as parameters.

FIG. 2. �Color online� �0�HE� with � and HB as parameters.
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netic fields excited by the harmonic current ix with frequency
� flowing trough the wire, then

− i��1 + �H�� − i�G���1 = − �− hy�t�cos �0 + hy�t�sin �0�

�− i�G� − H����1 + i��1 = 0. �13�

Then, solutions for �1 and �1 are as follows:

�1 =
i�

D���
�hx�t�cos �0 + hy�t�sin �0� �14�

�1 = −
i�M

D���
�hx�t�cos �0 + hy�t�sin �0� �15�

where

D��� = �2 − �0
2 − i�G��M , �16�

�M = �0�H�� + H��� � �0H�� � �0Ms, �17�

�0
2 = 2�H��H�� − H��

2 � � �M��A cos 2�� + �� + �E sin �

+ �B cos �� , �18�

and �A=HA, �E=HE, and �B=HB.
Substituting � and � in the formulas for magnetization,

Mx = Ms sin � sin �

My = Ms sin � cos � �19�

and �=	 /2, one can get the susceptibility and permeability
tensors,15

�xx = �M
2 cos2 �/D��� = �̃ cos2�

�xy = �M
2 sin � cos �/D��� = �̃ sin � cos �

�yx = �M
2 sin � cos �/D��� = �̃ sin � cos �

�yy = �M
2 sin2 �/D��� = − �̃ sin2 � �20�

�xx = 1 + �̃ cos2 �

�xy = �yx = �̃ sin � cos �

�yy = 1 + �̃ sin2 � �21�

�̃ =
�M

2

�0
2��� − i�G��M − �2 . �22�

The surface impedance tensor can be obtained by solving
Maxwell equation with proper boundary conditions. The the-
oretical solutions of surface impedance tensor for ferromag-
netic body of cylindrical shape were performed by Antonov
et al.,15 Usov et al.,20 Panina et al.16 The general solution of
this task is rather bulky. It is expressed in terms of series of

 /a. If the magnetic permeability � is rather high �in our
samples � reaches 105�, the high-frequency approximation

�
�a� can be used. Therefore, the surface impedance tensor
components Zzz and Z�z can be expressed by the following
formulas:15

Zzz =
ux

ix
=

ex�a�l
ix

=��0��

2i
���̃ + 1 sin2 � + cos2 ��

l

2	a
,

�23�

�Z�x =
e�

ix
=��0��

2i
���̃ + 1 − 1�sin � cos �� �24�

where ux is the voltage drop along the wire, ex and e� are
electric-field components, a and l are the wire radius and
length, and � is the electric resistivity.

V. COMPARISON WITH THE EXPERIMENT

We have studied the MI effect in as-cast
nearly zero-magnetostrictive amorphous glass-coated
microwire. The microwire with nominal composition
Co67.1Fe3.8Ni1.4Si14.5B11.5Mo1.7 was fabricated by Taylor-
Ulitovsky method;21 it has the amorphous core diameter d of
21.4 �m and the glass coating thickness of 2.4 �m. The
sample length l is 6 mm.

We measured the longitudinal diagonal Zzz and off-
diagonal Z�z components of the impedance tensor with a
vector network analyzer �VNA� and compared them with the
model. The schematic of the experimental setup is shown in
Fig. 4. The microwire was soldered in a specially designed
microstrip cell. One wire end was connected to the inner
conductor of a coaxial line through a matched microstrip line
while the other was connected to the ground plane. The dc
bias current IB was applied to the sample through a bias-tee
element. The sample holder was placed inside a sufficiently
long solenoid that creates a homogeneous magnetic field HE
in the sample. All measurements were done at frequency of
10 MHz.

The Zzz component was measured through the reflection
coefficient S11 as Zzz=Z0�1+S11��1−S11�, Z0=50 � is the
characteristic impedance of the coaxial line. The high-
frequency current ix passing through the wire creates a cir-
cumferential magnetic field h�. As the permeability is a ten-
sor value with nonzero off-diagonal terms, the precision of
h� causes the appearance of mx. Then, in accordance with
Faraday’s law, the variation in mx induces a voltage in the
pick-up coil wounded on the wire. In this way, the Z�z com-

IB

bias-tee

VNA
port 2

VNA
port 1

H
E

sample holder

microwire pick-up coil

S21

S11

FIG. 4. Schematic of the experimental setup for measuring the
impedance matrix elements Zzz and Z�z.
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ponent can be found through transmission coefficient S21
which is the ratio of the signal induced in the ten turns
pick-up coil to the constant generator voltage applying to the
wire.

