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We present a theory of nonequilibrium quantum criticality in a coupled bilayer system of itinerant electron
magnets. The model studied consists of the first layer subjected to an in-plane current and open to an external
substrate. The second layer is subject to no direct external drive, but couples to the first layer via short-ranged
spin-exchange interaction. No particle exchange is assumed between the layers. Starting from a microscopic
fermionic model, we derive an effective action in terms of two coupled bosonic fields which are related to the
magnetization fluctuations of the two layers. When there is no interlayer coupling, the two bosonic modes
possess different dynamical critical exponents z with z=2 �z=3� for the first �second� layer. This results in
multiscale quantum criticality in the coupled system. It is shown that the linear coupling between the two fields
leads to a low-energy fixed point characterized by the larger dynamical critical exponent z=3. We compute the
correlation length in the quantum disordered and quantum critical regimes for both the nonequilibrium case and
in thermal equilibrium where the whole system is held at a common temperature T. We identify an effective
temperature scale Teff with which we define a quantum-to-classical crossover that is in exact analogy with the
thermal equilibrium case but with T replaced by Teff. However, we find that the leading correction to the
correlation length in the quantum critical regime scales differently with respect to T and Teff. We also note that
the current in the lower layer generates a drift of the magnetization fluctuations, manifesting itself as a
parity-breaking contribution to the effective action of the bosonic modes. In this sense, the nonequilibrium
drive in this system plays a role which is distinct from T in the thermal equilibrium case. We also derive the
stochastic dynamics obeyed by the critical fluctuations in the quantum critical regime and find that they do not
fall into the previously identified dynamical universality classes.
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I. INTRODUCTION

Understanding the role of nonequilibrium drives on sys-
tems tuned near a quantum critical point has received grow-
ing attention in recent years. One of the issues is to under-
stand to what extent the concept of universality persists when
systems depart far from equilibrium. Several works consid-
ered universal scaling behavior in nonlinear transport prop-
erties close to a superconductor-insulator quantum critical
point.1–3 Universal scaling of current in response to an exter-
nal field was also studied for an itinerant electron system
near a magnetic quantum critical point.4 More recently, uni-
versal scaling functions of the nonlinear conductance and
fluctuation dissipation ratios were obtained for a magnetic
single-electron transistor near quantum criticality.5,6

Complimentary works have studied the effects of current
flow on two-dimensional �2D� itinerant electron systems near
a ferromagnetic-paramagnetic quantum critical point by gen-
eralizing the perturbative renormalization group to nonequi-
librium situations.7,8 These works developed scaling theories
which showed that the leading effect of the nonequilibrium
probe is to act as an effective temperature, Teff. As in the
corresponding equilibrium theory,9,10 Teff was found to be a
relevant perturbation at the equilibrium Gaussian fixed point
and to be responsible for inducing a quantum-to-classical
crossover similar to the one triggered by thermal fluctua-
tions. A large-Teff quantum critical regime, analogous to the
corresponding regime in equilibrium quantum criticality,
was also identified. In this regime, the long-time, long-

wavelength behavior of the order-parameter fluctuations was
found to obey Langevin dynamics similar to one of the dy-
namical universality classes considered by Hohenberg and
Halperin.11 This has led to an important identification of a
nonequilibrium dynamical universality class.

The form of the long-time, long-wavelength dynamics
obeyed by order-parameter fluctuations depends intimately
on the geometry of the system and on the manner in which
the nonequilibrium perturbation is applied. For a 2D system,
the orientation of the current flow with respect to the plane of
the system influences the dynamics. When inversion symme-
try is broken,8 for instance, with the application of current
parallel to the plane, the dynamics obeyed by the order-
parameter fluctuations differs from the case where the cur-
rent is applied normal to the plane. Introducing particle ex-
change by tunnel coupling the system to an external reservoir
also affects the dynamical critical phenomena. A system, ini-
tially characterized by conserved order-parameter fluctua-
tions in the closed case, must be described by nonconserved
fluctuations once it is opened. For itinerant ferromagnets,10

this corresponds to a change in the dynamical critical expo-
nent from z=3 to z=2.7 The sensitivity of order-parameter
dynamics to system geometry and the form of nonequilib-
rium perturbation opens up the possibility to explore a vari-
ety of nonequilibrium dynamical universality classes and
contribute to the general understanding of nonequilibrium
quantum criticality.

In this work, we consider nonequilibrium quantum criti-
cality in a coupled bilayer system of itinerant ferromagnets
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tuned close to a spin-density wave instability. The two itin-
erant ferromagnets are separated by a three-dimensional �3D�
insulating barrier �see Fig. 1� and are coupled via short-
ranged spin-exchange interaction. We consider the case
where there is no particle exchange between the layers. De-
parture from equilibrium is achieved by driving one of the
layers with an in-plane electrical current. The resulting
drift8,12 of the spin fluctuations, in turn, causes the fluctua-
tions in the other layer to also drift, ultimately driving the
latter out of equilibrium. A steady state is established by
tunnel coupling the driven layer to an external bath.

We show that the system can be characterized by two
bosonic fields, which simply relate to the physical spin fluc-
tuations of the two layers, and are coupled at the Gaussian
level via the interlayer exchange interaction. The crucial
complexity of the problem comes from the fact that the two
fields possess different dynamics with different dynamical
exponents, z, in the absence of interlayer coupling. This is a
direct consequence of the fact that while one layer is open to
an external substrate �z=2 mode�, the other remains closed
from any external bath �z=3 mode�. As such, the bilayer
system exhibits multiscale quantum criticality. We find that,
because the fields couple linearly, the infrared properties of
the system are governed by a z=3 fixed point.

We present a perturbative renormalization-group analysis
of the system both in and out of equilibrium. In the equilib-
rium case the full system is held at a common temperature,
T. Out of equilibrium, we introduce an effective temperature,
Teff �as in Ref. 8�, which parametrizes the decoherence in-
duced by the nonequilibrium drive. We study the flow of the
system in the vicinity of the z=3 equilibrium Gaussian fixed
point. We identify the line of crossover from the quantum
disordered to the quantum critical regime in terms of the bare
parameters of the system and compute both temperature and
nonequilibrium corrections to the correlation length of the
critical fluctuations in the quantum critical regime. We find
that while the temperature corrections to the correlation
length in thermal equilibrium gain two contributions that re-
flect the presence of the z=2 and 3 dynamics, the nonequi-
librium contribution contains only one correction that reflects
z=2 physics. This result signifies the fact that the nonequi-
librium drive is applied only to the bottom layer whose cor-
responding fluctuations in the decoupled limit possess z=2
dynamics. This shows that the energy scale identified as ef-
fective temperature in a previous work �Ref. 8� does not
strictly apply to this problem.

We also consider the Langevin dynamics obeyed by the
critical fluctuations in the quantum critical regime where the
system effectively becomes classical and the quantum fluc-
tuations can be integrated out. Here, the analysis is carried
out in the eigenbasis that diagonalizes the Gaussian effective
action. Because one of the eigenmodes remains massive at
the critical point, the long-time dynamics of the full system
can be described by a single field. We solve the Langevin
equation for this eigenmode both in and out of equilibrium.
While z=2 physics seem to play no role in the long-time
dynamics of the critical eigenmode in equilibrium, its effect
is important in the nonequilibrium case. In the latter case, the
Langevin dynamics display a hybrid effect of both z=2 and 3
physics. In either case, the obtained dynamics differ from
any of the dynamical universality classes considered in Ref.
11.

The paper is organized as follows. In Sec. II, we begin by
introducing the bilayer system, and present a theory to model
the system. By integrating out all fermionic degrees of free-
dom, the effective two-field bosonic action is derived in Sec.
III. We provide a brief mean-field analysis of the effective
action and establish the fixed point in Sec. IV for the pertur-
bative renormalization-group analysis which follows in Sec.
V. The correlation length is calculated in Sec. VI, and the
dynamics obeyed by the critical fluctuations in the quantum
critical regime is discussed in Sec. VII. Finally, we conclude
in Sec. VIII.

II. SYSTEM AND MODEL

The system of interest, shown in Fig. 1, consists of two
2D itinerant electron systems which are tuned close to a
spin-density wave instability.9,10 Throughout this work, we
assume the systems to be paramagnetic but are nearly un-
stable toward an itinerant ferromagnetic state with an order-
parameter symmetry of Ising nature. We assume no particle
exchange between the two layers, but allow magnetic fluc-
tuations in the layers to interact via short-ranged ferromag-
netic spin exchange. The bottom layer is tunnel coupled to a
substrate and is driven out of equilibrium by a uniform elec-
tric field E applied in the in-plane direction.

