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We investigate the spin transport through strongly anisotropic noncollinear magnetic molecules and find that
noncollinear magnetic quantum states act as spin-switching devices for the current. Moreover, spin currents are
shown to offer a viable route to selectively prepare the molecular device in one of two degenerate noncollinear
magnetic states. Spin currents can be also used to create a nonzero density of toroidal magnetization in a
recently characterized Dy3 noncollinear magnet.
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One of the most ambitious directions in the quest for the
ultimate miniaturization of electronic devices is represented
by molecular spintronics.1,2 Molecular nanomagnets are par-
ticularly promising for nanospintronics, especially in relation
to the quest for magnetic molecular qubits,3 since transport
experiments4–6 have shown a strong interplay between the
current and the magnetic states of the molecules. To date, all
theoretical investigations on molecular spintronics have ad-
dressed systems whose magnetism is only weakly aniso-
tropic, thus exploring systems whose magnetization aligns
along a single anisotropy axis �collinear magnetism�.7–10 The
noncollinear regime of molecular magnetism, arising when
the on-site magnetic anisotropy of single metal ions is one of
the dominant energy scales, has only been explored very
recently.11 In the noncollinear regime magnetic molecules
can be prepared in degenerate states characterized by nondi-
polar magnetic moments, such as the recently predicted11 and
found12,13 toroidal �or anapole� moment in molecular wheels.

There are two main arguments that make spintronics of
noncollinear magnets of great interest. The first follows from
studies on spin transport through mesoscopic rings with non-
collinear internal magnetic fields, which have been predicted
to produce spin-switching effects.14 The size of noncollinear
molecular scatterers is expected to be more favorable to
overcome dephasing, and lead to the observation of coher-
ence and spin-switching effects. The second argument is re-
lated to the use of noncollinear states to implement molecu-
lar qubits. On the one hand, molecular spin qubits can easily
be addressed via a magnetic field,15 although intermolecular
dipolar interactions lead to short dephasing times.16 On the
other hand, intermolecular interactions between nondipolar
states are weak,11 thus decoherence times longer, although
these states cannot be addressed via uniform fields. Spintron-
ics might offer a promising strategy to address noncollinear
protected molecular qubits.

In this Letter we investigate spin transport through mo-
lecular noncollinear magnetic states, and provide evidence
that these systems do offer strategies to �i� implement
quantum-interference molecular devices capable of reversing
the polarization of an injected spin current and to �ii� selec-
tively populate specific noncollinear magnetic states. The
most relevant transport regime has been shown to be the
Coulomb blockade �CB�.6 The lowest lying states of a nano-
magnet with n unpaired electrons well localized on N metal
centers with local spin s is well described by the Hamiltonian

Hn = − J�
�ij�

s̃i · s̃ j + D�
i

s̃z,i
2 , �1�

consisting of the isotropic Heisenberg exchange coupling be-
tween nearest neighbors with strength J, and easy-axis zero-
field splitting �ZFS� on-site �strength D with D�0�. Note
that the spin operator s̃i has z component s̃i,z parallel to the
local ZFS axis. Whereas previous investigations10 only con-
sidered the collinear weak-anisotropy regime, here we intro-
duce two key ingredients for noncollinearity:11 �i� �D�� �J�
�ii� on-site easy axes not parallel to each other. In this work
we will explore spin transport for a dimer �Fig. 1, top� and a
three-centers molecular wheel �Fig. 1, bottom�.

When connected to source, drain and gate electrodes, un-
der bias voltage VB and gate voltage VG, the molecule will
become charged. The migrating electron will be consecu-
tively accommodated at different metal sites,17 described
here by a set of N atomic orbitals localized on the metal
centers. The molecular Hamiltonian for a charged state with
an excess of Q electrons with respect to the isolated nano-
magnet is given by

