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In this work a periodic crystal with point defects is described in the framework of linear-response theory for
broken-symmetry states using correlation functions and Zwanzig-Mori equations. The main results are micro-
scopic expressions for the elastic constants and for the coarse-grained density, point-defect density, and dis-
placement field, which are valid in real crystals, where vacancies and interstitials are present. The coarse-
grained density field differs from the small wave-vector limit of the microscopic density. In the long-
wavelength limit, we recover the phenomenological description of elasticity theory including the defect
density.
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I. INTRODUCTION

The theory of elasticity of solids started with Hooke in
1678, when he formulated the linear relation between stress
and strain.1 The atomistic picture of matter contributed a
quantitative microscopic understanding of the mechanical
properties of ideal crystals based on the particle potentials.2

Yet, the restriction to ideal crystals containing no point de-
fects needs to be stressed. Nonequilibrium thermodynamics
achieved a phenomenological description of the long-
wavelength and low-frequency excitations.3,4 Martin et al.5

showed that the spontaneous breaking of continuous transla-
tional symmetry leads to eight hydrodynamic modes, one of
which corresponds to defect diffusion. Point defects, such as
vacancies and interstitials, are present in any equilibrium
crystal and a complete microscopic theory of crystal dynam-
ics needs to include them. Interestingly, such a complete mi-
croscopic theory of real crystals was lacking and is devel-
oped in this contribution in the framework of linear-response
and correlation functions theory of broken-symmetry phases.

Crystals exhibit long-range translational order and possess
low-frequency Goldstone modes, e.g., transverse sound
waves, which try to restore the broken symmetry. In the fa-
miliar microscopic description of ideal crystals, the long-
range order is incorporated at the start by assuming that the
equilibrium positions of the particles are arranged in a per-
fect lattice. A one-to-one mapping follows between the par-
ticle i and its lattice position Ri= �ri�t��. The deviation be-
tween the actual position ri�t� and the lattice position Ri is
called displacement vector ui�t�,

ui�t� = ri�t� − Ri �ideal crystal� .

The �symmetrized� gradient tensor of the displacement vec-
tor field is connected to the strain tensor, which plays the
central role in the theory of elasticity. Yet, the applicability of
the displacement vector is, due to the one-to-one mapping,
restricted to perfect crystals, because an interstitial corre-
sponds to a particle without lattice site �Fig. 1�a��, and an
vacancy to a lattice site without particle �Fig. 1�b��. More-
over, because defects are mobile, any “improved” mapping
would yield displacement vectors that can become arbitrarily
large with time. Linear elasticity, considering small strain
fields, thus would intrinsically be restricted to short times,

contradicting/invalidating its application to low-frequency
vibrations. Thus the need arises to define the displacement
field microscopically without the recourse to a perfect lattice
of equilibrium sites Ri.

In an ideal crystal where the one-to-one mapping of par-
ticles to lattice positions holds, a density change is given by
the divergence of the displacement field7,8

�n�r,t� = − n0 � · u�r,t� �ideal crystal�

with average density n0=N /V and obvious definition of
u�r , t�=�iu

i�t���r−Ri�; note that it is a periodic lattice func-
tion in this case. Above relation holds because the density
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FIG. 1. Schematic two-dimensional drawing of a crystal con-
taining �a� an interstitial and �b� a vacancy with threefold symmetry
�Ref. 6�.
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can only fluctuate by particles moving around their lattice
sites. In an ideal crystal, density thus is not an independent
degree of freedom, and description of the displacement field
suffices. In a real crystal containing point defects, transla-
tional symmetry is still broken and long-range order exists,
but the motion of defects decouples density fluctuations and
the divergence of the displacement field. Density not only
changes because of a deformation of the lattice, given by
−� ·u�r , t�, but also by motion of additional/missing particles
from one lattice cell to another. The density can be decom-
posed in two parts,

�n�r,t� = − n0 � · u�r,t� − �c�r,t� . �1�

This definition of the defect density c�r , t� is positive for
vacancies and negative for interstitials, i.e., the conventional
sign favors the interpretation as a vacancy density. Compari-
son with the discussion in Ref. 3 for vacancies as the only
point defects shows, that the thus defined variation in defect
density is given in terms of number of vacancies Nv and
number of lattice sites Nls,

�c ↔ −
Nls

V
��Nv

Nls
	 .

Thus, the magnitude of the variation in vacancy density in-
creases, if there are more vacancies, and decreases, if there
are more lattice sites.

Based on the relation �1� alone, the hydrodynamic predic-
tions by Martin et al.5 can be recovered. Yet, there exists no
microscopic particle based theory, which provides the defi-
nitions of the displacement and defect density fields, and
recovers Eq. �1� from first principles. We will present these
definitions and derive the equations of motion for the fields,
which reduce to the continuum description in the hydrody-
namic limit. We will follow, within linear-response theory,
the accepted route to symmetry-broken states by considering
conserved and symmetry restoring fields, based on an appli-
cation of Bogoliubov’s inequality, followed by Zwanzig-
Mori equations as pioneered by Kadanoff and Martin,9 and
Forster,4 and by taking the hydrodynamic limit at the end.

In an important contribution, Szamel and Ernst10 sug-
gested the definition of the displacement field that we will
find, which only uses density measurements without recourse
to an underlying lattice. Importantly, the new expression for
u�r , t� can thus be used for both ideal and real crystals, either
by simulation or, experimentally, by optical techniques in,
e.g., colloidal crystals. Because we have a systematic way to
discover the hydrodynamic fields and their equations, we can
correct the work by Szamel and Ernst and achieve consis-
tency with the phenomenological description, which these
authors could not.10,11 Our approach uses density-functional
theory �DFT�, to describe the equilibrium correlations in a
crystal, and thus superficially bears similarities to earlier
works using approximate DFTs.12–20 In contrast to these pre-
vious works, we use exact DFT relations to simplify our
expressions, and do not approximate the free energy func-
tional, nor start from parameterizations of density
fluctuations;21 see Kirkpatrick et al.21 for a discussion of

these approximate theories, and computer
simulations19,20,22–24 for possible problems arising concern-
ing the elastic constants.25

The paper is organized as follows: Sec. II derives the
Zwanzig-Mori equations for �classical� crystalline solids,
where translational symmetry is spontaneously broken and
long-range order exists. For simplicity, the set of conserved
variables is restricted to density and momentum, neglecting
energy. This restricts us to an isothermal approximation.
Again for simplicity, memory kernels are neglected, restrict-
ing us to a dissipationless theory. Because the complete
�infinite-dimensional� set of symmetry restoring variables,
derived from Bogoliubov’s inequality, is considered, a sys-
tematic approach to the dynamics of crystals is achieved;
because we use the fluctuation dissipation theorem, a theory
linearized close to equilibrium is obtained. Section III iden-
tifies the conventional fields used for describing the dynam-
ics of crystals, especially the displacement and defect density
field. Their equations of motion within the first Brillouin
zone are derived. Section IV uses symmetry considerations
within density-functional theory, to derive the properties of
the coefficients entering the equations of motion, and Sec. V
discusses the results. First, the phenomenological equations
of elasticity theory are recovered, and the elastic constants
identified; we obtain their microscopic expressions in terms
of the direct correlation functions of the crystal. Then the
displacement and defect density field are discussed. Section
VI ends the main text with short conclusions and Appendix
shows consistency of the conventional but simplified
Zwanzig-Mori equations of a crystal to our results.

II. GENERAL THEORY

A. Microscopic model and microscopically defined
hydrodynamic variables

We consider a volume V containing N identical spherical
particles at number density n0=N /V. The motion of the par-
ticles with identical mass m is described by a �classical�
Liouville operator L, which includes kinetic and �internal�
potential energies.