The total Hamiltonian of the system is given by

H = Hb + Ht + Hb-t + Hsub + Hb-sub, �1�

where b �t� labels the bottom �top� layer and sub denotes the
substrate. The Hamiltonian for each layer has a kinetic part
and an onsite ferromagnetic exchange interaction term with a
common interaction strength U. They can be written as

Hb = �
k,�
�k−eA/ccbk,�

† cbk,� −
U

2 �
i

�Sb,i
z �2, �2�

Ht = �
k,�
�kctk,�

† ctk,� −
U

2 �
i

�St,i
z �2, �3�

where cb�t�k,� is the annihilation operator for the bottom �top�
fermions with in-plane momentum k and spin �. The usual
quadratic dispersion, �k= �k�2 /2m, is assumed in both layers.
S�,i

z =���c�i�
† c�i� is the magnetization for layer �, where i

Lead Lead

Substrate

Insulating Barrier

2DEGs

FIG. 1. Edge-on view of the model system considered in this
work. The two itinerant electron films �2DEGs� are coupled via
short-ranged spin-exchange interaction. The bottom 2DEG is tunnel
coupled to a substrate and is driven out of equilibrium by a uniform
electric field E applied in the in-plane direction. The top layer in
turn is driven out of equilibrium by its interaction with the lower
layer. There is no tunneling of electrons between the two 2DEGs.
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labels the in-plane position, and the usual factor of 1/2 was
absorbed in the interaction U. e is the electron charge. We
use a gauge in which the electromagnetic potential A
=−cEt, and set �=1.

Equations �2� and �3� have been written in a form which
explicitly breaks SU�2� symmetry. Here, we are assuming
that the itinerant magnets possess an easy axis so that their
magnetization prefers to point up or down with respect to a
certain crystal axis. Indeed, strong spin-orbit coupling in
some itinerant magnets is known to give rise to pronounced
magnetocrystalline anisotropy.13,14 In this work, we also fo-
cus solely on the disordered side of the phase diagram where
number of components for each of the order parameters are
not expected to influence the results in an essential way.9,10

The Hamiltonian describing the interlayer interaction
reads

Hb-t = − J�
i

Sb,i
z St,i

z , �4�

where J�0 is the strength of the ferromagnetic exchange
interaction. The interaction may be mediated by magnetic
fluctuations in the central paramagnetic insulator. We assume
that these fluctuations possess long-range correlations in the
out-of-plane direction �on the order of its thickness�, but
short-ranged correlations in the in-plane direction, which jus-
tifies the locality of the interaction in the in-plane direction.
We refer the reader to Appendix A for further details on how
the paramagnetic fluctuations of the central insulator can
give rise to an effective spin-exchange interaction between
the two layers. The substrate Hamiltonian and the tunneling
Hamiltonian, which describes the coupling between the bot-
tom layer and the substrate, are given by

Hsub = �
k,kz,�

�k,kz
ak,kz,�

† ak,kz,�
, �5�

Hb-sub = � �
k,kz,�

ak,kz,�
† cbk,� + H.c., �6�

where ak,kz,�
is the annihilation operator for the substrate

fermions, and � parametrizes the tunneling strength between
the layer and the substrate. The substrate is modeled as a
Fermi-liquid bath with �k,kz

=�k+��kz�, where kz labels the
out-of-plane momentum, and ��kz� is some dispersion not
necessarily quadratic. The essential features of the bath are
its density of states, �, which implies a broadening in the
electronic levels associated with the bottom layer, 	=
��2

�the escape rate of electrons from the bottom layer to the
substrate�, and its resistivity, which we assume to be very
high relative to that of the layer so we may couple the elec-
tric field only to the bottom layer.

III. EFFECTIVE KELDYSH BOSONIC ACTION

To harness the nonequilibrium nature of the problem, we
formulate our model using the Keldysh path-integral
formalism.15 We begin by writing the Keldysh partition func-
tion

ZK =� D�c̄�,c�, ā�,a��eiS+−iS−
, �7�

where + and − label the action for the forward and backward
parts of the time-loop contour, respectively. The full action is
given by

S� = Sb
� + St

� + Sb-t
� + Ssub

� + Sb-sub
� , �8�

where

Sb
�=� d3xc̄b�

� �i�t −
�i�r + eA/c�2

2m
+ b	cb�

� +
U

2
� d3x�Sb

z,��2,

�9�

St
� =� d3xc̄t�

� �i�t +
�r

2

2m
+ t	ct�

� +
U

2
� d3x�St

z,��2,

�10�

Sb-t
� = J� d3xSb

z,�St
z,�, �11�

Ssub
� =� d3xdzā�

��i�t +
�r

2

2m
− ��− i�z� + s	a�

� , �12�

Sb-sub
� = − �� d3x�ā�,z=0

� cb�
� + c̄b�

� a�,z=0
� � . �13�

We are using x= �t ,r�, r being the in-plane coordinate; z
denotes the out-of-plane direction. All fermionic fields are
now expressed in terms of Grassmann variables. We have
omitted position and time dependences from all fields for
brevity and assumed summation over the spin. �=� label a
branch of the Keldysh contour on which the corresponding
field resides. b, t, and s are the chemical potentials of the
bottom layer, top layer, and substrate, respectively.

A. Free fermionic action

The free fermionic action in Keldysh space can be ob-
tained by setting U=J=0. After performing a standard
change of basis,15

c1 =
c+ + c−


2
, c2 =

c+ − c−


2
,

c̄1 =
c̄+ − c̄−


2
, c̄2 =

c̄+ + c̄−


2
, �14�

the Keldysh action for layer � is simply given by

S�,0 = �
k,�

�c̄�k�
1 c̄�k�

2 ���G�k
−1�R �G�k

−1�K

0 �G�k
−1�A ��c�k�

1

c�k�
2 � .

�15�

Here, k= �� ,k� labels the energy-momentum three vector
and we have introduced the notation k,�=�� d2k

�2
�2
d�
2
 . The
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top-layer electron Green’s functions correspond to those of
free equilibrium electrons,

Gtk
R�A� =

1

� − �k
t � i0+ ,

Gtk
K = − 2
i sgn������ − �k

t � , �16�

where �k
t =�k−t. We note that the Keldysh Green’s function

is given in its zero-temperature form.
The bottom layer is affected by both the electric field and

the substrate, and this substantially modifies the Green’s
functions. Derivation of the Green’s functions will be briefly
outlined here. More detailed derivations can be found in
Refs. 8 and 12. The first step is to integrate out the substrate
degrees of freedom. For a frequency-independent tunneling
amplitude �cf. Eq. �6�� the effects of the substrate can be
parametrized by a constant level-broadening parameter 	
=
��2, which measures the rate at which electrons in the
bottom layer escape into the substrate. Then the retarded and
Keldysh self-energies which renormalize the bottom Green’s
functions are given by

�k
R = − i	 = ��k

A��, �17�

�k
K = − 2i	�1 − 2g���� . �18�

Here, g��� is the Fermi-Dirac distribution of the substrate,
where � is measured with respect to the chemical potential
s of the substrate. We note here that because of our particu-
lar system geometry, the scattering into the bath dominates
over electron-paramagnon scattering, which leads to consid-
erable analytical simplifications. For instance, in Ref. 4, the
geometry is that of a thin strip which is coupled to a bath
only at its boundary. In that case, electron-paramagnon scat-
tering is crucial and one must calculate the electron and para-
magnon distributions self-consistently. We also note that
coupling the entire lower layer �and not only its boundaries�
to an infinite bath allows one to assume that the Joule heat
generated by the electric field is efficiently carried away into
the bath.

We now consider the effect of the nonequilibrium drive.
At this point we specify the magnitude of the electric field
that will be considered in this work. We will be comparing
the electric field E to 	, the escape rate of electrons from the
bottom layer to the substrate, or rather to the corresponding
time scale �=1 /2	. We introduce a quantity which will
be important in the remainder of this work: the effective
temperature scale set by the nonequilibrium field, Teff.
This quantity parametrizes the consequences of the
nonequilibrium-induced decoherence. In this system, where
a uniform current flows in the in-plane direction, Teff is given
by4,8

Teff = eEvF� . �19�

We will limit ourselves to weak fields: Teff /EF�1 and
�Teff�1, where EF is the Fermi energy of the bottom layer.
Restricting ourselves to this regime and using the canonical
momentum, the retarded and advanced Green’s functions
take their equilibrium form8

Gbk
R�A� =

1

� − �k
b � i	

. �20�

Here, �k
b =�k−b. The nonequilibrium Keldysh Green’s func-

tion can be obtained using the linearized quantum Boltzmann
equation16,17 �QBE� for the lesser Green’s function,

eE · ��k + vk���Gbk
� = �bk

�Abk − 2	Gbk
� . �21�

With the usual parametrization, the lesser Green’s function
can be written as

Gbk
� = ifbkAbk, �22�

where fbk is the distribution function and Abk the spectral
function. With this parametrization one obtains a QBE for
the distribution function,

eE · ��k + vk���fbk = 2	�− fbk + g���� . �23�

Following Ref. 8, we simplify Eq. �23� by dropping the gra-
dient term in the left-hand side, which is justified in the
weak-field limit. One then is required to solve the following
QBE:

eE · vk��fbk = 2	�− fbk + g���� . �24�

The Keldysh Green’s function is then obtained by solving
Eq. �24� for the distribution function and substituting this
into the standard formula,

Gbk
K = �1 − 2fbk��Gbk

R − Gbk
A � . �25�

At zero temperature, the nonequilibrium electron distribution
can be easily obtained and is given by

fbk = ��− �� +
1

2
�sgn��� + sgn�E · vk��e−���/�eE·vk��, �26�

where we have used the fact that g���=��−�� at T=0 ��
being the Heaviside function�. We see from Eqs. �24� and
�26� that in equilibrium �E=0�, the bottom electron distribu-
tion reduces to the distribution of the substrate electrons sig-
nifying the state of thermal and chemical equilibrium be-
tween the two systems. We will hereafter assume for
simplicity t=b=s=. We therefore drop the superscript t
and b from the top and bottom dispersions and assume that
both dispersions and frequency � are measured with respect
to the common chemical potential .

