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We consider the one-dimensional lattice model of interacting fermions with disorder studied previously by
Oganesyan and Huse [Phys. Rev. B 75, 155111 (2007)]. To characterize a possible many-body localization
transition as a function of the disorder strength W, we use an exact renormalization procedure in configuration
space that generalizes the Aoki real-space renormalization procedure for Anderson localization one-particle
models [H. Aoki, J. Phys. C 13, 3369 (1980)]. We focus on the statistical properties of the renormalized
hopping V; between two configurations separated by a distance L in configuration space (distance being
defined as the minimal number of elementary moves to go from one configuration to the other). Our numerical
results point toward the existence of a many-body localization transition at a finite disorder strength W,. In the
localized phase W>> W, the typical renormalized hopping V#” ="V decays exponentially in L as (In V}?)
'—V—# and the localization length diverges as &,.(W)~(W—-W_) Ve with a critical exponent of order v,
=0.45. In the delocalized phase W<W,_, the renormalized hopping remains a finite random variable as L
— oo and the typical asymptotic value V27 = ¢ V= presents an essential singularity (In V2?) ~ —(W,— W)™~ with
an exponent of order k~ 1.4. Finally, we show that this analysis in configuration space is compatible with the

localization properties of the simplest two-point correlation function in real space.
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I. INTRODUCTION

Whereas Anderson localization phenomena! are rather

well understood for a single particle (see the reviews>#), the
case of interacting particles in a random potential has re-
mained much more challenging (see the review?). In the field
of disordered fermions, there has been for instance a lot of
works on quantum Coulomb glasses (see, for instance, Refs.
6-8 and references therein), including the debate on the ex-
istence of a metal-insulator transition for interacting elec-
trons in two dimensions (see Refs. 9-11 and references
therein). In the field of disordered bosons, many studies have
been devoted to the existence and properties of the
superfluid-insulator transition (see Refs. 12-17 and refer-
ences therein). Recently, the idea to reformulate the many-
body localization problem as an Anderson localization prob-
lem in Fock space or in Hilbert space has been very
useful.'®-2 In particular, this type of analysis has led to the
prediction that the conductivity of interacting electrons mod-
els could exactly vanish in some finite region of parameters
in the absence of any external continuous bath.>*?> The rea-
son is that conduction mechanisms based on variable-range
hopping need a continuous bath to locally supply or absorb
energy to permit hopping between levels which are not ex-
actly degenerate. Since quantum levels are discrete, the
many-particle system can fail to be an effective heat bath for
itself. Following these ideas, Oganesyan and Huse?® have
proposed that this type of many-body localization transition
could be realized in some one-dimensional (1D) lattice mod-
els of interacting fermions. Unfortunately, the numerical
study concerning the spectral statistics alone presented in
Ref. 26 has turned out to be not completely conclusive as a
result of very strong finite-size effects. Moreover, the anal-
ogy with Anderson localization on high dimensional and
Cayley tree indicates that criteria based on the level repul-
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sion may not be very appropriate in this case.?® In the present
paper, we propose to study the existence of a many-body
localization transition in the very same model of Ref. 26 by
studying another type of observable which contains some
information on the localization of eigenstates. More pre-
cisely, we use an exact renormalization procedure in configu-
ration space to compute numerically the renormalized hop-
ping between two configurations as a function of their
distance in configuration space. We present numerical results
on the statistical properties of this renormalized hopping that
point toward the existence of a many-body localization tran-
sition at a finite disorder strength. In the localized phase, we
measure a power-law divergence of the localization length.
In the delocalized phase, we measure an essential singularity
for the asymptotic renormalized hopping. These scaling laws
are thus reminiscent of the Anderson localization transition
on the Cayley tree, which is the simplest example of Ander-
son transition in a space of infinite dimension but the values
of exponents are different.

The paper is organized as follows. In Sec. II, we describe
how many-body localization models can be studied numeri-
cally via an exact renormalization procedure (“RG”) in con-
figuration space that generalizes Aoki real-space RG proce-
dure for Anderson localization one-particle models. In Sec.
III, we present our numerical results for a one-dimensional
lattice model of interacting fermions. In Sec. IV, we discuss
the similarities and differences with the scaling laws of
Anderson localization on the Cayley tree and propose a spe-
cific form of finite-size scaling analysis. In Sec. V, we
present independent numerical results concerning the sim-
plest real-space two-point correlation function to test the
compatibility with our results obtained in configuration
space. Our conclusions are summarized in Sec. VI.