For the derivation of hydrodynamic equations, the con-
served quantities need to be considered. Starting with par-
ticle number, the �fluctuating� microscopic density is a sum
over all particles i,

��r,t� = �
i=1

N

�„r − ri�t�… . �2�

Temperature T and density n0 are chosen such that the crys-
talline state gives the lowest free energy and translational
invariance is spontaneously broken. Long-ranged order ex-
ists and the average density varies periodically

n�r� = ���r,t�� = �
g

ngeig·r, �3�

where the order parameters ng are the Bragg-peak amplitudes
at the positions of the reciprocal-lattice vectors g, which are
defined by
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g · L = 2�n , �4�

where n is an integer and L the set of discrete translational
symmetry operations in real space. This means

n�r� = n�r + L� ∀ L . �5�

An ensemble of identical crystals, which are just displaced in
their center of mass or overall orientation, yield vanishing
order parameters. To specify the broken-symmetry state, it is
thus necessary to fix the six degrees of freedom of a rigid
body.26 Conceptually one describes the system in a frame of
the center of mass and orientation, or confines the crystal
with the help of external potentials. An example of such a
potential is an external wall, which in thermal equilibrium
would need to be placed such that Nls crystal lattice sites fit
into the volume without externally applied macroscopic
strain or stress; here Nls differs from N because of point
defects such as vacancies and interstitials. The �canonical�
ensemble, used to define the averages �¯ �=
�̂ . . .d�, and
the corresponding L is henceforth restricted to contain such a
device which fixes the degrees of freedom of a rigid body.
Because the internal fluctuations are not affected in the ther-
modynamic limit, our results will depend on the canonical
set of thermodynamic variables �temperature T, number den-
sity n0, and volume V�, and the order parameters ng. Because
they take their equilibrium �nonstrained� values, our �later�
use of the fluctuation-dissipation theorem restricts us to ob-
tain the linear equations of elasticity, linearized around the
equilibrium at vanishing displacement field, �u��0.

The standard Fourier transformation in space is used,
where d is the spatial dimension, and it will be stated explic-
itly if a specific spatial dimension is considered, which usu-
ally will be three-dimensional space,

��k,t� =� ddre−ik·r��r,t� = �
i

N

e−ik·ri�t�, �6a�

��r,t� =� ddk

�2��deik·r��k,t� . �6b�

Here the reciprocal vector k is unrestricted. The lattice sym-
metry also leads to periodicity in reciprocal space, which can
be considered to be composed of periodically arranged Bril-
louin zones. If one restricts the reciprocal vector q to the first
Brillouin zone, then the Fourier transformation of the density
can be unambiguously decomposed into a reciprocal lattice
vector g and q,

��g + q,t� =� ddre−i�g+q�·r��r,t� . �7�

The Fourier-back transformation simply becomes,

��r,t� = �
g
�

1st BZ

ddq

�2��dei�g+q�·r��g + q,t� . �8�

This splitting of the Fourier coefficients of the density is
useful as for the hydrodynamic description one is interested
in the long-wavelength fluctuations, i.e., q→0, close to all

positions g of the order parameters ng. Using the Fourier-
transformed density the ng are identified as

ng =
1

V
���g�� =

1

V
�

i

N

�e−ig·ri
� . �9�

The second conserved quantity to be considered is mo-
mentum. For the momentum density j��r , t�, which straight-
forwardly is given by

j��r,t� = �
i

N

p�
i �„r − ri�t�… , �10a�

j��k,t� =� ddre−ik·rj��r,t� = �
i

N

p�
i e−ik·ri�t�, �10b�

the distinction between k and q is not necessary. �Greek
indices are used for spatial components, whereas Latin ones
denote particles.�

The conservation of particle density is expressed via �use
of Einstein’s sum convention is implied�

m�t��k,t� + ik�j��k,t� = 0, �11�

which follows from the microscopic definitions, Eqs. �6� and
�10�. The conservation of momentum density is stated
through the divergence of the stress tensor,

�t j��k,t� − ik�	���k� = 0. �12�

A microscopic definition of the stress tensor can be found,
for example, in Ref. 4. As third conserved field, the energy
density should be considered. For simplicity however, we
neglect the coupling of energy fluctuations to the mechanical
fluctuations, restricting our results to an isothermal approxi-
mation. Extensions, incorporating energy fluctuations are
straightforward, in principle.

B. Bogoliubov argument

In a state with spontaneously broken symmetry, additional
variables besides the conserved quantities need to be consid-
ered for deriving the continuum mechanics equations. This
by now classical route to “generalized hydrodynamic or elas-
ticity theory,” in contrast to “hydrodynamic theory without
broken symmetry,” builds on the Bogoliubov inequality to
identify variables with long-ranged equilibrium correlations.
For crystals this variant of Schwarz’s inequality has been
formulated by Wagner,27

����g + q�2� 

�j�

��k�L���g + q��2

�Lj��k�2�
, �13�

where use is made of the Hermitian property of ��LA��B�
and �� denotes the density fluctuations from the equilibrium
density

���r,t� = ��r,t� − n�r� . �14�

The correlation functions required for the Bogoliubov in-
equality are considered in the following. Most of them will
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also be useful for elements of the so-called frequency matrix.
First the classical equipartition theorem states for the corre-
lation of the different spatial components of the momenta of
the particles

�p�
i p�

j � = mkBT�ij���. �15�

With this

��j�
��k,t��j��k,t�� = mn0VkBT���. �16�

The standard properties of the Liouville operator,4 here L=
−i�t, yield

L���g + q� = L�
i

N

e−i�g+q�·ri
= −

�g + q��

m
j��g + q� . �17�

Using Eq. �9� the numerator of the Bogoliubov inequality
becomes

�j�
��k�L���g + q�� = −

�g + q��

m
�j�

��k�j��g + q��

= − �g + q��kBT��
i

N

e−i�g+q−k�·ri�
= − �g + q��kBTVng+q−k. �18�

Thus k has to differ from q in the first Brillouin zone by a
reciprocal-lattice vector g� in order to give a finite order
parameter ng−g�. The denominator is expressed with the con-
servation of momentum density, Eq. �12�,

�Lj��k�2� = k��	��	���k�, �19�

or, neglecting directional dependence, �19�=Rk2 with R the
correlation of the stress tensors.

So finally

����g + q�2� 

�g + q�2�kBT�2ng+q−k2V2

Rk2 . �20�

As ng+q−k�0 only if g+q−k=G, with G a reciprocal-lattice
vector, the Bogoliubov inequality becomes

����G + k�2� 

�G + k�2�kBT�2nG2V2

Rk2 � k−2. �21�

Note that ���G+k� is well defined for fixed G, and in the
hydrodynamic limit k→0 can be replaced with q, which lies
in the first Brillouin zone.

Importantly the Bogoliubov inequality is an argument for
all G�0, but not for G=0, as in this case the right-hand side
of Eq. �21� is proportional to k0. This component of the den-
sity is just conserved, it does not reflect the broken symme-
try. Otherwise, at all finite reciprocal-lattice vectors, the �ex-
pected� Bragg peak, which arises from the coherent
scattering and is infinitely sharp in the present treatment be-
cause of the long-ranged order, sits on top of a diverging
�diffuse� background. Bogoliubov’s inequality only gives a
bound for the divergence for k→0. In Sec. IV B 1 we will
apply relations from density-functional theory to prove the

vanishing with k2 of resummed elements of the inverse of the
density correlation functions, which corresponds to the
equality sign in Eq. �21�.