We note here that the linear-response approach to obtain-
ing the electron-distribution function is justified here as long
as the shift of the Fermi surface in momentum space �eE�� is
much less than the Fermi wave vector. Indeed, we will find,
as in similar previous works,7,8 that the nonequilibrium field
is a relevant perturbation and grows under the
renormalization-group flow. In this work, we restrict our flow
up to the scale where eE��kF so that Eqs. �25� and �26�
remain valid.

B. Interactions

The interactions are given by
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Sint
� =� d3x�JSb

z,�St
z,� +

U

2
�Sb

z,��2 +
U

2
�St

z,��2	 . �27�

The interactions are decoupled by two one-component
bosonic fields, mb

��x� and mt
��x�, which physically represent

the magnetization in the bottom and the top layers, respec-
tively. The decoupling leads to

Sint
� = − U� d3x�1

2
�mb

��2 +
j

2
mb
�mt

� − �mb
� + jmt

��Sb
z,�	

+ �b ↔ t� , �28�

where j=J /U is the interlayer exchange coupling normalized
by the intralayer exchange interaction. At this point, it is
useful to introduce a new basis for the bosonic fields

��b
�

�t
� � = �1 j

j 1
��mb

�

mt
� � . �29�

The transformation is well-defined given j2�1. The � fields
reduce to the physical layer magnetizations when the inter-
layer coupling J→0. Both bases give an equivalent descrip-
tion of the problem but the analysis is simplified in the �
basis because �b ��t� couples directly only to b �t� fermions,
as can be seen from the third term in Eq. �28�. Integrating out
the fermions will not generate additional couplings between
the bosons. In this new basis Eq. �28� takes the form

Sint
� = − U� d3x

1

1 − j2�1

2
��b

��2 +
1

2
��t

��2 − j�b
��t

�	 − �b
�Sb

z,�

− �t
�St

z,�. �30�

The final Keldysh action for the interactions is obtained after
performing a change of basis in Keldysh space. The corre-
sponding transformation for the bosons reads

�cl =
�+ + �−


2
, �q =

�+ − �−


2
�31�

with the analogous transformation for the conjugated fields.
“cl” and “q” stand for classical and quantum Keldysh com-
ponents, respectively. The resulting action then reads

Sint
� = �

k,q
�
�,�

�


2
�c̄�k�

1 c̄�k�
2 ����cl ��

q

��
q ��

cl�
k−q
�c�q�

1

c�q�
2 �

−
1

2Ũ
�

q
�
�,�

���,−q
cl ���� − j��x������q

q + c.c.� , �32�

where Ũ=U�1− j2�. � and � here are summed over b and t
and q= �� ,q� labels bosonic frequency and momentum.

C. Integrating out fermions

We now integrate out all remaining fermionic modes to
obtain an effective bosonic theory in the � basis. Here, we
follow the standard procedure and expand the resulting ac-
tion up to quartic order in the bosonic fields. This then yields

Seff = Seff
�2� + Seff

�4�, �33�

where the Gaussian part reads

Seff
�2� = − �

q

��bq
† ��Ũ��−1�̂x + �̂bq��bq −�bq

† ���̂x��tq

+ �b ↔ t�� , �34�

where �= j�Ũ��−1, �=m /
 is the two-dimensional density of
states at the Fermi energy, and �̂x is a Pauli matrix in Keldysh
space. The two-component vector ��

T = ���
cl ��

q� denotes the
structure of the fields in Keldysh space. The hat above the

polarization function, �̂�q, denotes its matrix nature with the
usual Keldysh causality structure,15,17

�̂�q = � 0 ��q
A

��q
R ��q

K � . �35�

Here, the retarded and Keldysh polarization functions are
defined by

��q
R =

− i

�
�

k

�G�,k+q
R G�k

K + G�,k+q
K G�k

A � , �36�

��q
K =

− i

�
�

k

�G�,k+q
K G�k

K + G�,k+q
R G�k

A + G�,k+q
A G�k

R � , �37�

and ��q
A = ���q

R ��. The quartic terms read

Seff
�4� =� d3x �

�,n=1

n=4

un
����

cl�x��4−n���
q�x��n. �38�

Note that as advertised above, the quartic part of the action
does not couple the bosonic fields. As a matter of fact, in the
� basis, the only mixing appears in the quadratic part of the
action. We now turn to the evaluation of the polarization
functions, which will reveal the dynamics of the bosonic
fields as well as the effects of the nonequilibrium drive on
the latter.

Integrating out soft fermionic modes is now known to
yield nonanalytic corrections to the static spin susceptibility
and invalidate the standard Landau-Ginzburg-Wilson de-
scription for itinerant ferromagnets in relevant dimensions.18

However, these nonanalyticities are also known to cancel for
the case of ordering field with Ising symmetry.19

D. Polarization functions

We begin with the evaluation of �̂tq, which is computed
using equilibrium electron propagators of the top layer. The
retarded component can then be obtained by analytic con-
tinuation of the standard Matsubara polarization function
used for a clean itinerant ferromagnet9,10,20 yielding

�tq
R = − 1 + �q�2 − i

�

vF�q�
. �39�

The Keldysh polarization function for the top layer can be
straightforwardly obtained using the fluctuation-dissipation
theorem. At T=0, it reads

�tq
K = − 2i

���
vF�q�

. �40�
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The polarization functions, �̂bq, have been obtained
elsewhere8 and the detailed calculations here will be rel-
egated to Appendix B. Here we state the results. The retarded
polarization function for �q�� �vF��−1 and Teff��1 is given
by

�bq
R = − 1 + �q�2 − i��� − vd · q� . �41�

We note here that the condition �q�� �vF��−1 was crucial in
obtaining the z=2 dynamical term above with a constant
Landau damping coefficient. In the limit where �q�
� �vF��−1, an expansion with respect to ��q�vF��−1 becomes
possible and the dynamical term for the bottom layer gets
modified to i� /vF�q�. We shall focus on excitation energies
less than 	 and momenta less than 	 /vF where nonconser-
vation due to escape into the leads is dominant.

The parity-breaking drift term contains the drift velocity
which reads

vd =
eE�

m
. �42�

The Keldysh polarization function contains information
about decoherence arising from the noise in the current and
is given by

�bq
K = − 2i�����1 + I�Teff

��� �	 , �43�

where

I�x� ª x� d�

2

�cos ��e−1/x�cos ��. �44�

Absence of drift in the Keldysh polarization indicates that
the noise does not drift in the presence of the current in the
bottom layer.

Once these polarization functions are inserted into Eq.
�33� one obtains a theory of two coupled bosonic modes, one
of which ��b� is characterized by a dynamical critical expo-
nent z=2 and the other ��t� by z=3. In the decoupled limit
��→0�, the former fluctuations are nonconserved in nature
because the bottom layer is open to the external bath. On the
other hand, the top layer does not couple to any bath and is
thus characterized by conserved fluctuations.

IV. PRELIMINARY CONSIDERATIONS

A. Mean-field analysis

We begin with a mean-field analysis of the effective
bosonic action �Eqs. �34� and �38�� in order to understand
how a finite interlayer interaction and nonequilibrium drive
affect the underlying Stoner condition. Assuming a mean-
field ferromagnetic state, whose solution is both static and
uniform �i.e., �→0 and q→0�, we may write down the
following Landau-Ginzburg theory for the bilayer system:

SLG = ���b
2 + �t

2� − 2��b�t + ub�b
4 + ut�t

4. �45�

Here, �=1 / �Ũ��−1; we have set the area to unity. It is clear
from Eq. �45� that the interlayer coupling j gives rise to a

renormalization of the Stoner criterion. However, the �parity-
breaking� electric field does not give an additional renormal-
ization as the relevant corrections vanish for �→0 and q
→0.21

When �=0, i.e., j=0, the two fields decouple and the
usual Stoner condition for the instability �i.e., 1 /Uc=�� is
regained for each of the two layers. However, for ��0, the
Stoner condition for a critical U is shifted. To see this, we
begin with the saddle-point conditions for the theory,

��b − ��t + 2ub�b
3 = 0, �46�

��t − ��b + 2ut�t
3 = 0. �47�

In general, ub�ut, because these constants microscopically
arise from particle-hole fluctuations, and the fermions in the
bottom and top layers possess different dynamics. We see
that in the mean-field equation for a given layer, the compli-
mentary layer enters like a magnetic field that tends to align
both order parameters. Decoupling the equations leads to 0

= ��2 /�−����+ �
� �u�+ �2

�2 u�̄���
3 +

3�2u�u�̄
�3 ��

5 +
3�u�

2u�̄
�3 ��

7 +
u�

3u�̄
�3 ��

9 ,
where �̄ is the label complimentary to �. We see that for �
�� the system is disordered and that the transition occurs at
�=� as one increases U. The modified Stoner condition for
the instability is then given by

Uc =
1

�
− J . �48�

We see that the critical U is reduced from the one corre-
sponding to the single-layer Stoner criterion because the in-
terlayer interaction promotes the ferromagnetic state. The
considerations above lead us to introduce the tuning param-
eter for the transition �=�−�. The mean-field phase diagram
is shown in Fig. 2. Throughout this work, we will be consid-
ering properties of the system in the vicinity of the transition
and in the disordered region of the phase diagram where �
�0, i.e., ���. In addition, we will be assuming ����0

FIG. 2. Mean-field phase diagram. The solid line separates the
ordered ���0� and disordered ���0� phases. The dashed line cor-
responds to U=J; in region 1 �2�, ��0 ��0�. In this work, we
concentrate on region 1 of the disordered phase, near the transition
line.
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and ��� ,�, which corresponds to a region close to the tran-
sition line in region 1 of Fig. 2.