Hn+Q = Hn + �� − eQVG��
p

N

�
�

↑↓

np� + t�
�pq�

�
�

↑↓

cp�
† cq�

+ U�
p

N

np↑np↓ + JH�
p

N

�
�

↑↓

�
�

↑↓

s̃p · �p,��cp�
† cp�, �2�

where � is the energy of the localized orbitals, cp�
† are cre-

ation operators for the on-site spin orbitals, np�=cp�
† cp�, t is

a hopping parameter between centers, U is the Coulomb re-
pulsion between two electrons on the same center, �p are
Pauli matrices associated to an electronic spin injected on-
site p, and JH is the Hund’s rule coupling between the spin of
the excess electron on-site p, and the spin moment s̃p on that
center �JH�0�. Here we confine ourselves with the region
around the first CB diamond, where only singly-charged
states are relevant together with the neutral ones. This is
formally achieved by setting U→	. Finally, a tunneling
Hamiltonian Hmix between electrodes and device is intro-
duced in the usual manner,7–10 with tunneling amplitudes es-
timated to be at most 0.3 cm−1.6,9 Given the weak molecule-
lead coupling, the transition rates W between molecule and
contacts are calculated with the Fermi golden rule using
Hmix, assuming a Fermi-Dirac distribution in the two leads,
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kept at different chemical potential 
L−
R=eVB. Next, us-
ing the rates W, a master equation for the nonequilibrium
populations of charged and neutral states of the device is set
up and solved in the steady-state regime. This choice is con-
sistent with the available experimental data4–6 and previous
theoretical work.7–10 The resulting populations are used to
compute the input �IL

↑ − IL
↓� and the output �IR

↑ − IR
↓� spin

currents.
Consider first the dimer molecule with local spin s=3 /2

�e.g., a Co�II� dimer�. We assume co-planar local ZFS axes,
forming angles �= �30° with the perpendicular �z direction�
to the Co-Co bond, �Fig. 1, top�. We choose here D=4J, with
antiferromagnetic isotropic exchange coupling J=−50 cm−1.
The dominant energy scale in Eq. �2� is the on-site Hund-
coupling exchange JH, chosen here as JH=4D=800 cm−1.
Moreover, the source contact is assumed to be ferromagnetic,
the drain nonmagnetic. The spin-polarization axis for the fer-
romagnetic source is coplanar to the ZFS axes and parallel to
z �Fig. 1�. The Heisenberg states of lower energy of the Co
dimer can be described in terms of almost pure noncollinear
Ising states �m1m2�, where mi is the projection of the local
spin moment s along the tilted easy axis.11 For the present
choice of parameters, denoting “+” and “−” the on-site spin-
states ��3 /2�, the ground state is quasidegenerate and corre-
sponds to the in- and out-of-phase superposition of the non-
collinear Neel states �+−�, and �−+�. The tunneling gap is
�0.57 cm−1.

Next, we find the eigenstates of Eq. �2�. We explore here
two limiting situations: a weak-transfer limit with t=0.5D,
and a strong-transfer limit with t=4D=JH. In the weak-
transfer limit, we expect the additional electron spin to fol-
low “adiabatically” the noncollinear magnetic texture of the
molecular device, so that the ground state of the charged
system will be doubly degenerate and dominated by either
the �+−� or the �−+� component of the Neel doublet, carrying
an additional electron on either center, with the spin parallel
to the local magnetic moment via Hund-rule coupling. These
expectations are confirmed by full diagonalization, leading to
the following ground state for the n+1 magnet �unless oth-
erwise stated, we report components whose weight is larger
than 10%�

�0,1
n+1 � C↑,0�+ − ��↑0� + C0,↓�+ − ��0↓� ,

�0,2
n+1 � C↓,0�− + ��↓0� + C0,↑�− + ��0↑� , �3�

where the kets �↑0� denote the determinant of two spin-
orbitals centered on the two metals, the first with spin ↑, the
second empty. We find �C↑,0�2= �C↓,0�2�0.45 and �C0,↓�2
= �C0,↑�2�0.42. On the other hand, in the strong-transfer
limit, intercenter hopping processes have the same rate as
Hund-coupling spin-polarization processes, so that transport
is not expected to be adiabatic. This is confirmed by full
diagonalization, where the ground state is dominated by non-
collinear Ising states favoring spin-preserving hopping pro-
cesses such as �++��↑0� and �++��0↑�. Thus, in this regime
the overlap with the neutral noncollinear Neel states is very
small. The voltage VG is taken large enough to bring in reso-
nance the ground states of the neutral and charged systems,
separated by about 8000 cm−1. Without loss of generality,
we set the equilibrium chemical potential lying in between
the ground- and first-excited state of the neutral molecule
and the temperature to T=0.1 K.