Following the standard reasoning to derive generalized
elasticity theories, the “symmetry restoring” fluctuations
need to be included in the set of slow variables and lead to
Goldstone modes.4 Equation �21� shows that this requires to
include the density fluctuations close to all reciprocal-lattice
vectors G; note that we will apply Eq. �21� with the trivial
notational change, G replaced by g, in the following.

C. Zwanzig-Mori equations of motion

Whenever a set of slow variables �Ai�t�� is selected, the
Zwanzig-Mori formalism yields their linear equations of
motion.4,28,29 Neglecting dissipation, i.e., memory kernels,
the “reversible” equations of motion for small deviations
��Ai�t��lr are given in terms of the equilibrium frequency
matrix ik,

�t��Ai�t��lr = iik
� ��Ak�t��lr = i���Ai

�L�Aj�

���Aj
��Ak�−1����Ak�t��lr. �22�

Here following Onsager and the fluctuation dissipation theo-
rem, the deviations ��Ai�t��lr of the specified variables from
their equilibrium values are within linear response connected
to correlation functions evaluated in the unperturbed system.
The averages and the Liouville operator L defining the fre-
quency matrix in Eq. �22� thus belong to the canonical en-
semble introduced in Sec. II A.

The equations of continuum mechanics can be derived
from Eq. �22� by choosing as slow variables the set of con-
served and broken-symmetry restoring densities, and then
analyzing the limit of small wave vectors, q→0. Based on
Bogoliubov’s inequality, Eq. �21�, the set of variables com-
prises the d components of the conserved momentum density
�j��q , t�, and the Fourier components of the density fluctua-
tions ���g+q , t� close to the Bragg-peak positions; to
uniquely specify the latter, let us recall that the wave vector
q is restricted to lie in the first Brillouin zone. To clarify the
notation in the following, we abbreviate

�ng�q,t� = ����g + q,t��lr, �23a�

�j��q,t� = ��j��q,t��lr. �23b�

The Zwanzig-Mori equations, Eq. �22�, will for this choice
of variables in the limit of small wave vector lead to the
dissipationless, isothermal �i.e., neglecting coupling to heat
flow�, and linearized equations of crystal elasticity.

Most of the elements of the frequency matrix ik have
been derived in the previous section, namely, in Eqs. �16�
and �18�; note that the latter will be used in the following for
wave vectors k=q in the first Brillouin zone only. Many
matrix elements vanish because of symmetry.30 In the prob-
lem at hand the most useful symmetry in this respect is in-
variance under time reversal, as the dynamical variables have
a definite parity �even for the Fourier components of the
density and odd for the momentum density�, as well as the
Liouvillian L �odd�.
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The only nonvanishing matrix element still missing is the
inverse Jgg� of the density correlation matrix, which is de-
fined by

VkBT�gg� = �
g�

�����g + q����g� + q��Jg�g��q� . �24�

Its properties will be discussed in Sec. IV A.
Thus the dissipationless and isothermal Zwanzig-Mori

equations of motion of a crystal are

�t�ng�q,t� = i� ����g + q��L�j��q��

��j�
��q��j��q��

	�

�j��q,t�

= − i
ng

mn0
�g + q���j��q,t� , �25a�

�t�j��q,t� = i�
g�,g

� ��j��q��L���g� + q��
�����g� + q����g + q��

	�

�ng�q,t�

= − i�
g�,g

�g� + q��ng�
� Jg�g

� �q��ng�q,t� . �25b�

Although formally exact, these equations still need a lot of
interpretation. To begin with, there are �+3 of them in three
dimensions. Naturally the question arises how the set of
��ng�q , t� ,�j��q , t��, in the limit of small wave vector q, re-
duces to the seven conventional ones of elasticity theory
��n�q , t� ,�u��q , t� ,�j��q , t��, if the coarse-grained density
�n�q , t� �or instead the vacancy density �c�q , t�� and the dis-
placement field �u��q , t� are used, as in the case of phenom-
enological theory3,5,7 �see Sec. V B for a summary of phe-
nomenology�. In terms of the frequency matrix this
corresponds to solving the eigenvalue problem, thus showing
that this matrix has seven eigenvalues which become arbi-
trarily small in the limit q→0. These eigenvalues are the
ones of classical elasticity theory and their corresponding
eigenvectors are the variables of the continuum approach de-
rived within our microscopic theory.

III. RELATION TO CLASSICAL ELASTICITY

The Zwanzig-Mori equations of motion, Eq. �25�, can be
written with the frequency matrix in a compact notation, in
order to analyze the hydrodynamic limit. Before doing this in
general, the wave equation, which contains the constants of
elasticity or sound velocities, can be read off immediately.

A. Wave equation

Taking a time derivative of Eq. �25b�, and combining it
with Eq. �25a�, leads to a closed equation of motion for the
momentum density

�t
2�j��q,t� = −

1

mn0
�
g�,g

�g� + q��ng�
� Jg�g

� �q�ng�g + q���j��q,t�

= −
1

mn0
����q��j��q,t� . �26�

This equation can take the required form of the wave equa-

tion, if the d�d-dimensional matrix ����q� vanishes qua-
dratically with wave vector going to zero, ����q�=O�q2� for
q→0. This property and the relation with the elastic con-
stants, which obey the Voigt symmetry in their indices, is the
subject of Sec. IV. Strictly speaking, only then the term wave
equation is justified. From Eq. �26� one reads off

����q� = �
g�,g

�g� + q��ng�
� Jg�g

� �q�ng�g + q��. �27�

The remarkable feature of this equation, however, is that it is
exact and holds for wave vector q throughout the first
Brillouin zone. It is independent of the yet to be found rela-
tion between �ng�q , t� with the displacement field �u��q , t�
and the defect density �c�q , t�. The only input for this
relation are the exact matrix elements of ��j�

��q��j��q��,
�j�

��q�L���g+q��, and �����g+q����g�+q��.

B. Displacement field and defect density

The Zwanzig-Mori equations of motion, Eq. �25�, of the
set of conserved and Goldstone modes couple density fluc-
tuations with modulation given by �almost� the reciprocal-
lattice vectors g. To bring out the contributions from the
various g, consider �n��q , t� as infinite-dimensional �column�
vector, whose components �ng�q , t� are indexed by the g
�ordered in some fixed but arbitrary fashion�. Let v�,g= i�g
+q��ng be an element of a constant infinite-dimensional vec-
tor v�� �index � continues to label the spatial coordinate�, and

let JJ=Jgg� be a corresponding ���-dimensional matrix.
Thus the Zwanzig-Mori equations, Eq. �25�, take the form

�t�n��q,t� = −
1

mn0
v���j��q,t� , �28a�

�t�j��q,t� = v��
†JJ��n��q,t� �28b�

with v��
† =−i�g+q��ng

� an infinite-dimensional �row� vector

and JJ��n� a shorthand notation for �g�Jgg�
� �ng�, etc.

The prequel of the wave equation, Eq. �26�, of the mo-
mentum density immediately is recovered and takes the form

�t
2�j��q,t� =

− 1

mn0
v��

†JJ�v���j��q,t� =
− 1

mn0
����j��q,t� .