B. Fixed point

The effective bosonic action �Eqs. �34� and �38�� consists
of two coupled modes, �b and �t, that are characterized by
different dynamical critical exponents. In the decoupled limit
��→0�, the �b spin fluctuations are nonconserved in nature
because the bottom layer is open to the substrate, and this
gives rise to its z=2 dynamics. �t fluctuations, on the other
hand, are conserved with z=3 dynamics because the top
layer is not subject to particle exchange with an external
bath. For finite �, these modes are coupled at the Gaussian
level. As such, the model exhibits multiscale quantum criti-
cality. The phenomenon has been addressed in the context of
the Pomeranchuk �or nematic� instability in two spatial
dimensions,22,23 and in the study of quantum phase transi-
tions that spontaneously develop ferromagnetic order in a
helical Fermi liquid,24 the latter describing the low-energy
physics of surface states of a three-dimensional topological
insulator. In both situations, the low-energy bosonic theory
consists of two modes, one longitudinal and the other trans-
verse with different dynamical critical exponents. The lowest
order coupling appears at the quadratic level, i.e., ��

2 ��
2, in

contrast with the linear coupling present in our situation. In
both the Pomeranchuk and helical liquid scenarios, the lon-
gitudinal mode is Landau-damped with z=3 and the trans-
verse one is ballistic and undamped with z=2. In Ref. 23, it
was argued that the low-energy behavior of the system at T
=0 is governed by the undamped z=2 mode since it pos-
sesses the smaller effective dimension. This claim is sup-
ported by the fact that renormalizations due to fluctuations to
the mass and the vertex are dominated in the infrared by the
z=2 mode.

To carefully determine the nature of the equilibrium fixed
point at T=0, let us consider the correction to the mass in
perturbation theory. We begin with our Gaussian action in
the Matsubara form

Seq
�2� = �

q

��bq
� �tq

� ��Lbq
eq − �

− � Ltq
eq���bq

�tq
� , �49�

where Lbq
eq =�+ �q�2+ ���� and Ltq

eq=�+ �q�2+ ��� /vF�q� are the
equilibrium inverse susceptibilities. The propagators for the
modes, obtained by inverting the 2�2 inverse susceptibility
matrix, are ��b�q��b

��q��=Ltq
eq /Dq

eq, ��t�q��t
��q��=Lbq

eq /Dq
eq,

and ��b�q��t
��q��= ��t�q��b

��q��=� /Dq
eq, where Dq

eq=Lbq
eqLtq

eq

−�2 is the determinant of the matrix. While the off-diagonal
mass, �, does not gain corrections from quartic fluctuations,
the diagonal mass, �, does gain renormalizations correspond-
ing to the usual tadpole diagram of Fig. 3. For the �b sector,
this is given by

��b �� d2q

�2
�2

d�

2


� + �q�2 +
���

vF�q�
Dq

eq . �50�

The contribution of the z=3 fluctuations near the critical
point can be estimated by setting ���q�3. Then Eq. �50�
essentially reduces to

��b�z=3 �� d5q

2� + �q�2
� �3/2, �51�

where �=�−� is the distance to the critical point, and we
have assumed ���. For z=2 fluctuations, ���q�2, and the
contribution can be estimated as

��b�z=2 �� d4q

2� + �q�
� �3. �52�

In the vicinity of the critical point �as �→0�, the z=3 fluc-
tuations are expected to dominate. A similar calculation can
be carried out for the �t sector leading to the same conclu-
sion.

The key difference here from the analysis in Ref. 23 is
that the modes are coupled at the Gaussian level and that the
two dynamical terms enter together in all of the propagators.
It is then clear that close enough to the critical point �where
the characteristic length scale of the bosonic fluctuations �
�vF��, the conserved dynamical term �� /vF�q�� will domi-
nate over the nonconserved counterpart ����, and the low-
energy long-wavelength theory will be governed by z=3 dy-
namics. We now study the renormalization-group flow in the
vicinity of this z=3 fixed point.

V. RENORMALIZATION-GROUP ANALYSIS

To aid with the analysis we begin with the effective
Gaussian action �cf. Eq. �34��

Seff
�2� = − �

q

 

��bq
† �tq

† �� L̂b − ��̂x

− ��̂x L̂t

���bq

�tq
� , �53�

where L̂�= �Ũ��−1�̂x+�̂�q. The explicit expressions for the
matrix elements read

Lb
R = � + �q�2 + ivd · q� − i�� , �54�

Lb
K = − 2i�����1 + I�Teff

��� �	 �55�

and

Lt
R = � + �q�2 − i

�

vF�q�
, �56�

FIG. 3. Tadpole diagram for the mass renormalization. The
curly lines correspond to magnetization fluctuations �� belonging
to the same sector, b or t. As noted before, there’s no mixing at the
quartic level in the � basis.
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Lt
K = − 2i

���
vF�q�

. �57�

The quartic action was given in Eq. �38�.

A. Flow equations out of equilibrium

We study the flow in the vicinity of the z=3 Gaussian
fixed point with Teff=�=un

�=0. Here, T=0 throughout. At
this fixed point the most relevant dynamical term �i.e.,
� /vF�q�� remains marginal. In Eq. �53�, we have defined our
momentum cutoff  , which in turn defines an associated
cut-off energy scale vF . All energy quantities will be con-
sidered to be in units of this scale. The bare parameters are
taken to be � ,Teff ,un

� ,� ,��1 with ���!�. We begin by
integrating out fluctuations whose modes reside in the shell
 /b"q" . Here, b�1 is the scaling variable. In order to
preserve Keldysh causality, we integrate over all frequencies
�i.e., −#���#� at every mode-elimination step. We next
rescale momentum, q→q� /b, to restore the cutoff back to  .
At the z=3 fixed point, the frequency scales as �→�� /b3

and this keeps the coefficients of �q�2 and � /vF�q� terms
invariant under the flow provided that the fields scale as
��q

cl,q→b7/2���q
cl,q��. The �Teff /�� scaling present in the

Keldysh components suggests that Teff is relevant at the fixed
point and scales with dimension of three, i.e., Teff→Teff� /b3.
The nonconserved dynamical term is irrelevant at the fixed
point, and this is reflected in the scaling �→��b. Then, the
requirement to maintain the drift term invariant under the
flow dictates the scaling of the drift velocity as vd→vd� /b2.
Note that the drift term contains the combination �vd, which
has scaling dimension one, just as in Ref. 8. Both the diag-
onal ��� and the off-diagonal ��� mass terms scale with the
usual dimension of two. Finally, at the z=3 fixed point, all
quartic coupling constants are irrelevant with �un

��=−1.
Therefore, in the standard lore,9,10 the order-parameter self-
interactions are not expected to play a significant role in the
effective low-energy theory.

To summarize our scaling analysis, we write down the set
of renormalization group �RG� equations to lowest �linear�
order in the quartic coupling,

dTeff�b�
d ln b

= 3Teff�b� , �58�

d��b�
d ln b

= 2��b� , �59�

dvd�b�
d ln b

= 2vd�b� , �60�

d��b�
d ln b

= − ��b� , �61�

dun
��b�

d ln b
= − un

��b� + O��un
��2� , �62�

d���b�
d ln b

= 2���b� + 3u1
��b�f��Teff�b�,��b�� . �63�

We will distinguish renormalized parameters from the bare
ones by explicitly writing the b dependence for the former. In
Eq. �63�, � labels b and t. Indeed, the bare values satisfy
�b=�t=�; the label denotes the fact that these mass terms are
subject to different renormalizations from fluctuations. The
function, f��Teff�b� ,��b�� is given by

f��Teff�b�,��b�� = iK2� d�

2

D�

K�1,�� , �64�

where K2= d2q
�2
�2��q−1�=1 /2
, we have set the momentum

cutoff  =1, and

D�p
K =

L�p
K �L�̄p

R �2 + �2L�̄p
K

�Lbp
R Ltp

R − �2�2
�65�

is the Keldysh Green’s function for the mode ��, it was
obtained by inverting the inverse susceptibility matrix of Eq.
�53�. Solving these equations, we arrive at

Teff�b� = Teffb
3, �66�

��b� = �b2, �67�

vd�b� = vdb2, �68�

��b� = �b−1, �69�

un
��b� = un

�b−1, �70�

���b� = b2�� + 3u1
��

0

ln b

dxe−3xf��Teffe
3x,�e−x�	 . �71�

B. Flow equations in equilibrium

To elucidate the nonequilibrium problem at later stages,
we also consider flow equations for an equilibrium situation
in which the entire system is at temperature T. Here, the
electric field is set to zero, thus Teff=0. In this case, the
Gaussian action, Eq. �53�, becomes

Lb
R = � + �q�2 − i�� , �72�

Lb
K = − 2i�� coth� �

2T
� �73�

and

Lt
R = � + �q�2 − i

�

vF�q�
, �74�

Lt
K = − 2i

�

vF�q�
coth� �

2T
� . �75�

An analogous renormalization-group analysis as in the non-
equilibrium case can be applied here, and the solutions to the
corresponding flow equations become
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T�b� = Tb3, �76�

��b� = �b2, �77�

��b� = �b−1, �78�

un
��b� = un

�b−1, �79�

���b� = b2�� + 3u1
��

0

ln b

dxe−3xf��Te3x,�e−x�	 . �80�

The f� functions are still given formally by Eqs. �64� and
�65� with the replacement Teff→T, and the equilibrium in-
verse susceptibilities, Eqs. �72�–�75�, must be used.