©2010 The American Physical Society
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II. EXACT RENORMALIZATION PROCEDURE IN
CONFIGURATION SPACE

In this section, we briefly summarize the Aoki real-space
renormalization (RG) method for one-particle localization
models before we describe its generalization for many-body
problems.

A. Reminder on Aoki real-space RG for one-particle
localization models

For Anderson localization models, there exists an exact
real-space renormalization procedure at fixed energy E
which preserves the Green’s functions of the remaining
sites.”’-32 The renormalization (RG) procedure can be ap-
plied to any Anderson localization model of the generic form

H=2 Vil (1)
i,]

where V;; is the on-site energy of site i and where V; ; is the
hopping between the sites i and j. Upon the elimination of
site iy in the Schrodinger equation at energy E

Eyliy) = Vio,iolﬂ(io) + E Vio,j'ﬂ(j) (2)

J#ig

the remaining sites satisfy the Schrodinger equation at en-
ergy E with the renormalized parameters

ViiVigi . 3)
E-V,;

00
These renormalization equations are exact since they are
based on elimination of the variable i(i;) in the Schrédinger
equation. As stressed by Aoki,?”?8 the RG rules preserve the
Green’s function for the remaining sites. This means for in-
stance that if external leads are attached to all surviving sites,
the scattering properties will be exactly determined using the
renormalized parameters (see Ref. 32 for more details). In
particular, the renormalized hopping between the last two
surviving sites (after all other sites have been decimated)
determines the two-point Landauer transmission between
leads attached to these two points:* it decays exponentially
with the distance in the localized phase, it remains finite in
the delocalized phase, and at the critical point it becomes
multifractal.

B. Generalization in configuration space for many-body
localization models

The above RG procedure has the following natural gener-
alization for many-body models. Let us denote C a configu-
ration of the many-body problem to write the Hamiltonian as

Hmanyz E VC’,,C/,|C,‘><C/‘|. (4)
CiCj ’

Then the Schrédinger equation projected onto the configura-
tion C;
‘o

PHYSICAL REVIEW B 81, 134202 (2010)

EY{C:) = 2 Ve, ¢ HC) 5)

allows to eliminate z,b(C,»O). The remaining configurations sat-
isfy the Schrodinger equation with renormalized parameters

y Vee Ve, c;

B =Ve o+ . 6
co=Veet E oy, (6)

These rules in configuration space have been already used
for the two-particle 1D Anderson tight-binding model.?* In
the following, we apply them to a model of interacting fer-
mions that we now describe.

C. Application to the interacting fermions model of Ref. 26

In numerical studies of quantum problems containing
both interactions and disorder, it is natural to consider first
the spatial dimension d=1. The simplest model is then a
chain of spinless fermions with nearest-neighbor interaction
and on-site disorder (see, for instance, Refs. 34—-36 and ref-
erences therein). This type of model can also be studied in
the language of quantum spin chains as in Ref. 37, where a
powerful time-dependent density matrix renormalization
group method has been used to characterize a many-body
localized phase. In this paper, we consider the same class of
model, but with second-neighbor hopping in addition, as in
Ref. 26. More precisely, the model of Ref. 26 is defined by
the following Hamiltonian on a one-dimensional lattice of L
sites with periodic boundary conditions

- I I
H= 2 |:Wln,-+ V(nl - E)(”H_l - E)

=1
t t t t
+Cici+1+ci+lci+cici+2+ci+265:| (7)

with the usual notations.

(1) n,~=cjc,~ represents the number of spinless fermion on
site i and can take only two values (0 if the site is empty or
1 if the site is occupied). The many-body Hilbert space has
thus for dimension

NL=2L- (8)

The spinless character has been chosen to reach bigger sizes
L for a given value of the Hilbert-space dimension A/;.%°

(ii) The on-site energies w; are independent Gaussian vari-
ables with zero mean and variance W2, i.e., W measures the
disorder strength (we have not used the “microcanonical
constraint” of Ref. 26 consisting in the requirement that
(1/L)=w7 should be exactly W? to reduce statistical uncer-
tainties).