�29�

In a perfect crystal, density fluctuations result from the
divergence of the displacement field7,8

�n�q,t� = − in0q��u��q,t� , �30�

motivating the following defining relation

�n��q,t� = − v���u��q,t� , �31�

for the �Fourier-transformed� displacement field �u��q , t�.
Equation �25a� then becomes

v����t�u��q,t� −
1

mn0
�j��q,t�� = 0, �32�

which states for an ideal crystal, as expected, that the time
derivative of the displacement is the velocity field, i.e., the
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momentum density field divided by the mass density

�t�u��q,t� =
1

mn0
�j��q,t� . �33�

Generalizing this consideration in a real crystal, the
�Fourier-transformed� defect density field �c�q , t� can be de-
fined by the difference between the density fluctuations and
the divergence of the displacement field

�n��q,t� = − v���u��q,t� + v���c�q,t� �34a�

with v�� some yet unknown constant vector with components
vg�. For convenience this can be rewritten with v��

0 =v���q
=0�, whose components v��

0 = ig�ng are the Fourier compo-
nents of the gradient of the equilibrium density,

�n��q,t� = − v��
0�u��q,t� − iq�n��u��q,t� + v���c�q,t� �34b�

with n� the vector with components ng. It is an ansatz that the
four �i.e., d+1� dynamical variables introduced, namely, the
�u��q , t� and �c�q , t�, together with the three �d� familiar
components �j��q , t�, solve the infinite set of Eq. �25�,
whose uniqueness we cannot prove. Yet, the proof that this
ansatz solves Eq. �25�, is straightforward and leads to rela-
tions expected from phenomenology �see Sec. V B�. Enter-
ing Eq. �34a� into Eq. �25a� and decomposing v��=v��

0 + iq�n� ,
one arrives at

− v��
0��t�u��q,t� −

1

mn0
�j��q,t��

= n��−
i

mn0
q��j��q,t� + iq��t�u��q,t�� − v���t�c�q,t� .

If one continues to require that the time derivative of the
displacement is the velocity field, Eq. �33�, then the first
bracket vanishes as before. As for the general case with dis-
sipation �t�c�q , t��0 one needs a further relation for the
vanishing of the right-hand side for all q. This is achieved by
taking the unknown constant vector v��=−n� /n0. One is then
able to define the coarse-grained density variation by the
expected relation �1�,

�n�q,t� = − in0q��u��q,t� − �c�q,t� , �35�

which states that density fluctuations are composed of the
divergence of the displacement field and defect density fluc-
tuations. Consequently, the original Eq. �25a� is solved for
all q by the conservation law of mass or particle number,
which causes also the second bracket to vanish

=0

− v��
0��t�u��q,t� −

1

mn0
�j��q,t��

= − n�� 1

n0
�t�n�q,t�+

i

mn0
q��j��q,t�

=0

� .

Equation �25a� thus is solved by the ansatz for all q in the
first Brillouin zone.

Turning to the second Zwanzig-Mori Eq. �25b�, the ansatz
Eq. �34a� transforms it into

�t�j��q,t� = − v��
†JJ�v���u��q,t� − v��

†JJ�
n�

n0
�c�q,t�

= − ����u��q,t� − V��c�q,t� �36�

with constant d-dimensional vector V� given by

V��q� = v��
†JJ�

n�

n0
= −

i

n0
�
g�,g

�g� + q��ng�
� Jg�g

� �q�ng. �37�

This equation is consistent with the wave equation for the
momentum density, when a time derivative is taken, Eq. �33�
is used, and the defect density is constant in time

− V��t�c�q,t� = �t
2�j��q,t� +

1

mn0
����j��q,t� = 0. �38�

Alternatively, Eq. �36� leads to the wave equation for the
displacement field when the time derivative of the displace-
ment is again identified as velocity field

�t
2�u��q,t� = −

1

mn0
����q��u��q,t� −

1

mn0
V��q��c�q,t� .

�39�

Importantly, the matrix of elastic coefficients ����q� in this
prequel of the wave equation is identical to the one derived
for the momentum density, Eq. �26�. Equation �39� can thus
reduce to the expected result from classical elasticity theory
in the limit of small wave vector, if V��q�=O�q� can be
shown for q→0. This will be discussed together with the
properties of ��� in Sec. IV B 1. Then we will be able to
conclude that the Zwanzig-Mori equations of a crystal, Eq.
�25�, are solved by seven �2d+1� coarse-grained fields which
are the momentum density �j��q , t� and the displacement
�u��q , t� and defect density �c�q , t� field introduced in Eq.
�34a�. We will also be able to conclude that the coarse-
grained fields, whose equations of motion were just deter-
mined in this section for q in the first Brillouin zone, obey
the equations of motion known from phenomenological elas-
ticity theory in the limit of q→0. In support of this, Eq. �39�
finds that the prefactors in front of �u��q , t� and �c�q , t� are
connected. Their q→0 limits reduce to thermodynamic de-
rivatives, which, from equilibrium thermodynamics, have to
satisfy Maxwell relations.5,7 While the relations are not suf-
ficient to express one coefficient in turn of the other, the
connection between ��� and V� in Eq. �39� closely mirrors
the thermodynamic one expected in classical elasticity
theory; see Sec. V B.

The question remains how �u��q , t� and �c�q , t�, given
implicitly in Eq. �34a�, can be obtained directly in terms of
the density fluctuations �ng�q , t�. Fortunately, this can be
achieved by projecting �n��q , t� onto the two vectors v��

0 and
n� , as they are orthogonal
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i�v��
0�†n� = �

g
ng2g� = 0, �40�

because of symmetry. Projecting the ansatz for the density
fluctuations in Eq. �34a� onto v��

0 gives an explicit formula for
the displacement field �u��q , t� in terms of the �ng�q , t�,

�u��q,t� = iN��
−1 �

g
ng

�g��ng�q,t� , �41�

with N��=�gng2g�g�. A second summation over �ng�q , t�
obtained from projecting Eq. �34a� on n� yields the hydrody-
namic variation of the coarse-grained density

�n�q,t� =
n0

N0
�

g
ng

��ng�q,t� , �42�

where N0=�gng2. With Eq. �35�, the relation between the
variation in coarse-grained density, the lattice density, and
the defect density, we get

�c�q,t� = − n0�
g

ng
�� 1

N0
− N��

−1 q�g�	�ng�q,t� . �43�

IV. SYMMETRY AND INVARIANCE

This section completes the derivation of Zwanzig-Mori
equations of motion in terms of the Fourier components of
the density by showing that the proper characteristics are
recovered in the hydrodynamic limit. Properties of the �in-
verse� density correlation matrix lead, due to translational
invariance, to the correct q dependence and, due to rotational
invariance, to symmetries of the constants of elasticity.

A. Symmetries of density correlation functions

The symmetry property in Eq. �5� of the average density
of a crystal is very familiar. Also important is the symmetry
property of the equilibrium two-point correlation function.31

For example, the correlation of the density fluctuations
���r , t�=��r , t�−n�r� is also periodic

����r1����r2�� = ����r1 + L����r2 + L�� ∀ L . �44�

This results in a periodic center-of-mass variable R=
r1+r2

2
and a Fourier coefficient, which depends on the difference
�r=r1−r2,

����r1����r2�� = �
g

eig·�r1+r2�/2�ng
�2��r1 − r2� . �45�

As the density is a real quantity and the correlation function
is symmetric with respect to interchange of variables, the
�ng

�2��r1−r2� obey the following two equations:

�ng
�2��r1 − r2� = �n−g

�2��r1 − r2� = �ng
�2��r2 − r1� . �46�

Rewriting Eq. �45�, one realizes that the Fourier transforma-
tion of the Fourier coefficient �ng

�2���r� with respect to the
difference coordinate �r can be understood as a generalized
structure factor Sg�k�,

Sg�k� =
1

V
� ddr1� ddr2����r1����r2��e−ig·Re−ik·�r

�47a�

=� dd�r�ng
�2���r�e−ik·�r �47b�

=�ng
�2��k� =

1

V
����g/2 + k����g/2 − k�� . �47c�

The generalized structure factor Sg�k� is, due to the symme-
try of the crystal, a density fluctuation function evaluated
with a combination of a reciprocal-lattice vector g and a
reciprocal vector k. Bogoliubov’s inequality shows that S0�k�
diverges quadratically at all reciprocal-lattice vectors k→ g̃
�0, which however is not enough information to simplify
completely the expressions for the elastic coefficients that we
derived in Sec. III. It remains to study the complete matrix of
inverse density correlations, Jgg��q� defined in Eq. �24�,
which we undertake now using density-functional theory32–35

together with the symmetry properties for the density corre-
lation function �45�. In the framework of density-functional
theory the crystal is considered as an extremely inhomoge-
neous distribution of matter.