VI. CORRELATION LENGTH

In the current bosonic basis, there are three two-point cor-
relation functions one can study, each with its own mass
scale, which we define as

���
−1 = ���q��q

� ��q=0, �81�

where q is a frequency-momentum three vector. In the above
equation we have omitted the Keldysh indices because one
can use an equilibrium formalism to define the mass scales
as they do not depend on the nonequilibrium drive. Note also
that �bt=�tb. Within the Gaussian theory, the bare mass
scales read

�bb = �tt =
�2 − �2

�
, �82�

�bt =
�2 − �2

�
. �83�

In the relevant limit, ��0, ��0, and ���!�, Eqs. �82�
and �83� become

�bb = �tt � �bt � 2� . �84�

Here, the mass scales were computed to lowest order in
� /��1 and � /��1. One sees that they all vanish as the
transition is approached ��→0�. This allows one to then
define the physical correlation length of the system, �, via
�−2

ª�. We now compute � both in and out of equilibrium
focusing on the corrections arising from either T or Teff.

A. In equilibrium

We begin by considering the correlation length in equilib-
rium. We define the quantum-to-classical crossover line for
the system and compute the leading temperature correction
to the correlation length in the quantum critical regime.

1. Quantum disordered regime

In this regime, the f� functions are computed at T=0. This
gives a temperature-independent shift proportional to u1

� to
the two diagonal masses. We then have

���b� = b2�� + 3u1
��

0

#

dxe−3xf��0,�e−x�	 ,

¬b2�� + ���
0� . �85�

The correlation length in this regime is then given by

�−2 � � + ��b
0 + ��t

0
¬ r , �86�

where we have computed to lowest order in � /��1 and
���

0 /��1. To find the condition on T for the occurrence of
the regime, we impose that ��b��=1 while T�b���1. Recall
that ��b���bb�b���tt�b���bt�b�. This then translates to a
condition on the bare quantities,

T� r3/2. �87�

2. Quantum critical regime

When the inequality in Eq. �87� is reversed, the charac-
teristic energy scale of the fluctuations, 1 /�z, becomes
smaller than temperature and the fluctuations become classi-
cal. Here, we compute the leading temperature correction to
the correlation length at scale b�, where T�b��=1. Since �
��!r�T2/3, both � and � become much larger than 1 at
some stage of the flow. We define the scale b1 as ��b1�
���b1�=1. Then the integral in Eq. �80� must be split into
two regions: 1�b�b1 and the other b1�b�b�. In the
former region, the integral can be computed assuming �
���1 inside Eq. �65�. In the latter region, the integral is
computed assuming ���!1. The detailed derivation will be
relegated to Appendix C; here we state the results. We define

���ª 3u1
��

0

ln b�

dxe−3x�f��Te3x,�e−x� − f��0,�e−x�� .

�88�

Here, one integrates up to b� by splitting the integral as ad-
vertised. One then arrives at the following temperature cor-
rection to leading order:

��� =
u1
�

4
2T�1 +
3�

2
T1/3� . �89�

The correlations length in the quantum critical regime is then
given by

�eq
−2 � r +

u1
b + u1

t

4
2 T�1 +
3�

2
T1/3� . �90�

The linear-temperature correction in Eq. �90� is consistent
with the corresponding correction obtained in Ref. 10 for the
case d=2 and z=3. The T4/3 correction, which is proportional
to �, is an additional correction that arises because of the z
=2 dynamics present at the z=3 fixed point. Both the leading
z=3 correction and a subleading z=2 correction enter into
the correction because both modes are subject to a common
temperature T.

B. Out of equilibrium

We now compute the leading nonequilibrium correction to
the correlation length at scale b�, where Teff�b��=1. We now
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assume T=0. Here, we only concentrate on the quantum
critical regime because the correlation length in the quantum
disordered regime is still given by Eq. �86�. Of course, the
condition for the occurrence of this regime now reads Teff
�r3/2.

The leading correction due to the electric field can be
computed by splitting the scaling regimes into 1�b�b1 and
b1�b�b� as in the equilibrium case. We then obtain

��� �
3u1

�

4
3�Teff
4/3. �91�

The correlations length in the quantum critical regime is then
given by

�neq
−2 � r + 3

u1
b + u1

t

4
3 �Teff
4/3. �92�

Once again, the detailed calculations are presented in Appen-
dix C. In contrast to the equilibrium result, Eq. �90�, the
correlation length gains a correction of order Teff

4/3 only. The
difference arises because in the decoupled limit the two lay-
ers are at different effective temperatures. This can be readily
checked by comparing the two Keldysh polarization func-
tions, Eqs. �40� and �43�. One sees that the top layer is at
zero effective temperature while the bottom possesses a finite
Teff because the field directly couples to the latter. Once the
interlayer coupling is restored both �b and �t sectors feel the
effect of the field as it is evident from Eq. �92�. However,
due to the absence of an effective temperature in the top
Keldysh polarization function, a linear-Teff correction does
not arise in Eq. �92�.

Results in this section suggest certain similarities between
the role of Teff in the nonequilibrium case and temperature T
in the equilibrium case. Both Teff and T induce a quantum-
to-classical crossover, across which the behavior of critical
fluctuations evolves from quantum to effectively classical.
The crossover energy scale is defined in Eq. �87� where T
can also be replaced by Teff. Furthermore, Eq. �92� implies
that Teff can cutoff the divergence in the correlation length
just as temperature T can as shown in Eq. �90�. However, the
lack of a linear-Teff correction for the correlation length in-
dicates that Teff cannot be identified strictly as an effective
temperature of the system.

We note that in equilibrium two corrections that reflect the
presence of z=2 and 3 dynamics enter into the correlation
length. The dominant contribution �i.e., linear-T contribu-
tion� arises essentially from the z=3 dynamical terms in the
regime of interest. In systems with multiscale quantum criti-
cality, modes with different dynamics often nontrivially con-
tribute to various thermodynamic quantities in different bare
parameter regimes. In thermal equilibrium, interesting cross-
over behavior in thermodynamic quantities in a system with
multiscale quantum criticality has been addressed in the con-
text of Pomeranchuk instability23 and the Kondo-Heisenberg
model.25

C. Eigenmode analysis

We have found that one must use caution in determining
the mass scale which relates to the inverse square of the

physical correlation length, for neither � nor � alone defines
this scale. A sensible procedure would be to determine the
eigenmodes of the system that diagonalize the Gaussian ac-
tion Eq. �34� and directly read off the corresponding masses
by observing the eigenvalues of the action. This analysis was
carried out and is presented in Appendix D. We find that
while one of the eigenmodes becomes critical at �=�, the
other remains massive. We then integrate out the massive
mode and construct an effective critical theory in terms of a
single critical mode, $q. In the Appendix D, we carry out a
renormalization-group procedure on this single-component
critical theory and the corresponding T and Teff corrections to
the correlation length of this field is computed. We find that
the correlation length obtained in the eigenbasis gives iden-
tical results to those presented in Eqs. �90� and �92�.

VII. ORDER-PARAMETER DYNAMICS

We now consider the dynamics obeyed by the critical
fluctuations in the quantum critical regime where the theory
is effectively classical and the quantum fluctuations can be
integrated out from the effective low-energy theory. The
standard procedure to obtain the dynamics is outlined in Ref.
15 and has been applied in Refs. 7 and 8 in establishing
nonequilibrium dynamical universality classes. In a com-
pletely different setting but in a related work, order-
parameter dynamics near phase transitions in a driven inter-
acting bilayer lattice gas has also been addressed in Refs. 26
and 27.

We begin by decoupling the terms quadratic in the quan-
tum Keldysh fields by making use of a second Hubbard-
Stratonovich transformation. The decoupling field plays the
role of a noise source for the classical fluctuations. Finally,
we integrate out the quantum fluctuations and obtain a sto-
chastic equation, or Langevin equation, for the classical fluc-
tuations. We hereafter drop the cl subscript from the fields.
All couplings will also be assumed to take their renormalized
values.