(iii) The nearest-neighbor interaction is chosen to be V
=2, the hopping terms between nearest neighbors and second
neighbors are chosen to be r=t'=1. The second-neighbor
hopping is included to have nonintegrability at zero random-
ness, see Ref. 38 for more details on the properties of the
model in the zero-disorder limit.

(iv) The total number of particles is conserved: we study
the case of half filling with L/2 particles for L sites as in Ref.
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26. The dimension of the Hilbert space is then given by the
binomial coefficient

ZL
o —

L

.A/ﬁalf—filling — (9)

SERe

Physically, the important point is that at leading order, it still
grows exponentially in L.

In summary, we consider in this paper the model of Ref.
26 with exactly the same values of parameters but we study
another observable to detect the possible many-body local-
ization transition. We have applied the RG procedure in con-
figuration space described above, to obtain, in each disor-
dered sample of even size L, the renormalized hopping V; at
some energy E between two configurations C,, and Cjp after
the decimation of all other configurations

Vi=Ve, c,(E). (10)

We have made the following choices: (c1) we consider the
zero-energy case E=0 because it represents the center of the
many-body energy levels. Indeed, in Anderson localization
models, it is well known that energy levels near the center
are the more favorable to delocalization: if these states are
localized, one expects that all other states will also be local-
ized.

(c2) We have chosen the following configurations: the
configuration C4 has all even sites occupied and all odd sites
empty, whereas the configuration Cy has all odd sites occu-
pied and all even sites empty. Their distance in configuration
space is thus L/2 (the minimal path to go from configuration
C, to configuration Cy requires L/2 elementary moves). In
the absence of disorder, the model is known to be conducting
(see Ref. 38 for a detailed study of conductivity properties);
the two configurations C4 and Cp are equivalent up to a trans-
lation of one lattice site and are thus expected to be con-
nected by a finite renormalized hopping. In the presence of
disorder, these two configurations are not equivalent any-
more and one expects that the renormalized hopping V; will
become exponentially small in L for sufficiently strong dis-
order.

This choice (c2) of alternate configurations C, and Cy can
be questioned in various ways. For instance, if one wishes to
maximize the distance in Fock space, one obtains the con-
figurations where all particles are on the first half or on the
second half: physically, it is however clear that these two
configurations are not typical because they are extremely in-
homogeneous and because only four particles (two particles
at each boundary of the macroscopic cluster) can move for
arbitrary large L (instead of an extensive number of particles
for typical configurations). More generally, in contrast to
usual Anderson localization models where all sites are
equivalent, a new difficulty that arises in many-body local-
ization models is that all configurations are not equivalent:
configurations have different hopping connectivities and dif-
ferent interaction energies so that the configuration space has
already an inhomogeneous structure even before the intro-
duction of disorder variables. Since an extensive study of the
renormalized hoppings in this complicated configuration
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space is not really possible, we have decided to consider only
the choice (c2) of alternate configurations C, and Cy in the
remaining of this paper. However, to show that our results
are meaningful and do not really depend of our precise
choice (c2), we present in Sec. V independent numerical re-
sults concerning the simplest real-space two-point correla-
tion function.

III. NUMERICAL RESULTS FOR THE INTERACTING
FERMIONS MODEL OF Ref. 26

In this section, we describe our numerical results concern-
ing the statistics of V; at E=0 between the alternate configu-
rations C4 and Cp described above for even sizes 4=L=12
with corresponding statistics 15.107 <n (L) <3650 of disor-
dered samples (we have also data corresponding to L=14
with n,=100 samples but this statistics has turned out to be
insufficient for most purposes).

A. Analysis of the localized phase

For strong disorder, we find that the renormalized hopping
V; introduced in Eq. (10) flows toward smaller and smaller
values as L increases. As an example for W=20, we show in
Fig. 1 the probability distributions P;(In V;) of the variable
InV;, over the disordered samples of a given size
L=4,6,8,10,12: the regular shift of these histograms to-
ward smaller values is clear. We show in Fig. 1(b) the same
data for the rescaled variable

InV,-InV,

A, (11)

x =
where In V; is the averaged value and where A; is the width
of the distribution P;(In V). One can see in Fig. 1(b) that the
histograms of the rescaled variable x coincide within statis-
tical fluctuations for L=6,8,10,12 (we have only excluded
the smallest size L=4 that was too different): this shows that

the convergence toward a stable rescaled distribution P(x) is
rapid for this model.