To determine the inverse density correlation matrix we
use the integral version of the Ornstein-Zernike �OZ� relation

��r1 – r3� =� ddr2����r1����r2��C�r2,r3� ,

C�r2,r3� =
��r2 − r3�

n�r2�
− c�r2,r3� . �48�

The first term of the inverse C�r2 ,r3� is the ideal gas contri-
bution, whereas the second part, the direct correlation func-
tion c�r2 ,r3�, is the contribution from the excess free energy,
and describes the interactions. More precisely, c�r2 ,r3 ;n�r��
is a functional of the equilibrium density and is obtained by
the second functional derivative of the excess free energy
Fex with respect to density n�r�,

c�r1,r2;n�r�� = �
�Fex�n�r��

�n�r1��n�r2�
= c�r2,r1;n�r�� . �49�

In the following manipulations the symmetry expressed in
Eq. �45� is used to derive an expression for the inverse den-
sity correlation function Jgg��q� in terms of the direct corre-
lation function c�r1 ,r2� starting with the OZ equation. The
left-hand side of Eq. �48� becomes

� ddr1� ddr3ei�g+q�·r1e−i�g�+q�·r3��r13� = V�gg�. �50�

The right-hand side is
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� ddr1� ddr2� ddr3ei�g+q�·r1e−i�g�+q�·r3

�����r1����r2��C�r2,r3�

= �
G

�nG
�2��− G/2 − g − q�C�− G − g − q,g� + q� ,

�51�

which, with Eq. �47c�, yields

V�gg� = �
g�

�����g + q����g� + q��
1

V
C�− g� − q,g� + q� .

�52�

So the inverse density correlation function is a special kind
of Fourier transformation of essentially the direct correlation
function,

Jgg��q� =
kBT

V
C�− g − q,g� + q�

=
kBT

V
� ddr1� ddr2eig·r1e−ig�·r2eiq·r12

����r12�
n�r1�

− c�r1,r2�� . �53�

With the definition of the direct correlation function �49� and
its symmetry under interchange of r1↔r2 the Hermitian
property of Jgg��q� follows

Jgg��q� = J−g�,−g�− q� = �Jgg��q���T = Jgg�
† �q� . �54�

B. Invariance under global transformations

One of the fundamental results of density-functional
theory32–35 is that the external potential Vext�r� is a functional
of the equilibrium density n�r�. That is, for a given equilib-
rium density the external potential Vext�r�=Vext�r ;n�r̃�� is
uniquely determined.

A functional Taylor expansion thus yields

�Vext�r1� =� ddr2
�Vext�r1�
�n�r2�

�n�r2� . �55�

As the internal state of a crystal is unaffected by a global
translation and rotation, we now consider the effects of such
transformations explicitly. This derivation can also be con-
sidered an invariance principle36,37 and yields relations of the
direct correlation function for a crystal. In the classical ap-
proach to elasticity, particle interaction is described via a
potential.38 In that approach the consequences of invariance
are the conditions for the microscopic expressions of the de-
rivatives of the particle potential, which ensure the macro-
scopic Voigt symmetry of the elastic constants. We derive
analogous results now using the direct correlation function.

1. Translational invariance

In the case of a simple translation the transformation is
given by r�=r+s and the functional Taylor expansion yields

Vext�r1 + s� = Vext�r1� +� ddr2
�Vext�r1�
�n�r2�

�n�r2 + s� − n�r2�� .

�56�

For an infinitesimal translation s�→0 and with a further re-
lation from density-functional theory

�
�Vext�r1�
�n�r2�

= c�r1,r2� −
��r12�
n�r1�

, �57�

one obtains the Lovett, Mou, Buff,39 Wertheim40 equation
�LMBW�

��
�1��ln n�r1� + �Vext�r1�� =� ddr2c�r1,r2���

�2�n�r2� .

�58�

Without external potential the trivial solution is the one with
a homogeneous equilibrium density, i.e., a fluid. As we are
interested in periodic equilibrium densities, the limit of van-
ishing external field is taken which leads to a nontrivial so-
lution. The right-hand side is interpreted as an effective force
on a particle due to interactions with the other particles.33

Constants of elasticity. In this section the dependence on
wave vector q of ����q� in the hydrodynamic limit is de-
rived with the help of the LMBW equation. To do so three
constants of elasticity are introduced

����q� = �
g�,g

�g� + q��ng�
� Jg�g

� �q�ng�g + q�� �27�

= �����q� − iq����q� + iq���
��q� + q���q�q�� ,

�59�

according to the explicit powers in q. The matrix ����q� is
Hermitian, which is a consequence of Eq. �54�.

We now discuss the three constants of elasticity sepa-
rately, and start with the simplest case, which is the term
proportional to q�q�. The realness of the equilibrium density
n�r�=�gngeig·r=�gng

�e−ig·r=n��r� yields

��q� = �
g,g�

ng�
� Jg�g

� �q�ng �60a�

=
kBT

V
� ddr1� ddr2n�r1�n�r2�e−iq·r12���r12�

n�r1�
− c�r1,r2��

�60b�

�� + O�q2� , �60c�

where the homogeneous constant � equals

� =
kBT

V
� ddr1� ddr2�n�r1���r12� − n�r1�c�r1,r2�n�r2�� .

�60d�

It also follows that
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��q� = ���q� , �60e�

is even in q. The fact that ��q��R and that it has only even
powers in an expansion in q is a consequence of the r1↔r2
symmetry. One further interesting fact is that the equation for
� reduces to the inverse compressibility � of a fluid32 for
n�r�=n0 and c�r1 ,r2�=c�r12�,

�−1 =
kBT

V
�N − n0

2V� c�r12�ddr12� �Eq. �4.27� in Ref. 32�

The next term ���q� is manipulated with the help of the
gradient of the equilibrium density ��n�r�=�gig�ngeig·r and
the LMBW equation in the limit of vanishing external poten-
tial

���q� = �
g,g�

ng�
� Jg�g

� �q�ngig� �61a�

=
kBT

V
� ddr1� ddr2n�r1���n�r2�e−iq·r12

����r12�
n�r1�

− c�r1,r2�� �61b�

=
�58� kBT

V
� ddr1� ddr2n�r1���n�r2�c�r1,r2��1 − e−iq·r12�

�61c�

�i���q� + O�q2� , �61d�

where the second rank tensor ��� describing the long-
wavelength limit equals

��� =
kBT

V
� ddr1� ddr2n�r1���n�r2�c�r1,r2�r12,�.