Two-step calibration procedure was applied. First a stan-
dard short-open-load-thru calibration sets the reference plane
at the cables ends �after the bias tee for port 1�. Then, the
serial and parallel parasitics associated with the sample
holder were removed from the measurements. The parasitics
were found from open and short measurement of the empty
sample holder.

Equation �6� contains three unknown constants HA, �, and
HB which, considering Eq. �24�, can be extracted from the
experimental data. In the Z�z�H� graph shown in Fig. 5, one
can obtain the characteristic points that will allow calculating
the unknown constants:

�1� when �=0, there is no magnetization precession along
the x axis and, therefore, no signal is induced in the pick-up
coil. The corresponding magnetic field H1 is 42 A/m for both
curves.

�2� On the other hand, according to Eq. �24�, Re Z�z is
proportional to �Im �̃�sin � cos � and the induced voltage is
maximal when �=	 /4. As shown in Fig. 10�b�, the mini-
mum �negative peak� of Re Z�z is actually defined by the
minimum of sin � cos � as �Im �̃� has maximum at this
point. Here the magnetic field H2 is 96 A/m at IB=4 mA
�solid curve in Fig. 5�.

�3� Changing IB �and therefore HB� we can find the third
point required to solve Eq. �6�. Here the �=	 /4 at minimum
of Re Z�z as in previous case, but we increase IB to 6 mA
�dashed curve in Fig. 5� which resulted in shifting the field
with maximum induced emf to H3 of 120 A/m.

The solution of Eq. �6� for two � angles,

� = 0 2H1 = HA sin 2�

� = 	/4,HB1 �2H2 = HA cos 2� + �2HB1

� = 	/4,HB2 �2H3 = HA cos 2� + �2HB2,

�25�

where HB2=1.5HB1, gives the following value of the con-
stants: HA=108 A /m, �=25.5°, and HB1=48 A /m when
IB=4 mA. The found value of the anisotropy field HA of 108
A/m confirms the high magnetic softness of the sample. On
the other hand, the angle of helical anisotropy �=25.5° is
surprisingly high.

Further we substituted HA=108 A /m and �=25.5° in
Eqs. �6� and �7� and obtained the modeled dependencies
�0�HE� and Mx�HE� for the studied sample which are pre-
sented in Fig. 6. As one can see, without the bias field HB,
the surface magnetization Mx exhibits hysteresis with coer-
citivity field of 41 A/m. The hysteresis disappears when the
bias field is applied.

Now, to calculate the MI dependencies the Gilbert damp-
ing constant �G is requires. This parameter is usually defined
from ferromagnetic-resonance experiments at high field and
high frequency. The reported values widely spread from 0.01
to 0.1. We calculated the MI dependencies Zzz and Z�z for
different �G and showed them in Fig. 7 together with the
experimental measurement. As it is seen from the graphs, the
damping constant �G greatly affects the MI curves. From
fitting we took �G=0.012.

Substituting the found values for HA, �, and �G in Eqs.
�22�–�24�, we obtained the calculated MI dependencies and
compared it with the experimental data that are shown in
Figs. 8 and 9 for Zzz and Z�z, respectively. The agreement of
the model with experiment is satisfactory. The developed
model correctly describes the hysteresis of the MI and the
asymmetry induced by HB. In the absence of the bias field,
both dependencies Zzz and Z�z exhibit hysteresis. Neverthe-
less, the off-diagonal component Z�z �Fig. 9�a�� is rather
high, which confirms the single domain state of the outer
shell. Otherwise, the division of domain with formation of
bamboolike stricture would have resulted in almost zero re-
sponse as the contribution of domain with antiparallel mag-
netization would cancel each other.22 The application of the
bias field HB makes the dependencies anhysteretic with a
high sensitivity dZ /dH slope. It worth noting that if the pulse
current excitation is applied, the use of a separate bias cur-
rent is not required since the pulse already contains the dc
component.

S

FIG. 5. �Color online� The experimental dependence of Z�z

�S21 on external magnetic field with IB as a parameter.