We show in Fig. 2(a) the decay with L of the disorder-
average In V; for various disorder strengths in the range 6
= W=20: these curves correspond to an exponential decay
of the typical value VP =¢!""2 with respect to the distance
(L/2) in configuration space

, _ (L/2)
In(V?)=InV,(W>W,) = — ,
(Vi) 1 ‘)L_m £ (W)

where £,,.(W) represents the localization length that diverges
at the delocalization transition

(12)

Eloc(W) = (est) (W= W)™ "oc. (13)
w—w?

c

We show in Fig. 2(b) our numerical result for the slope
1/§,.(W) as a function of the disorder strength W in the
region 6 = W=20 (below W=6 we cannot estimate the linear
slope anymore). A three-parameter fit of the form of Eq. (13)
yields a critical point in the range
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FIG. 1. (Color online) Statistics of the renormalized hopping V; in the localized phase (data for the disorder strength W=20): (a)
probability distribution P;(In V;) of the logarithm of renormalized hopping V; for the sizes L=4,6,8,10,12. (b) Same data for the rescaled

variable x of Eq. (11) for the sizes L=6,8,10, 12: the convergence toward a fixed rescaled distribution ﬁ(x) is rapid (we have only excluded

the smallest size L=4 that was too different).

52=W.=59 (14)
and a critical exponent around
Vjpe = 0.45. (15)

B. Analysis of the delocalized phase

For weak disorder, we find that the renormalized hopping
V, introduced in Eq. (10) remains a finite random variable
V.. finite as L increases. As an example for W=2, we show in
Fig. 3 the probability distributions P;(In V) of the variable
InV; over the disordered samples of a given size
L=8,10,12 (for clarity we have excluded the smallest sizes
L=4,6 that were too different): it is clear that these histo-
grams coincide up to statistical fluctuations. This should be
compared with Fig. 1(a) corresponding to the localized phase
for W=20. In the delocalized phase, the typical renormalized
hopping V2P =¢ V= thus remains finite

-6 L 3

-10 ‘ ‘
(a) L

InV,(W<W,L) = InV (W<W,) finite.

L—o

(16)

We show in Fig. 3(b) our numerical estimates of the
asymptotic value In V.(W<W,) as a function of W. We find
that our data are compatible with an essential singularity
behavior of the typical asymptotic hopping V%7,

InV?P(W<W)=ln V., (W<W,) = —(cst)(W.— W)™
W—W

c

(17)

A three-parameter fit of this form yields a critical point in the
range

55=W,=57 (18)
and an essential singularity exponent around
k=14, (19)
2
”E-’ loc
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FIG. 2. (Color online) Exponential decay of the typical renormalized hopping V}f” =¢" VL in the localized phase: (a) linear decay of In V.
as a function of L [see Eq. (12)]. (b) Behavior of the slope 1/&,,.(W) [inverse of the localization length &,.(W) of Eq. (12)] as a function

of the disorder strength W.
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(b)

FIG. 3. (Color online) Statistics of the renormalized hopping V; in the delocalized phase (a) for the disorder strength W=2, the
probability distribution P; (In V;) of the logarithm of renormalized hopping V; remains the same for the sizes L=8,10,12 (we have excluded
the smallest sizes L=4,6 that were a bit different). This should be compared with Fig. 1(a) corresponding to the localized phase. (b)
Behavior of the typical asymptotic renormalized hopping V27 =¢!" V=: In V2P=In V., as a function of the disorder strength W.

Essential singularities in transport properties have already
been found in various disordered models, in particular, in
Anderson localization on the Cayley tree (see Refs. 41 and
45 and references therein) and in superfluid-insulator transi-
tions of disordered bosons (see Refs. 12—-14 and 16 and ref-
erences therein).

C. Conclusion of the numerical study

In summary, our numerical data are compatible with a
many-body localization transition for the model of Eq. (7).
The global best value for the critical point seems to be

W,=5.6, (20)

which is somewhat smaller than the critical value suggested
by the level statistics study of Ref. 26. A possible reason for
this slight difference could be that the level statistics study of
Ref. 26 is based on all levels of all energies that could mix