�61e�

For a crystal with inversion symmetry it can be shown that
the correction in the expansion of ���q� is O�q3�. The real-
ness of the gradient of the equilibrium density ��n�r��R,
i.e., ��n�r�=�gig�ngeig·r=�g−ig�ng

�e−ig·r, together with the
LMBW equation is used for the last term ����q�,

����q� = �
g,g�

− ig��ng�
� Jg�g

� �q�ngig� �62a�

=
kBT

V
� ddr1� ddr2��n�r1���n�r2�

�c�r1,r2��1 − e−iq·r12� �62b�

������q�q� + O�q4� , �62c�

where the fourth rank tensor equals

����� =
kBT

2V
� ddr1� ddr2��n�r1���n�r2�c�r1,r2�r12,�r12,�.

�62d�

Obviously, one also finds

����q� = ���
� �q� . �62e�

Again it can be shown that due to the r1↔r2 symmetry, the
expansion in q has only even powers, and that ����q��R, so
����q�=����q�.

Note also, that for the expansion to be valid, the direct
correlation function c�r1 ,r2� is assumed to be of short range
in the difference vector r1−r2.

To sum it up, it was shown in this paragraph that
limq→0 ����q� is indeed second order in q, and this was
derived with the LMBW equation, which is a consequence of
translational invariance,

����q� � �����q�q� + q����q� + q����q� + q��q�.

�63�

The second term in Sec. III B with undetermined q depen-
dence was

V��q� = v��
†JJ�

n�

n0
= −

i

n0
�
g�,g

�g� + q��ng�
� Jg�g

� �q�ng �37�

=
1

n0
���

��q� − iq���q�� �64�

�−
iq�

n0
���� + ����� . �65�

Thus, the momentum equation, Eq. �36�, indeed contains a
term proportional to the gradient of the defect density.

2. Rotational invariance

As translational invariance was the reason behind the cor-
rect q dependence of limq→0 ����q� and limq→0 V��q�, the
consequence of rotational invariance is now considered. It
will be shown, that it yields symmetries in the indices of the
constants of elasticity ��� and �����.

An infinitesimal rotation is given by

r� = r + �� � r + O���2� . �66�

Thus the first-order term of the expansion in �� is

�� � r1 · ��1�Vext�r1� =� ddr2
�Vext�r1�
�n�r2�

�� � r2 · ��2�n�r2� .

�67�

With invariance of the scalar triple product under cyclic per-
mutations and an arbitrary ��, one finally ends up with a
rotational analog of the LMBW equation41
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r1 � ��1��ln n�r1� + �Vext�r1��

=� ddr2c�r1,r2��r2 � ��2�n�r2�� . �68�

This equation may be interpreted as a balance of effective
torques in analogy to the balance of forces.

Symmetry of constants of elasticity. The results for trans-
lational, Eq. �58�, and rotational, Eq. �68�, invariance can be
combined to understand the index symmetries of the con-
stants of elasticity. The difference �r1� �58��– �68�, which is
valid for any Vext�r1�, yields

� ddr2c�r1,r2�r12,���
�2�n�r2� =� ddr2c�r1,r2�r12,���

�2�n�r2� .

�69�

Integrating the last equation with
kBT

V 
ddr1n�r1� leads to

0 =
kBT

V
� ddr1n�r1�� ddr2c�r1,r2�

����
�2�n�r2�r12,� − ��

�2�n�r2�r12,�� . �70�

This is nothing but the statement that ��� is symmetric in its
indices

⇒��� = ���. �71�

In the same manner, as translational and rotational invari-
ance led to a symmetric matrix ���, the symmetry of the
indices of ����� can be addressed. So far it is known that
�����=����� �consequence of symmetry of ����q�� and
�����=����� �symmetric combination in �↔� in definition
�62��. Repeating analogous arguments concerning the sym-
metry of ���, one finds that ����� is symmetric under the
pairwise interchange ��↔�� �see Ref. 25 for details�

⇒����� = �����. �72�

V. RESULTS AND DISCUSSION

A. Summary of the derived equations of motion

Because the results for the equations of motion are spread
over different sections, it appears useful to collect and list
them. Starting with the conserved �neglecting for simplicity
energy conservation� and symmetry restoring fields, we
showed that the ansatz Eq. �34a� leads to an exact solution of
the �for simplicity dissipationless� Zwanzig-Mori equations,
Eq. �25�, if the seven �d+1� coarse-grained fields satisfy the
following �because of our use of the fluctuation dissipation
theorem necessarily� linear equations; they hold for all q in
the first Brillouin zone.

Mass density times the time derivative of the displace-
ment field equals the momentum density field

mn0�t�u��q,t� = �j��q,t� . �73a�

Density fluctuations arise because of the divergence of the
displacement field and defect density fluctuations

�n�q,t� = − in0q��u��q,t� − �c�q,t� . �73b�

Mass is conserved, which connects density and momentum
density fluctuations

m�t�n�q,t� + iq��j��q,t� = 0. �73c�

Momentum density, displacement and defect density field are
coupled in

�t�j��q,t� = − ����q��u��q,t� − V��q��c�q,t�

= − �����q� − iq����q� + iq���
��q�

+ q���q�q���u��q,t� −
1

n0
���

��q�

− iq���q���c�q,t� . �73d�

Also the wave equation for the momentum field holds

mn0�t
2�j��q,t� = − ����q��j��q,t� = �����q� − iq����q�

+ iq���
��q� + q���q�q���j��q,t� . �73e�

In order to recover the momentum wave equation, Eq. �73e�,
by taking a derivative with respect to time of Eq. �73d� and
using Eq. �73a�, the defect density has to be constant

�t�c�q,t� = 0. �73f�

Taking the time derivative of Eq. �73a� and using Eq. �73d�,
one sees that the defect density plays the role of an inhomo-
geneity in the wave equation of the displacement field, which
otherwise contains the identical constants of elasticity as the
momentum one.

In the hydrodynamic limit, where q→0, the elastic coef-
ficients in Eq. �73d� reduce to the following expressions

��q� = � + O�q2� , �74a�

���q� = i���q� + O�q2� , �74b�

����q� = �����q�q� + O�q4� �74c�

with the following symmetries

��� = ���, �75a�

����� = ����� = ����� = �����. �75b�

For later comparison this summary is completed by giving
the momentum equation in the hydrodynamic limit

�t�j��q,t� = iq������ + ����
�c�q,t�

n0
− W����q�q��u��q,t�

�76�

with a wave propagation matrix W����,
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W���� = ����� + �
1

2
������� + �������

+
1

2
������� + ������ + ������ + ������� ,

�77�

which is symmetric in �↔� and ��↔�� according to Eq.
�75�, and symmetrized in �↔�, as both indices are summed
over.

B. Phenomenological theory

For the sake of easy comparison it appears worthwhile to
summarize the results from thermodynamics and classical
elasticity theory in order to compare with our microscopic
expressions. Especially of interest is to verify that our results
obey the symmetry relations derived within the phenomeno-
logical approaches. The derivation of elasticity theory within
nonequilibrium thermodynamics considering the conserved
densities �mass, momentum, and energy� and the broken-
symmetry variable displacement field can be found in the
literature3,5,7 and the result will just be quoted for the revers-
ible, isothermal, and linearized case.

Let u��= 1
2 ���u�+��u�� be the �symmetrized� gradient

tensor of the displacement field, which agrees with the strain
field in the considered small deformation limit. The first law
for the free energy density �per volume� as functions of den-
sity n and strain u�� is

df = �dn + h��du�� �78�

with chemical potential �= �f
�n u��

and h��= �f
�u��

n the stress
tensor at constant density. Note that we keep the temperature
T constant throughout.