In the �� basis, the system of coupled, linear Langevin
equations is

�Lbq
R − �

− � Ltq
R ���bq

�tq
� = �%bq

%tq
� , �93�

where %�q are the Fourier components of the noise sources;
their correlators are given by the Keldysh inverse suscepti-
bilities

�%�q%�q�� = �����q + q��i��q
K . �94�

One can obtain the noise-averaged correlators for the fluc-
tuations by inverting the coefficient matrix

��bq�bq
� � =

�Ltq
R �2

�Dq�2
i�bq

K +
�2

�Dq�2
i�tq

K , �95�

��tq�tq
� � =

�Lbq
R �2

�Dq�2
i�tq

K +
�2

�Dq�2
i�bq

K , �96�
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��tq�bq
� � =

�

�Dq�2
�Ltq

R i�bq
K + Lbq

A i�tq
K � , �97�

where Dq=Lbq
R Ltq

R −�2 is the determinant of the coefficient
matrix. We mention here that for finite interlayer coupling all
bosonic correlators feel the presence of the parity-breaking
drift term because they all contain Lbq

R . One can repeat the
same procedure for the critical eigenmode �see Appendix D�,
whose Langevin equation reads

&R
−1$q = %q �98�

with the noise correlator �%q%q��= i&K
−1��q+q��. From Ap-

pendix D, we have that

&R
−1 =

1

2
�Lbq

R + Ltq
R � − � , �99�

&K
−1 =

1

2
��bq

K +�tq
K � . �100�

The noise-averaged correlator for the eigenfield then reads

�$q$q
�� =

i

2
��bq

K +�tq
K �

�1

2
�Lbq

R + Ltq
R � − ��2 . �101�

We now argue that the three correlators in the � basis and the
one for the critical eigenmode contain the same physics in
the regime of interest. Indeed, we are considering ���−�
�� ,�, such that at the end of scaling � ,��1. Thus we can
write �L�q

R �2���
2 . Neglecting differences between �b and �t

due to one-loop renormalizations, we have ���q��q
� �

��$q$q
�� /2. Hence, we will study the fluctuation dynamics in

terms of the critical eigenmode, $.
In equilibrium, Eq. �98� in momentum-time space be-

comes

1

vF�q�
�t$�q,t� = − �� + �q�2�$�q,t� + %�q,t� , �102�

where we have dropped the z=2 term from the time-
derivative because we are in the regime of �q��	 /vF. In the
quantum critical regime, the noise correlators become

�%�q,t�%�q�,t��� �
2T

vF�q�
��t − t����q + q�� . �103�

We then find the noise-averaged correlation function for the
fluctuations

�$�q,t�$�− q,t��� �
T

�
e−vF�q���t−t��. �104�

In the out-of-equilibrium case, the Langevin equation be-
comes

1

vF�q�
�t$�q,t� = − �� + �q�2 +

i

2
vd · q��$�q,t� + %�q,t� .

�105�

In the limit of large Teff, we find

�%�q,t�%�q�,t��� �
2Teff�



��t − t����q + q�� . �106�

The noise-averaged correlation function then reads

�$�q,t�$�− q,t��� �
Teff�vF�q�

�

e−vF�q���+�i/2�vd·q���t−t��.

�107�

In equilibrium, the correlation function describes fluctua-
tions which are conserved in nature with the decay rate van-
ishing in the long-wavelength limit as ��q�. Because the ef-
fects of temperature are felt equally by both bosonic modes,
the z=2 dynamics play no role in the long-wavelength theory
of the order-parameter dynamics. The dynamics obeyed here
is essentially identical to Model B in Ref. 11 but with the
Landau damping parameter replaced by vF���. The situation
is different in the nonequilibrium case. Here, the delta-
correlated noise contribution only arises from �b

K that re-
flects z=2 dynamics since the driving field �the source of
noise� is only coupled to the bottom electrons. The Langevin
equation then displays a hybrid effect of both z=2 and 3
physics; while the white noise correlator reflects z=2 phys-
ics, the damping is governed by the z=3 dynamical term. As
a result, the corresponding noise-averaged correlation func-
tion for the fluctuations yields a unique behavior where long-
wavelength correlations vanish as ��q�. In addition, the ad-
vertised drift of the fluctuations can be explicitly seen in Eq.
�107�.

VIII. CONCLUSION

In summary, we considered critical properties of a non-
equilibrium bilayer system of itinerant electron magnets.
Starting from a microscopic fermionic model subject to an
external drive, we derived a coupled theory in terms of two
bosonic fields which are related to the physical magnetiza-
tion fluctuations of the two layers. In the limit of no inter-
layer coupling, the fields obey different dynamics with dif-
ferent dynamical critical exponents �z=2 and 3�, leading to
multiscale quantum criticality in the coupled system. We
found that the applied current leads to both a drift of the
magnetic fluctuations in the coupled bilayer system and to
decoherence. The latter phenomenon is more subtle in our
system compared with the analogous single-layer scenario
because the nonequilibrium drive is applied to only one of
the layers. This causes it to play a role distinct from tempera-
ture in the thermal equilibrium case where both layers are
held at a common temperature. The differences are illustrated
by comparing temperature and nonequilibrium effects on the
correlation length and the dynamics obeyed by the critical
fluctuations. A crucial feature of the work is that the two
fields couple linearly. We found that the infrared properties
of the system then are governed by the dynamics correspond-
ing to the higher effective dimension. In light of Ref. 23, it
would be interesting to consider a coupled order-parameter
theory where the fields couple quadratically in the context of
itinerant electron magnets. In this case, the effective theory
possesses a discrete Z2�Z2 symmetry corresponding to in-
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dependent transformations m�→−m� for �=b , t ensuring
that no linear coupling can be generated during the RG trans-
formation. If both fields become critical simultaneously, the
low-energy properties are then expected to be governed by
the field with the lower effective dimension.

ACKNOWLEDGMENTS

The authors would like to thank Pawel Jakubczyk, Adrian
Del Maestro, Aditi Mitra, and Daniel Podolsky for helpful
discussions and Walter Metzner for a critical reading of the
manuscript. This research was supported by NSERC, Canada
Research Chair program, and Canadian Institute for Ad-
vanced Research �Y.B.K. and W.W.-K.�.

APPENDIX A: INTERLAYER SPIN EXCHANGE

We now consider how the central insulator can mediate an
effective spin-exchange interaction between the top and the
bottom layers. Imagine we have two 2D itinerant ferromag-
nets sandwiching a thin but 3D insulator with thickness L.
For concreteness, we envisage the insulator as a quantum
Ising paramagnet in the vicinity of a quantum phase transi-
tion to a long-ranged magnetically ordered phase. The con-
tinuum quantum field theory for this model can be expressed
in terms of a coarse-grained order-parameter fluctuation
field, �, subject to a confining potential. For simplicity, we
truncate this potential at quadratic order with some invertible
dynamic correlation matrix for the fluctuations, &�xi ,x j ,��,
where xi= �ri ,zi� labels the lattice sites in the 3D insulator.
The QFT in the vicinity of the magnetic quantum critical
point is then given by28

Sins =� d��
ij

��xi,��&−1�xi,x j,����x j,�� . �A1�

Since we are only interested in how this central insulator
generates an effective spin exchange, we will work in the
equilibrium formalism for simplicity.

We now consider the interaction terms between the insu-
lator and the two itinerant magnetic layers. We assume that
the plane of the bottom layer is z=0 and the top layer is at
z=L. The simplest plausible interaction would be a ferro-
magnetic onsite exchange �K�0� between the layers and the
insulator

St-ins = − K� d��
i

Ŝt
z�ri,����xi,���zi,L

, �A2�

Sb-ins = − K� d��
i

Ŝb
z�ri,����xi,���zi,0

. �A3�

Here, Ŝt
z and Ŝb

z are the Ising spin fluctuations in the top and
the bottom layers, respectively. We integrate out the central
fluctuations � assuming that their in-plane correlations are
short ranged to obtain the following effective action:

Seff =� d��
ri

�− K2&�L,L�St
z�ri,��St

z�ri,��

− K2&�0,0�Sb
z�ri,��Sb

z�ri,�� − JSt
z�ri,��Sb

z�ri,��� ,

�A4�

where we have assumed that the in-plane correlations of the
insulator are short ranged and independent of �: &�xi ,x j ,��
=�ri,rj

&�zi ,zj�. As advertised, an effective interlayer spin cou-
pling J=K2�&�L ,0�+&�0,L�� is generated. We see that
−K2&�L ,L� and −K2&�0,0� lead to finite renormalizations of
the intralayer exchange term.