In(1/ E)
loc
-0.2 - 9
-0.4 - 9
-0.6 - 9
-0.8 q
9 . . . . .
0 0.5 1 1.5 2 25 3
In (W-W)
(a) c

contributions of various types of states (delocalized, local-
ized, and critical), whereas we have chosen to work at the
fixed energy E=0 (center of the many-body energy levels).
Anyway, taking into account the large uncertainties on W, as
estimated from small system sizes, we feel that the two stud-
ies point toward the same region of disorder strength W.
For the value of Eq. (20), we show the log-log plots of the
critical behaviors in Fig. 4. In Fig. 4(a), we show the diver-
gence of the localization length &,.(W) in the localized
phase W>W.,: the slope v,,.=0.45 [see Eq. (13)]. In Fig.
4(b), we show the essential singularity of the typical
asymptotic hopping in the delocalized phase W<W,: the
slope corresponds to the exponent k= 1.4 [see Eq. (17)]. Of
course, these values are not expected to be precise since they
have been obtained from small system sizes and some
fitting/extrapolation procedures from the raw data. Neverthe-
less, the emergence of reasonable scaling laws is encourag-
ing. In the following section, we discuss the similarity with

3o

In(-InV )
©

-0.5 0 0.5
(b) In (wgw )

FIG. 4. Critical behaviors obtained for a critical point at the value W,=5.6 (a) localized phase W> W,: the plot of In[1/§;,.(W)] as a
function of In(W-W,) corresponds to the slope v,,,=0.45 [see Eq. (13)]. (b) Delocalized phase W< W,: the plot of In(~In V..) as a function

of In(W.—W) corresponds to the slope k=1.4 [see Eq. (17)].
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the scaling laws that appear for Anderson localization on the
Cayley tree.

IV. DISCUSSION: SIMILARITIES AND DIFFERENCES
WITH ANDERSON LOCALIZATION ON THE
CAYLEY TREE

A. Analogy with Anderson localization on the Cayley tree

As recalled in the introduction, the reformulation of the
many-body localization problem as an Anderson localization
problem in Fock space or in Hilbert space has been very
useful.'®2> The idea is to analyze whether there exists an
Anderson localization in configuration space and to study the
consequences for real-space properties. The geometry of
configuration space is usually very different from the regular
finite-dimensional lattices considered in Anderson one-
particle localization models and has been argued to be quali-
tatively similar to the Cayley tree.'®!%2124 Since Anderson
localization on the Cayley tree has been studied for a long
time as a mean-field limit, 3% results and methods have
been then borrowed to analyze many-body localization prop-
erties of quantum dots.'31%21:2% This approximation by a tree
structure has been however sometimes criticized.2’ Indeed,
in many-body localization models, the Fock space or Hilbert
space is never exactly a tree and thus the approximation by a
Cayley tree has been proposed as a simplifying approxima-
tion to obtain an exactly solved model'® (note however that
in Ref. 24, it has been argued that an effective Cayley tree
structure should actually well capture the properties of low-
dimensional electronic models). But independently of the
technical convenience of the tree structure, we believe that
the physically important property in this analogy is the
“infinite-dimension” property, defined as the exponential
growth of the configuration space N; with the real-space
linear size L

NL o e(cst)L (2 1)

(whereas in finite dimension d, the configuration space of a
single particle grows as a power-law N, « L9). As argued in
Ref. 46, it is the exponential growth of Eq. (21) which is
directly responsible for the presence of essential singularities
of transport properties, whereas finite-dimensional lattices
are characterized by power-law singularities. From the point
of view of Anderson one-particle models, the Cayley tree is
thus rather “pathological” since d=% turns out to be a sin-
gular point and the upper critical dimension is considered to
be d.=+.4% From the point of view of many-body localiza-
tion, however, the exponential growth of Eq. (21) is the rule
[see for instance Eq. (8)] and thus the scaling behaviors that
appear on the Caylee tree are instructive, as an example of
Anderson localization on a space of infinite dimension. In
particular, this analysis suggests some specific form of finite-
size scaling as we now recall.

B. Specific form of finite-size scaling in the critical region

As in our recent study of the Landauer transmission for
Anderson localization on the Cayley tree, it is natural to

PHYSICAL REVIEW B 81, 134202 (2010)

assume some finite-size scaling in the critical region of the
form

In V,(W) = — L°G[L""rs(W, — W)], (22)

where the finite-size scaling exponent vy is different from
the localization length exponent v;,.. (This is in contrast with
the scaling theory of localization in finite dimension d, where
the finite-size scaling is governed by v;,,.)