In Fig. 2�a� �weak transfer� and Fig. 2�c� �strong transfer�,
we report the spin current-voltage diagrams obtained for the
two limits of the hopping parameter. Since the source is fully
spin polarized, the input spin current �bullets� always corre-
sponds to the total charge current. Interestingly, in the weak-
transfer limit the output spin current �squares� has a negative
sign: the spin polarization of the input current is reversed in
the output nonmagnetic electrode. On the other hand, in the
strong-transfer regime this spin-switching effect is strongly
quenched. These results are easily interpreted analyzing the
ground state wave functions for the neutral and charged
states. In the weak-transfer limit, the charged ground state
�3� is a coherent state describing the adiabatic hopping of an
injected electron spin between the two metals, in which pro-
cess the additional electron always aligns its spin parallel to
the magnetic polarization of the local metal ion. Thus we
define this limit as the adiabatic-transport limit, in analogy
with the findings reported in Ref. 14 Although the CB regime
is noncoherent, the transition rates entering the master equa-
tion are determined by the overlap amplitudes between the
tunneling combinations of the ground noncollinear Neel dou-
blet, and the charged ground-state doublet �3�. Due to the full
↑-spin polarization of the source, the injected electron on the
first metal center creates an excess of nonequilibrium popu-
lation in the state �0,1

n+1 �see Figs. 2�b� and 2�d�, diamonds�,
which can host an electron with spin up on the first metal.
The electron is then coherently transported through �0,1

n+1 on
the second metal center, where, as described by the �0↓�
component of �0,1

n+1, its spin polarization is reversed. Output
tunneling events from the second metal center into the drain
will thus occur more frequently with opposite spin polariza-
tion.

We note that the coupling between �+−��↑0� and �+
−��0↓� in Eq. �3�, which determines the spin-switching trans-
port, is triggered by the Hund-Hamiltonian, via the interme-
diate state �+−��↓0� �about 4.5% of �0,1

n+1�. Importantly, if the
angle � is set to zero, i.e., within the collinear regime, the
Hund mechanisms leading to the superposition �3� are not

FIG. 1. �Color online� The two molecular spintronics setups
considered in this work. Top, a noncollinear antiferromagnetic
dimer with on-site spin s=3 /2 and coplanar on-site ZFS easy axes,
tilted with respect to the normal to the intermetal distance by �30°.
Bottom, a three-center antiferromagnetic wheel with on-site s
=3 /2 and coplanar on-site ZFS easy axes, arranged tangentially to
the wheel’s circumference �cf. Refs. 11 and 12�.
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active. Note in fact that for �=0 the total spin projection Sz is
a constant of motion, so that �+−��↑0� and �+−��↓0� are not
allowed to mix. The spin-conserving hopping Hamiltonian,
in turn, cannot mix in the spin-reversal component �+−��0↓�.
On the other hand, if ��0, Sz is not conserved, �+−��↑0� and
�+−��↓0� are allowed to mix and the spin-conserving hopping
Hamiltonian can in turn mix �+−��↓0� with �+−��0↓�, thus
leading to the spin-switching transport process. Hence, non-
collinearity is found to be a crucial ingredient for the real-
ization of the spin-switching effect. In the nonadiabatic re-
gime, the spin-switch effect is quenched �Fig. 2�c�	 due to
the negligible presence of spin-switch coherences in the
charged ground state. The current magnitude is much smaller
due to the small overlap between charged and neutral states
�see Fig. 2�c�	.

It is interesting to investigate the case of exact degeneracy
between �+−� and �−+�, implied by the noncollinear Ising
exchange Hamiltonian:

Hn = − JI�
�ij�

s̃i,zs̃j,z + D�
i

s̃z,i
2 . �4�

The ground state of the charged system is still doubly degen-
erate and given by Eq. �3�, with �C↑,0�2= �C0,↓�2= �C↓,0�2
= �C0,↑�2=0.41. The full ↑-spin polarization of the source
electrode will favor population-transfer processes mainly be-
tween the �+−� Neel state and the spin-switch excited state
�0,1

n+1, via the Hund-coupling mechanism. However, now
only half of the input ↑ current is converted to ↓ current, so

that the current is nonpolarized in the drain �see Fig. 2�e�	.
However, the dominant population-transfer process remains
�+−�→�0,1

n+1, and, as seen from Fig. 2�f�, this fact has a fun-
damental consequence: at nonzero bias voltage the spin cur-
rent causes a net excess of population of one of the two
degenerate noncollinear Neel states. Thus, the neutral sys-
tem is prepared in the �−+� state.