FIG. 6. �Color online� �0�HE� and Mx�HE� with HB as a param-
eter. Modeling is performed for wires with HA=108 A /m and �
=25.5°.
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The calculated field dependence of the real parts of Zzz
and Z�z for HB=0.44HA is shown in Fig. 10. These depen-
dences, conforming to Eqs. �23� and �24�, are composed of
two components: �i� sin2 � for Zzz and sin � cos � for Z�z
and �ii� Im �. As one can see, at low field below HA, the
shape of the MI tensor components is mainly determined by
the angle � while the permeability defines the maximum
value of MI tensor components. At fields above HA, � ap-
proaches 	 /2 �see Fig. 6�a��, therefore sin2 �→1, Zzz slowly
decreases with the permeability as the sample is reaching the
saturated state. The off-diagonal component Z�z rapidly falls
to zero at high fields, as sin � cos �→0.

Let us consider, following Kraus,23 the theoretical maxi-
mum for GMI effect for the studied microwire. Equation �23�
can be transformed to

Zzz

Rdc
= �1 + i�� sin2 �



+

cos2 �


0
	a �26�

where Rdc is the wire’s dc resistance and 
 and 
0 are mag-
netic and nonmagnetic skin depths,


 =� 2�

�0���̃ + 1�
, 
0 =� 2�

�0�
. �27�

S
Z

G

G

G

G

G

G

G

G

FIG. 7. �Color online� Fitting Gilbert damping constant �G to
experimental data, HB=0.66HA.

FIG. 8. �Color online� Experimental measurement of Zzz and
comparison with the model.

FIG. 9. �Color online� Experimental measurement of Z�z and
comparison with the model.
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The theoretical minimum of the skin depth is reached
when �=�0,


min =� 2�

�0��̃max

=�2i�G�

�0�M
=� �G�

�0�0Ms
. �28�

Taking �G=0.012, �=1.22�10−6 �m, �0Ms=0.8 T
�typical values for microwire of this composition�, and
 /2	=28 GHz /T, one obtains 
min=0.288 �m. Then, the
theoretical maximum of GMI ratio

� Zzz

Rdc
	

max
�

a


min
, �29�

as sin2 �m�1. For microwire with radius a of 10.7 �m,
Zzz /Rdc=37.

On the other hand, when HE= �HA sin 2�� /2, �=0 and
Eq. �26� reduces to

Zzz

Rdc
=

a

min�
0,a�
, �30�


0=120 �m at 10 MHz which is much higher than the
wire’s radius a. Therefore, Zzz /Rdc=1 as the current flows

through the whole volume of the wire. Similarly, Zzz /Rdc
approaches unity at sufficiently high fields where �̃→0 and
�→ �90°.

For a given microwire, the theoretical maximum of GMI
effect should be more than 3000%, that is about ten times
larger than this value for our sample �see Figs. 8�b� and
8�c��. Such large difference, in agreement with Kraus,23 is
attributed to nonzero angle � that prevents achieving the
resonance condition at low and moderate frequency ranges.
The minimum driving frequency �c for which the theoretical
limit of GMI can be achieved as follows:

�c
2 � 3�MHA��/2�2/3. �31�

Subsisting HA=108 A /m and �=25.5°, one gets �c /2	
=1.1 GHz. This estimated minimum frequency �c was ex-
perimentally confirmed for the given microwire.13

VI. CONCLUSIONS

We developed a mathematical model for magnetization
reversal and MI field dependence for zero-magnetostrictive
amorphous microwires with consideration �i� for low-field
�HE�HA� hysteresis which arises from deviation of the an-
isotropy easy axis from transversal direction and �ii� for the
effect of circular bias magnetic field HB produced by current
IB running through the wire on hysteresis and asymmetry of
the MI dependence. The validity of the model was confirmed
by the experiments. The nature of low-field hysteresis and its
dependence on circular magnetic field were investigated. It
was demonstrated that the low-field hysteresis originates
from a nonzero angle between the anisotropy easy axis and
transversal plane and that the application of the bias field
leads to suppressing this hysteresis. Using the developed
model, the main characteristics of the studied ferromagnetic
microwire such as anisotropy field HA, angle between the
anisotropy easy axis with the transversal direction �, and
Gilbert damping constant �G were obtained.
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