The matching of Eq. (22) with the localized phase [see
Eqgs. (12) and (13)] yields

Vioc = (] _p)VFS (23)
and the matching with the delocalized phase [Eq. (17)] yields

K= pVgg. (24)

By consistence, the finite-size correlation length exponent
Vg 1s then given by

VEs = Ve + K. (25)

In an exactly solved traveling/nontraveling phase transition
where the same type of finite-size scaling occurs,*’ the physi-
cal interpretation of the finite-size scaling exponent vgg is
that it governs the relaxation rate toward the finite value in
the nontraveling phase. For Anderson localization on the
Cayley tree, we have checked that this interpretation holds.*’
For the present many-body localization transition, this prop-
erty cannot be checked with our numerical data limited to
small sizes.

Exactly at criticality, we thus expect the following
stretched exponential decay of the typical renormalized hop-

ping:
In V,(W,) =-L", (26)

where the exponent p is related to the other exponents by
[see the scaling relations of Egs. (23) and (24)]

K K

p=_= .
Vrs K+ Ve

(27)

From our previous estimates of the exponents v,.=0.45
[Eq. (15)] and k=1.4 [Eq. (19)], this would correspond to a
numerical value of order

p=0.76. (28)

We show in Fig. 5 the finite-size scaling analysis of our
numerical data according to the form of Eq. (22) with the
values p=0.76 and vpg=1.85 obtained by consistency from
our previous estimates of v, and «: the data collapse seems
satisfactory at criticality and in the localized phase W> W,
whereas stronger corrections to scaling seem to be present in
the delocalized phase W<W..

In summary of this discussion, we propose that the scaling
laws of many-body localization transitions are generically
similar to the scaling laws observed for Anderson localiza-
tion on the Cayley tree, as a consequence of the infinite-
dimension property of Eq. (21). However, besides this quali-
tative analogy, one should not expect an exact equivalence in
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FIG. 5. (Color online) Finite-size scaling analysis of our nu-
merical data for the sizes L=8 (triangles), L=10 (squares), and
L=12 (circles) according to the form of Eq. (22) with the values
p=0.76 [see Eq. (28)] and vps=1.85 [see Eq. (25)]: this plot is
rather convincing at criticality and in the localized phase W> W,
whereas stronger corrections to scaling seem to be present in the
delocalized phase W<W..

general and, in particular, the critical exponents
(Vjpes VEs» K, p) are not expected to be the same as those of
the Cayley tree.

V. NUMERICAL RESULTS CONCERNING THE
SIMPLEST REAL-SPACE TWO-POINT
CORRELATION FUNCTION

As recalled in the introduction, the idea that many-body
localization actually occurs in configuration space is very
useful and in this paper, we have adopted this point of view:
we have focused on the renormalized hopping between two
configurations separated by a given distance in Fock space,
with the hope that the signatures of the transition would be
clearer for this observable. Nevertheless, it is of course very
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important to understand what are the consequences of this
localization occurring in configuration space for real-space
properties. In this section we thus present direct calculations
of the simplest two-point correlation function

C(L) = |<l/’mid|CTCL|(//mid>

where |,,,) is the eigenstate (obtained via exact diagonal-
ization) of the Hamiltonian of Eq. (7) with free ends at i=1
and i=L (no periodic boundary conditions so that these two
points are at distance L in real space), whose eigenvalue E,;;
is in the middle of the many-body energy levels [this energy
E,; fluctuates from sample to sample but remains close to
the central value E=0 chosen in (c1) of Sec. II C].

We show in Fig. 6(a) the decay with the distance L of the
disorder-average In C(L) for various disorder strengths in the
range 6 = W=20: these curves correspond to an exponential

2
b}

(29)

decay with L of the typical value C?”= ¢! €,
_ L
In(C?")=In C,(W>W,) = - , 30
(@)= CW=W = - (O

where &. represents the correlation length that diverges at the
delocalization transition

E(W) = (ecsH(W=-W,)"c,
W—W?

c

(31)

We show in Fig. 6(b) our numerical result for the slope
1/&-(W) as a function of the disorder strength W in the re-
gion 6 =W =20, as compared to 1/§,.(W) found previously
for the renormalized hopping in configuration space [see Eq.
(12) and Fig. 2]. Our conclusion is that up to a numerical
prefactor, these two correlation lengths seen either in the
renormalized hoppings in configuration space or in the two-
point correlation function in real space, contain essentially
the same information. In particular, a three-parameter fit of
the form of Eq. (31) yields values for the critical point W,
and for the critical exponent v-~ v, that are compatible
with the values estimated previously from the data in con-
figuration space.