APPENDIX B: POLARIZATION FUNCTIONS FOR THE �b

SECTOR

In equilibrium, the retarded polarization function in the
�b sector is given by

�bq
R � − 1 + �q�2 − i�� , �B1�

where we are assuming ���1 and q�vF�1. In the regime
where q�vF!1, the dynamical term becomes � /vFq, i.e.,
conserved in nature. This is because on sufficiently short-
length scales the electrons are unaffected by the presence of
the substrate. The equilibrium contribution to the Keldysh
polarization is given simply through the fluctuation-
dissipation theorem,

�bq
K = − 2i���� . �B2�

To get the nonequilibrium corrections to the polarization
functions we use the nonequilibrium Green’s functions for
the bottom electrons obtained in Sec. III A. From Eqs. �20�
and �25�, the nonequilibrium contribution to the retarded po-
larization reads

��b
R�0,q� � − i

4	2

�

�

k

eE · vk�

��q+k
2 + 	2���k

2 + 	2�
. �B3�

Expanding this result for small q one finds

��b
R�0,q� � i

1

4m	2eE · q . �B4�

The nonequilibrium contribution to the Keldysh polarization
is given by

��b
K��,0� =

− i

�
�

k

− 2i	

�� +� − �k�2 + 	2

− 2i	

�� − �k�2 + 	2 �

− sgn�� +��sgn���e−���/�eE·vF�� − sgn���sgn��

+��e−��+��/�eE·vF�� + �sgn���sgn�� +��

+ 1�e−���/�eE·vF��e−��+��/�eE·vF��� . �B5�

Here, we have linearized the fermion spectrum in the expo-
nents. For a weak field �i.e., Teff��

−1� the functions in �¯ �
in Eq. �B5� are strongly peaked at � values where the nu-
merators in the exponents vanish. Making use of this we
obtain
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��b
K��,0� �

4i	2

�
�

k

1

��k
2 + 	2�2 � ¯ � , �B6�

where �¯ � is unchanged from Eq. �B5�. This makes the �
integral trivial, yielding the result

��b
K��,0� = − i

4	2

�

� kdkd�

�2
�2

Teff�cos ��e−���/Teff�cos ��

��k
2 + 	2�2 ,

�B7�

where � is the angle subtended by the Fermi velocity and the
electric field. Performing the momentum integral gives

��b
K��,0� � − 2i����I�Teff

��� � . �B8�

APPENDIX C: EVALUATION OF THE CORRELATION
LENGTH

In this appendix, we present the derivation for the leading
correction to the correlation length in the quantum critical
regime. Here, the analysis is conducted in the �b−�t basis.
The results are summarized in Secs. VI A 2 and VI B.

Recall that ���b� in equilibrium is given by Eq. �80�. The
correction to the zero-temperature distance from criticality, r,
is then given by

��� = 3u1
��

0

ln b�

dxe−3x�f��Te3x,�e−x� − f��0,�e−x�� .

�C1�

If we define �f�ª f��Te3x ,�e−x�− f��0,�e−x�, we have

�f� = iK2� d�

2

�D�

K�T,�� , �C2�

where K2=1 /2
 and

�Db
K�1,�� = − 2i��coth� �

2T
� − sgn���	

�
���� + 1�2 +�2� + �2

��� + 1 − i����� + 1 − i�� − �2�2
. �C3�

�Dt
K�1,�� = − 2i��coth� �

2T
� − sgn���	

�
�� + 1�2 + ����2 + ��2

��� + 1 − i����� + 1 − i�� − �2�2
. �C4�

The � integral gets most of the contribution from ���"2T.
So we can cutoff the integral and approximate coth�� /2T�
�2T /�. Then we obtain

�Db
K�1,�� � − 2i�2T − ����

���� + 1�2 +�2� + �2

��� + 1 − i����� + 1 − i�� − �2�2
,

�C5�

�Dt
K�1,�� � − 2i�2T − ����

�� + 1�2 + ����2 + ��2

��� + 1 − i����� + 1 − i�� − �2�2
.

�C6�

To scale up to b�, where T�b��=1, we split the integral into
two regimes: 1�b�b1, and b1�b�b�, where b1=�−1/2. Up
to scale b1, � ,��1 and T�1. So in this regime, we can use
the following expressions:

�Db
K � − 2i�2T − ����

�

1 + ����2 , �C7�

�Dt
K � − 2i�2T − ����

1

1 +�2 . �C8�

With this approximation, the � integral can be done trivially.
Expanding the result for small T, we get

�fb =
4K2



�T2 + O�T3� , �C9�

�f t =
4K2



T2 + O�T3� . �C10�

To evaluate the integral up to b1, we first do a change of
variables, x→T�b�¬y, which makes the measure dx
=dy /3y, and the lower and the upper limits T and T /�3/2,
respectively. Then the corrections are given by

���
�1� = 3u1

��
T

T/�3/2 dy

3y

T

y
�f��y,��T

y
�1/3� . �C11�

We then obtain

��b
�1� =

3


2u1
b�T4/3T2/3

�
, �C12�

��t
�1� =

2


2u1
t T

T2/3

�
. �C13�

To scale between b1 and b�, we use Eqs. �C5� and �C6� in
the limit of ���!1. Since ��1 throughout the flow, we
note that �2−�2���"1 during the flow, and we drop this
term from the denominator. Then Eqs. �C5� and �C6� can be
approximated by

�Db
K�1,�� � − 2i�2T − ����

���2 +�2� + �2

4�2 + ����1 + ���2 ,

�C14�

�Dt
K�1,�� � − 2i�2T − ����

�2 + ����2 + ��2

4�2 + ����1 + ���2 .

�C15�

We then find that

�fb �
��2 + �2

4
2�2 T2 �
1 + �

4
2 T2, �C16�
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�f t �
��2 + �2

4
2�2 T2 �
1 + �

4
2 T2, �C17�

where we have used the fact that ���. The corrections from
this region of the integral is then given by

���
�2� = 3u1

��
T/�3/2

1 dy

3y

T

y
�f��y,��T

y
�1/3� . �C18�

We then obtain

���
�2� =

u1
�T

4
2�1 +
3�

2
T1/3	 . �C19�

Since T2/3�� in this regime, Eqs. �C12� and �C13� are sub-
leading to Eq. �C19�. We therefore obtain to leading order

��� �
u1
�T

4
2�1 +
3�

2
T1/3	 . �C20�

In the nonequilibrium case, recall that ���b� is given by
Eq. �71�. The correction to the zero-temperature distance
from criticality, r, is then given by

��� = 3u1
��

0

ln b�

dxe−3x�f��Teffe
3x,�e−x� − f��0,�e−x�� .

�C21�

In this nonequilibrium case, we obtain

�Db
K�1,�� = − 2i���I�Teff

��� � ���� + 1�2 +�2�
��� + 1 − i����� + 1 − i�� − �2�2

,

�C22�

�Dt
K�1,�� = − 2i���I�Teff

��� � ��2

��� + 1 − i����� + 1 − i�� − �2�2
.

�C23�

In the above, the drift term was dropped since it does not
reach the cut-off scale at b�.8

We first scale up to b1. As in the equilibrium case, we
have ��1 and ��1 in this region, and Eqs. �C22� and �C23�
can be approximated by

�Db
K �

− 4i�Teff




1

1 + ����2 , �C24�

�Dt
K �

− 4i�Teff




�2

�1 + ����2��1 +�2�
. �C25�

Once again, we have used the fact that �D�
K is appreciable

only for ���"2Teff and that in this region

I�Teff

��� � �
Teff

���
2



. �C26�

Performing the � integral up to 2Teff, we then obtain to
lowest order in Teff

�fb =
4K2



�Teff

2 + O�Teff
3 � , �C27�

�f t =
4K2



��2Teff

2 + O�Teff
3 � . �C28�

The corrections up to b1 can then be computed, giving

��b
�1� =

3


2u1
b�Teff

4/3Teff
2/3

�
, �C29�

��t
�1� =

3

2
2u1
t ��2Teff

2/3Teff
4/3

�2 �
3

2
2u1
t �Teff

2 . �C30�

To scale in the region b1�b�b�, we use

�Db
K�1,�� �

− 4i�Teff




��2

4�2 + ����1 + ���2 , �C31�

�Dt
K�1,�� �

− 4i�Teff




��2

4�2 + ����1 + ���2 . �C32�

Performing the � integral and expanding for small Teff, we
obtain

�fb � �f t �
�Teff

2

2
3 , �C33�

where we have again used the fact that ���. The corrections
are then given by

���
�2� �

3�u1
�

4
3 Teff
4/3. �C34�

As in the equilibrium case, the contributions from the first
region of the integral �Eqs. �C29� and �C30�� are subleading
to those from the second region �Eq. �C34��. Therefore, to
leading order, we obtain the following correction:

��� �
3�u1

�

4
3 Teff
4/3. �C35�

APPENDIX D: EIGENMODE ANALYSIS

1. Determining the eigenmodes

In this appendix, we develop a critical theory in the basis
of the eigenmodes. The renormalization-group analysis will
be carried out in this basis, and the correlation length calcu-
lation will be reconsidered. We determine the eigenmodes of
the system by diagonalizing the Gaussian action Eq. �34�.
What we find in the following is that the diagonalization
procedure gives rise to two new bosonic modes which pos-
sess different masses. While one becomes critical at �=�, the
other mode remains gapped. This allows one to integrate out
the latter and arrive at an effective low-energy theory in
terms of one critical mode. This is in stark contrast with Ref.
23 where both bosonic modes simultaneously become criti-
cal.

To aid with the eventual block diagonalization of the
Keldysh action, we first diagonalize the equilibrium action in
the Matsubara formalism, then map the theory back to
Keldysh space. The Matsubara Gaussian action reads

TAKEI, WITCZAK-KREMPA, AND KIM PHYSICAL REVIEW B 81, 125430 �2010�

125430-14



Seq
�2� = �

q

��bq
� �tq

� ��Lbq
eq − �

− � Ltq
eq���bq

�tq
� , �D1�

where Lbq
eq =�+ �q�2+ ���� and Ltq

eq=�+ �q�2+ ��� /vF�q� are the
equilibrium inverse susceptibilities. Expanding to lowest or-
der with respect to the fluctuating parts of the polarization
functions, the eigenvalues of the action read 1

2 �Lbq
eq

+Ltq
eq���. The expansion is well defined in the interlayer

coupling regime considered here �i.e., ����0�. If we now
denote the eigenmodes by $1q and $2q, the Gaussian action
then reduces to

Seq
�2� =� d2q

�2
�2

d�

2

�$1q

� $2q
� �

���Lbq
eq + Ltq

eq�/2 − � 0

0 �Lbq
eq + Ltq

eq�/2 + �
��$1q

$2q
� .