Finally, we consider a three-center molecular wheel with
local ZFS axes contained in the molecular plane and tangen-
tial to the wheel’s circumference. This system is of special
interest, being a model for the experimentally characterized
lanthanide wheel Dy3,18 which has been recently shown to
have almost tangential on-site anisotropy axes, leading to
toroidal magnetization.12 For simplicity, here we consider an
analog of this system with s=3 /2 on metal sites. The collec-
tive states are modeled by the noncollinear Ising Hamil-
tonian �1�, with ferromagnetic exchange JI=25 cm−1, and
easy-axis ZFS parameter D=8JI. The ground state of the
three-wheel is a doubly-degenerate Kramer’s doublet charac-
terized by a toroidal magnetic moment �=
BR�ps̃z,p,11,12

where R is the radius of the triangle and 
B is the Bohr
magneton. We denote the two states with �+++�
��=+9 /2R
B� and �−−−���=−9 /2R
B�, where the first posi-
tion refers to the atom more strongly bound to the ferromag-
netic source, and the second position refers to the atom
bound to the nonmagnetic drain. The singly-charged system
is investigated for JH=4D, and for t=0.05D �adiabatic trans-
fer� and t=D �strong transfer�. The ground state of the
singly-charged system is always fourfold degenerate. The

FIG. 2. �Color online� Input �bullets� and out-
put �squares� spin current vs voltage curves �left
column� and �right column� nonequilibrium
populations of neutral �bullets for in-phase and
squares for out-of-phase superposition of �+−�
and �−+�� and charged states �diamonds for �0,1

n+1,
triangles for �0,2

n+1� for the noncollinear magnetic
dimer, with the following type of exchange inter-
action and values of t�D=−200 cm−1�: �a� and
�b� Heisenberg, t=0.5D, �c� and �d� Heisenberg,
t=4.0D, �e� and �f� noncollinear Ising, t=1.0D.
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present spintronics setup �bottom of Fig. 1, spin-polarization
axis of the source coplanar with the wheel’s plane, and per-
pendicular to the bond between metal 1 and metal 2� implies
that only those components of the charged ground state over-
lapping with the �−−−� toroidal state reported in Fig. 1 will
be significantly populated, by virtue of the Hund’s coupling
rule. In the adiabatic limit these states correspond to spin-
switching states, i.e., to states which represent coherent hop-
ping from center 1 to center 2, with inversion of spin polar-
ization, and found to be

�0,1
n+1 � �− − − ��a1�↑00� + b1�0↓0��

�0,2
n+1 � �− − − � � �a2�↑00� + b2�0↓0� + c2�00↑� + c2�00↓��

with �a1�2=0.4, �b1�2=0.38, �a2�2=0.21, �b2�2=0.27, and �c2�2
=0.19. In the nonadiabatic limit the weight of the spin-
switching components becomes smaller �although does not
vanish�, in favor of states representing spin-conserving
hopping processes.

In Fig. 3�a� �adiabatic� and Fig. 3�c� �nonadiabatic� we
report the spin current-voltage diagrams obtained for the two

limits of the hopping parameter: as for the dimer system, we
observe spin switching only in the adiabatic limit. However,
due to the spin polarization of the source electrode, the popu-
lation transfer from the �−−−� toroidal neutral state to the
charged manifold always dominates the noncoherent kinet-
ics, producing an excess of population of �+++�, in both
weak and strong transfer limits �Figs. 3�b� and 3�d�	. This
demonstrates a viable spintronics strategy to prepare a non-
zero density of toroidal molecular magnetization in the
sample.

In conclusion, we have investigated spin transport through
noncollinear magnetic molecules in the sequential tunneling
regime. Two fundamental phenomena are identified here.
The first, the spin-switching effect, is caused by the action of
the noncollinear quantum states on the spin current. The sec-
ond, the selective population bias of one of the two partners
of a noncollinear doublet, is determined by the effect of a
spin current on the noncollinear states. Noncollinearity is
found to be a crucial ingredient in these phenomena. This
work represents a first step into the domain of noncollinear
molecular spintronics, expected to have a significant impact
on the quest for protected molecular qubits.
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