2

-10
In C(L)

-15

-20

-25

_30 L L L 0 L 1 1 L L

8 10 12 14 5 7.5 10 12.5 15 17.5 20

(a) L (b) w

FIG. 6. (Color online) Exponential decay of the typical real-space two-point correlation function C??(L)=¢'" ¢ [see Eq. (29)] in the
localized phase: (a) linear decay of In C; as a function of L [see Eq. (12)]. (b) Behavior of the slope 1/&-(W) [inverse of the localization
length £-(W) of Eq. (30)] as a function of the disorder strength W (circles), as compared to 1/&,,.(W) (squares) found previously for the

renormalized hopping in configuration space [see Eq. (12) and Fig. 2].
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In the delocalized phase however, it is not clear to us what
are the theoretical expectations for the decay in L of the
two-point correlation function of Eq. (29) and our numerical
data are not sufficiently clear by themselves to indicate
which procedure should be used to fit the data in order to
obtain information on the critical behavior in the delocalized
phase. Further work is needed to clarify this point or to find
other real-space observables that display a clearer behavior
in the delocalized phase.

To summarize this section, our numerical data concerning
the real-space two-point correlation function of Eq. (29) in-
dicate that the correlation length measured previously in con-
figuration space is essentially equivalent to the correlation
length measured in real space. In particular, this shows that
the results obtained in configuration space do not depend too
much on the particular choice (c2) of alternate configurations
made in Sec. II C.

VI. CONCLUSION

In this paper, we have proposed to study many-body lo-
calization transition via an exact renormalization procedure
in configuration space that generalizes the Aoki real-space
RG procedure for Anderson localization one-particle models.
For the one-dimensional lattice model of interacting fermi-
ons with disorder studied previously by Oganesyan and
Huse,?® we have studied numerically the statistical properties
of the renormalized hopping V; between two configurations
separated by a distance L in configuration space. Our nu-
merical results are compatible with the existence of a many-
body localization transition at a finite disorder strength of
order W.~5.6. In the localized phase W>W,, we have
found that the typical renormalized hopping V¢”=¢" "z de-
cays exponentially in L as (In V?) = —ﬁ and that the local-
ization length diverges as &;,.~ (W- Wc)(‘r"lov with the critical
exponent of order v;,.=0.45. In the delocalized phase W
<W,, we have found that the renormalized hopping V; re-
mains a finite random variable V., as L—o and that the
typical asymptotic value V2”=¢!"V= presents an essential
singularity (In V27) ~—(W,— W)~ with an exponent of order
k~1.4. We have argued that the analogy with Anderson lo-
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calization on the Cayley tree is important as an example of
Anderson transition on a space of infinite dimension [in the
sense of Eq. (21)] that presents essential singularities and
that it suggests a specific form of finite-size scaling that we
have tested. Even if the numerical values of the exponents
are not expected to be precise, as a consequence of the lim-
ited system sizes studied L=14, we hope that the scaling
laws that emerge are valid. Of course, it would be very use-
ful in the future to test these results with other numerical
methods like the density matrix renormalization group
method that allow to study these interacting one-dimensional
models for much bigger system sizes.**=37 Finally, we have
shown that the present analysis in configuration space is
compatible with the localization properties displayed by the
simplest two-point correlation function in real space.

In conclusion, the reformulation of many-body localiza-
tion problems as Anderson localization models in configura-
tion space raises the question of Anderson localization on
specific networks (see Ref. 48 and references therein) that
are completely different from the regular lattices that have
been considered in the field of one-particle models. For a
many-body problem defined on a domain of size L9, the
number of configurations (i.e., the nodes of the network)
grows exponentially N LOCe(”’)Ld. Each configuration has a
different connectivity in this space of configurations but it is
typically of order L? (assuming a finite density of fermions,
with a finite number of short-range hopping for each fer-
mion). Besides the interest in specific many-body models, an
important issue is of course to understand which properties
of this complex network are relevant to determine the uni-
versality class of the corresponding Anderson transition.

Note added in proof: Recently we became aware of the
work® that suggests an infinite-randomness scaling for
many-body localization transitions, and of the studies’*>!
concerning the conductivity.
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