For the linearized equations of classical elasticity theory,
one requires the isothermal free energy as an expansion
around the equilibrium value n0, which is given by

f = f0 +� � f

�n�
u��

�n +� � f

�u��
�

n

u�� +
1

2�� �2f

�n2�
u��

�n2

+ 2
�2f

�n � u��

�n · u�� +� �2f

�u�� � u��
�

n

u��u��	 + ¯

�79�

= f0 + �0�n + h��
0 u�� +

1

2
A��n

n0
	2

+ B��

�n

n0
u��

+
1

2
C����

n u��u�� + ¯ �80�

With the equilibrium values of the chemical potential �0 and
of the stress tensor at constant density h��

0 . The thermody-
namic derivatives are: A=n0

2 �2f
�n2 an inverse compressibility,

B��=n0
�2f

�n�u��
a matrix of coupling constants, and C����

n

= �2f
�u���u��

the elastic coefficients at constant density. Due to
rotational invariance, i.e., a symmetric strain field u��, the
thermodynamic derivatives obey certain symmetries: the ma-

trix B��=B�� is symmetric, with up to six independent co-
efficients depending on crystal symmetry; and the elastic
constants �additional symmetry due to definition as second
derivatives� have the Voigt symmetry with a maximum of 21
independent elastic coefficients.

The equations of motion derived from microscopic start-
ing point in the previous sections contain the defect density
as fluctuating variable. Thus it is convenient to introduce the
defect density as thermodynamic variable using the connec-
tion between particle and defect density, Eq. �35�,

�n = − n0u�� − �c . �81�

Changing thermodynamic variables from density to defect
density gives for the free energy

df = − �dc + �h�� − n0�����du�� �82�

=− �dc + 	��du�� �83�

with ��c ,u���=− �f
�c u��

and the stress tensor at constant de-
fect density

	���c,u��� =� � f

�u��
�

c

= �h�� − n0����� . �84�

Based on the above thermodynamic expressions, the phe-
nomenological equations of motion for a crystal can be pre-
sented

�tm�n�q,t� = − iq��j��q,t� , �85a�

�t�u��q,t� =
1

mn0
�j��q,t� , �85b�

�t�j��q,t� = iq�	��, �85c�

which express mass conservation, that the time derivative of
the displacement is the momentum density divided by the
average mass density, and that the �conserved� momentum
density changes because of stresses.

To obtain the desired linear equations of elasticity theory
for this set of variables starting from Eq. �85�, the partial
derivatives of the stress tensor 	�� with respect to the defect
density c and u�� are required. Straightforward differentia-
tion and use of the expansion of the free energy gives

	�� =� � f

�u��
�

c

=� � f

�u��
�

n

+� � f

�n
�

u��

� �n

�u��
�

c

= h��
0 + B��

�n

n0
+ C����

n u��

− n0�����0 +
A

n0

�n

n0
+

B��

n0
u��	 . �86�

Now everything is in place to state the phenomenological
equations of linearized, isothermal, and dissipationless elas-
ticity theory with which to compare our microscopic results.
With the change from �n to �c the hydrodynamic equations
of motion are
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�t�c�q,t� = 0, �87a�

�t�u��q,t� =
1

mn0
�j��q,t� , �87b�

�t�j��q,t� = i�A��� − B���q�

�c�q,t�
n0

− q�q��C����
n − B�����

− ���B�� + A��������u��q,t� . �87c�

In the last equation the elastic constants at constant defect
density appear

C���� =� �2f

�u�� � u��
�

c

= C����
n − B����� − ���B�� + A������,

�88�

and a combination of thermodynamic derivatives A���

−B��, which are based on a Maxwell relation. A related com-
bination also showed up in the coefficient in the elasticity
equations of motion connecting the prefactors of the dis-
placement and of the defect density field, see Eq. �76�.

Comparing the classical equations of elasticity theory
with Eq. �76�, derived from the Zwanzig-Mori equations in
the hydrodynamic limit, we can conclude complete agree-
ment considering the wave-vector dependence, but the issue
of identifying the microscopic expressions with the elastic
constants remains open.

C. Identification of elastic constants

So far we have shown, that ����q��q2 and the symme-
tries of the constants of elasticity ����� and ���. The piece,
which is still missing, is how these constants are related with
“the elastic constants” C����.

As a first observation, the term in front of �c�q , t� in Eqs.
�76� and �87c� implies that the coefficient � equals �up to a
constant C0� the thermodynamic derivative which was abbre-
viated as A,

n0
2 �2f

�n2 = � + C0. �89�

Also, the coupling of the density and strain fluctuations, ab-
breviated as B��, is given by the matrix −���,

n0
�2f

�n � u��

= − ��� + C0���. �90�

For the term in front of �u��q , t� in Eqs. �76� and �87c�
the indices � and � are summed over. Consequently the
fourth rank tensor of wave propagation coefficients W����,
which was defined already symmetrized, has to be compared
with symmetrized elastic constants 1

2 �C����+C�����=W����.
This yields the relevant combination2,38,42 for the elastic con-
stants C���� in terms of wave propagation matrices W����,
or, respectively, constants of elasticity �, ���, and �����,

C���� = �W���� + W���� − W�����

= ������ + ����� − ������

+ ������� + ������ + ������. �91�

Several interesting results for this combination might be
noted: the set of three independent �����, which are not re-
lated via Voigt symmetry, occur in the combination for the
elastic constants. The combination of ��� and � are only in
pairs of the indices �� and ��; there is no Voigt symmetric
term ������+������+������+������ or ��������

+�������, which, for an isotropic solid, corresponds to the
combination of the shear modulus.

The elastic constant at constant density are thus given by
the matrix � defined in Eq. �62� via

� �2f

�u��u��
�

n

= ����� + ����� − ����� + C0������. �92�

The derived results for the elastic constants in terms of the
direct correlation function parallel other known expressions
for quantities characterizing broken symmetries in terms of
c�r1 ,r2�. The Triezenberg-Zwanzig expression43 for the sur-
face tension between gas and liquid phase of a phase sepa-
rated simple system contains the equivalent quantities as our
results, namely, the direct correlation function and the aver-
age density profile. For the surface tension, Kirkwood and
Buff44 gave another equivalent expression in terms of the
actual interaction potential and the density pair correlation
function. For the elastic coefficients familiar results in terms
of the particle interaction potentials can be found in the clas-
sical textbooks,2,38 yet only for the case of ideal crystals and
in the limit of low temperature where particles fluctuate little
around the lattice positions. Shortly, the connection can be
established via the symmetrized wave propagation coeffi-
cients

W���� = −
1

2V
�
i,j

����i, j�Rij,�Rij,� �93�

with ����i , j�=��
�1���

�2���Ri ,Rj�, which contains the actual
potential � and is evaluated at the equilibrium positions R.
Interestingly, we can recover Eq. �93� using the mean-
spherical approximation c�r1 ,r2�=−���r1 ,r2� and appropri-
ately coarse graining.25 However, we are not aware of results
equivalent to ours containing the actual potential and the pair
correlations functions at finite temperature in nonideal crys-
tals.

D. Displacement and defect density fields

After the identification of the coefficients appearing in
elasticity theory, it is worthwhile to turn to the microscopic
definition of the displacement field which resulted from fol-
lowing the standard approach to Zwanzig-Mori equations of
broken-symmetry systems. For crystals of cubic symmetry,
where N��=N��� simplifies in Eq. �41�, it is

�u��q,t� =
i

N�
g

ng
�g��ng�q,t� . �94�

Importantly, this relation allows to determine the displace-
ment field purely from measuring density fluctuations. No
reference lattice is required. Thus, this formula can be ap-
plied in nonideal crystals containing arbitrary concentrations
of point defects such as vacancies and interstitials. For our
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equilibrium considerations to apply, the point defects should
be mobile and diffuse during the measurement, even though
defect diffusion is neglected yet in our dissipationless formu-
lation. Equation �41� was first ingeniously formulated by
Szamel and Ernst,10 who also started with the Fourier com-
ponents of the density, but then changed to the usual set of
hydrodynamic variables. Due to their change of hydrody-
namic variables their results differ from ours in the interpre-
tation of � as inverse isothermal compressibility, and in the
neglect of the coupling term ��u�

��n�; see Appendix. Because
of this, Szamel in a continuation paper11 concluded inconsis-
tencies to phenomenological elasticity theory,7 which are ab-
sent in our results.

Also the result for the density fluctuation appearing in the
equations of elasticity theory is noteworthy

�n�q,t� =
n0

N0
�

g
ng

��ng�q,t� . �95�

This coarse-grained density fluctuation differs from the mi-
croscopic density fluctuation defined in Eq. �14�. One of the
consequences is that the correlation function of the coarse-
grained density is not simply related to the generalized struc-
ture factor Sg�q� defined in terms of microscopic density
fluctuations in Eq. �47�. In the limit of zero wave vector, the
structure factor at g=0 reduces to the isothermal compress-
ibility, Sg=0�q�→n0

2kBT�, while the coarse-grained density
fluctuation function reduces to the thermodynamic derivate

��n��q��n�q��→ n0
2VkBT

� =VkBT� �2f
�n2 �−1 �for C0=0�.

VI. CONCLUSIONS AND OUTLOOK

The definition of a displacement field is central to the
description of crystal dynamics. Yet, for nonideal crystals
containing point defects, it had been lacking. We provide the
first systematic derivation of a microscopic expression for
the displacement field in terms of density fluctuations with
wavelengths close to the reciprocal-lattice vectors. We also
find that the coarse-grained density field of elasticity theory
differs from the �naively expected� small wave-vector limit
of the microscopic density. These expressions lead to micro-
scopic formulas for the elastic constants of a crystal given in
terms of the direct correlation functions. A discussion of the
symmetries of the direct correlation functions recovers the
�required� symmetries of the elastic coefficients for general
crystals. Complete agreement with the phenomenological de-
scription given by the linearized, isothermal, and dissipation-
less elasticity theory is achieved.

A generalization of the approach to include energy fluc-
tuations and dissipation is possible; as are extensions to other
broken symmetry systems, such as quasicrystals and liquid
crystals. Closure approximations for the direct correlation
functions31 will enable quantitative evaluation of the derived
formulas. A generalization of the theory is required for the
inclusion of topological defects,45 which destroy the order
parameter ng. This could then be compared with the con-
tinuum theory of lattice defects.42,46 Colloidal crystals would
provide model systems47–49 where the theory can be tested.
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APPENDIX: CONVENTIONAL SET OF VARIABLES

For comparison we outline in this appendix how the
Zwanzig-Mori equations of motion are derived with the con-
ventional set of variables, i.e., the density �n�q , t�, the mo-
mentum density �j��q , t�, and, as broken-symmetry variable,
the displacement field �u��q , t�. In order to explicitly calcu-
late correlations containing density and displacement field,
we use their expressions in terms of the microscopic density
fields given in Eqs. �41� and �42�. The main result of this
appendix is the interpretation of the terms ����q�, ���q�, and
��q�.

The Zwanzig-Mori equations of motion, Eq. �22�, with
the slow variables ��Ai�� ��n ,�j� ,�u�� contain the nonvan-
ishing matrix elements of the Liouville operator

��j�
��q�L�n�q�� = − q�n0VkBT , �A1�

��j�
��q�L�u��q�� = − i���VkBT . �A2�

While the former macroscopically follows immediately with
Eq. �73c� from the equipartition theorem, Eq. �16�, the latter
additionally requires identifying the time derivative of the
displacement as momentum density �divided by mass den-
sity�, Eq. �73a�. Under the assumption, that the microscopic
fluctuations ���g+q� may be replaced by the hydrodynamic
ones �ng�q�,

���g + q� � �ng�q� = − ingg�u��q� + ng
�n�q�

n0
, �A3�

both matrix elements are rederived from Eq. �18�. In the first
case this leads to

��j�
��q�L�n�q�� = −

n0

N0
�

g
ng

���g + q��ngVkBT� , �A4�

and in the second case to

��j�
��q�L�u��q�� = − iN��

−1�
g

ng
�g��g� + q��ngVkBT .

�A5�

Due to the definitions of N�� in Eq. �41�, N0 in Eq. �42�, and
the orthogonality Eq. �40�, both summations rederive Eqs.
�A1� and �A2�.

Because of time-reversal symmetry the Zwanzig-Mori
equations of motion, Eq. �22�, contain the following nonva-
nishing isothermal correlations: the equipartition theorem for
the momentum density, Eq. �16�; the correlation of the
coarse-grained density, ��n��q��n�q��; the displacement cor-
relation function, ��u�

��q��u��q��, which is the inverse of the
dynamical matrix at constant density; and a coupling be-
tween the displacement field and the coarse-grained density
fluctuation, ��u�

��q��n�q��. The latter three correlations are
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calculated most easily together, as follows with the assump-
tion, Eq. �A3�. We now consider the consequences for the
two-point correlation functions

�����g + q����g� + q��

= ng
�ng��g�g���u�

��q�u��q�� + � �n��q��n�q�
n0

2 �
+ ig��u�

��q�
�n�q�

n0
� − i� �n��q�

n0
u��q��g��� .

�A6�

This is then inserted in the Fourier transformation of the
Ornstein-Zernike equation, Eq. �24�, where the definition of
the inverse density correlation, Eq. �53�, enters. With the
same manipulations as in Sec. IV B 1, one obtains

VkBT = − ���q�� �n��q�
n0

u��q�� + ��q�� �n��q��n�q�
n0

2 � ,

�A7a�

0 = ���q��u�
��q�u��q�� − ��q��u�

��q�
�n�q�

n0
� , �A7b�

0 = − ����q�� �n��q�
n0

u��q�� + ��
��q�� �n��q��n�q�

n0
2 � ,

�A7c�

VkBT��� = ����q��u�
��q�u��q�� − ��

��q��u�
��q�

�n�q�
n0

� .

�A7d�

From this set of equations, the three desired isothermal cor-
relations can be read off. The correlation of the conserved
density or coarse-grained structure factor is given by the in-
verse of ��q�,

��n��q��n�q�� =
n0

2VkBT

��q�
. �A8a�

The displacement correlation function �at constant density� is
given by the inverse of the matrix ���,

��u�
��q��u��q�� = VkBT�����q��−1, �A8b�

which shows that the displacement fluctuations are long
ranged, ��u�

��q��u��q���q−2 for q→0. Lastly, the coupling
between the displacement field and the coarse-grained den-
sity fluctuation is given by the inverse of ���q�,

��u�
��q��n�q�� =

− n0VkBT

���q�
. �A8c�

Note that Szamel11 assumes that this last correlation is O�q�,
i.e., negligible in the hydrodynamic limit, while we find that
it grows like 1 /q and cannot be neglected.

Finally the Zwanzig-Mori equations of motion of a crystal
in terms of the coarse-grained density, the momentum den-
sity, and the displacement field are

�t�n�q,t� = − i
1

m
q��j��q,t� , �A9a�

�t�j��q,t� = − iq�

��q�
n0

�n�q,t� − ����q��u��q,t�

+ iq����q��u��q,t� +
��

��q�
n0

�n�q,t� ,

�A9b�

�t�u��q,t� =
1

mn0
�j��q,t� . �A9c�

The result is, with Eq. �35�, equivalent to Eq. �73�.
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