�D2�

We can now map this Matsubara action back into the
Keldysh form by simply replacing both fields by two-
component Keldysh fields, i.e., $iq→ iq= �$iq

cl $iq
q �T, and re-

placing each polarization function by its corresponding ma-
trix. The Keldysh Gaussian action is then given by

iSeff
�2� =− i� d2q

�2
�2

d�

2

� 1q

†  2q
† �

���L̂bq + L̂tq�/2−��̂x 0

0 �L̂bq + L̂tq�/2+��̂x

�� 1q

 2q
� ,

�D3�

where L̂�q= �Ũ��−1�̂x+�̂�q. We now consider the quartic
terms. Recall that in the � basis, the quartic interactions were
given by

iSeff
�4� =� d3x�− i�u1

b��b
cl�3�b

q + u3
b�b

cl��b
q�3� + �u2

b��b
cl�2��b

q�2

+ u4
b��b

q�4�� + �b ↔ t� , �D4�

where we have written terms in the form in which ui
� are all

real. To transform the quartic terms to the eigenbasis, we use
the transformation matrix in the limit of q→0 since
momentum- and frequency-dependent parts generate terms
that are �RG� irrelevant compared with the leading constant
coefficients. We then obtain

��b
cl,q

�t
cl,q � �

1

2
�1 1

1 − 1
��$1

cl,q

$2
cl,q � . �D5�

Inserting this transformation into Eq. �D4� gives the quartic
terms in the eigenbasis.

The mass terms of the two eigenmodes in Eq. �D2� are
�−� and �+� for  1 and  2, respectively. This implies that
while  1 becomes critical at �=�,  2 remains gapped. We
may therefore integrate out the gapped mode from the theory
and obtain a single-component effective action only in terms
of the critical eigenfield. In the process of integrating out  2,
we only retain terms that are quadratic in the latter. Terms

linear and quadratic in  2 emerge from the quartic terms,
however, the former will generate contributions beyond quar-
tic order in the critical field. After these simplifications, the
quartic action becomes

iSeff
�4� = − i� d3x�ū1�$1�3$1

q + ū3$1�$1
q�3�+� d3x�ū2�$1

cl�2�$1
q�2

+ ū4�$1
q�4� − i�

q,q�,k
�$2q

cl� $2q
q� ��Q11 Q12

Q21 Q22
��$2q�

cl

$2q�
q �

�D6�

with Q11=3ū1$1,k+q
cl $1,−k−q�

q − iū2$1,k+q
q $1,−k−q�

q . Here, ūi= �ui
b

+ui
t� /4. Q12, Q21, and Q22 are also terms quadratic in $1,

however, we do not write them explicitly here because they
will not be necessary in the following discussion. Now per-
forming the Gaussian integral over  2, and expanding the
resulting Tr ln to linear order in ūi, we obtain

iSeff
�2� = − i�

q

 1q
† ��L̂bq + L̂tq�/2 − ��̂x� 1q

− i�
q

 1q
† � 0 %1

%1 i%2
� 1q, �D7�

where

%1 =
3ū1

2
�

k

iD2k
K , %2 = ū2�

k

iD2k
K , �D8�

and

�D2q
K D2q

R

D2q
A 0

� = − ��L̂bq + L̂tq�/2 + ��̂x�−1. �D9�

Both %1 and %2 are real quantities, and we have used the fact
that D2q

R �t , t�=D2q
A �t , t�=0. We find that ū2→0 as T→0 and

Teff→0 so %2 does not change the form of the Keldysh term
for  1. We will omit these terms. The ū1 term gives a small
renormalization to the mass of the critical mode. We absorb
the %1 into the new mass: �=�−�+%1. The full effective
action for the critical mode is now given by

iSeff = − i�
q

 1q
† � 0 &A

−1

&R
−1 &K

−1 � 1q − i� d3x�ū1�$1
cl�3$1

q

+ ū3$1
cl�$1

q�3� +� d3x�ū2�$1
cl�2�$1

q�2 + ū4�$1
q�4� .

�D10�

In equilibrium,

&R
−1 = � + �q�2 −

i

2
��� +

�

vF�q�� , �D11�

&K
−1 = − i coth� �

2T
���� +

�

vF�q�� , �D12�

and out of equilibrium,
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&R
−1 = � + �q�2 +

i

2
vd · q� −

i

2
��� +

�

vF�q�� , �D13�

&K
−1 = − i

���
vF�q�

− i�����1 + I�Teff

��� �	 . �D14�

Note that I�Teff / �����Teff / ��� for Teff� ��� and
coth�� /2T��T /� for T� ���. We then see that, similar to
previous works,7,8 both T and Teff act as a mass for the quan-
tum fluctuations. At T=0 and Teff=0, &K

−1 vanishes at low
energies as ����. However, for T�0 or Teff�0, &K

−1�0 as
�→0, and the theory effectively becomes classical.

2. RG analysis in eigenmode basis

We now perform a renormalization-group analysis of the
effective action, Eq. �D10�. Following a similar analysis as in
the main text, we find the following set of RG equations to
lowest �linear� order in the quartic coupling:

dTeff�b�
d ln b

= 3Teff�b� , �D15�

dvd�b�
d ln b

= 2vd�b� , �D16�

d��b�
d ln b

= − ��b� , �D17�

dūi�b�
d ln b

= − ūi�b� + O��ūj�2� , �D18�

d��b�
d ln b

= 2��b� + 3ū1�b�f�Teff�b�,��b�� . �D19�

The function f�Teff�b� ,��b�� is given by

f�Teff�b�,��b�� = iK2� d�

2

&K�1,�� , �D20�

where &K�p�=−&K
−1�p� / �&R

−1�p��2. Solving these equations, we
arrive at

Teff�b� = Teffb
3, �D21�

vd�b� = vdb2, �D22�

��b� = �b−1, �D23�

ūi�b� = ūib
−1, �D24�

��b� = b2�� + 3ū1�
0

ln b

dxe−3xf�Teffe
3x,�e−x�	 . �D25�

An analogous renormalization-group analysis in the equilib-
rium case gives

T�b� = Tb3, �D26�

��b� = �b−1, �D27�

ūi�b� = ūib
−1, �D28�

��b� = b2�� + 3ū1�
0

ln b

dxe−3xf�Te3x,�e−x�	 . �D29�

We now recompute the correlation length in the eigenba-
sis. The scaling stops when ��b1��1. In the quantum disor-
dered regime, T and Teff is small enough so that T�b1��1
and Teff�b1��1. In this case, the correlation length of the
system can be obtained by setting T=0 and Teff=0. One then
obtains

�−2 = � + 3ū1�
0

#

dxe−3xf�0,�e−x� ¬ r . �D30�

The condition for the occurrence of the regime is obtained by
requiring T�b1��1 where b1=r−1/2. Then the condition reads

T� r3/2, Teff� r3/2. �D31�

The nonuniversal shift to the bare mass in Eq. �D30� indi-
cates that we are above the upper critical dimension and that
ū1 is a dangerously irrelevant operator.

When the inequality in Eq. �D31� is violated, the critical
fluctuations become classical in nature and the system enters
the quantum critical regime. Here we compute the leading
corrections to the correlation length in this regime. We scale
up to either T�b��=1 or Teff�b��=1. Recall that the solution
for ��b� in equilibrium is given by Eq. �D29�. The correction
to the zero-temperature distance from criticality, r, is then
given by

�r = 3ū1�
0

ln b�

dxe−3x�f�Te3x,�e−x� − f�0,�e−x�� . �D32�

If we define �fª f�Te3x ,�e−x�− f�0,�e−x�, we have

�f = iK2� d�

2

�&K�T,�� , �D33�

and

�&K�1,�� = − i��coth� �
2T

� − sgn���	
�

� + 1

�� + 1�2 + ��� +��2/4
. �D34�

The � integral gets most of the contribution from −2T"�
"2T. So we can cutoff the integral there and use
coth�� /2T��2T /�. Then we obtain

�&K�1,�� � − i�2T − ����
1 + �

1 + ��� +��2/4
, �D35�

where we dropped � from the denominator since it remains
small during the flow. The � integral can now be done trivi-
ally. Expanding the result for small T, we get

TAKEI, WITCZAK-KREMPA, AND KIM PHYSICAL REVIEW B 81, 125430 �2010�

125430-16



�f =
1


2 �1 + ��T2 + O�T3� . �D36�

To evaluate the integral up to b�, we first do a change of
variables, x→T�b�¬y, which makes the measure dx
=dy /3y. The upper limit of the integral is 1, and we extend
the lower limit down to 0. Then the correction is given by

�r = 3ū1�
0

1 dy

3y

T

y
�f�y,��T

y
�1/3� . �D37�

We then obtain

�r =
ū1


2T�1 +
3�

2
T1/3� . �D38�

We now move on to the nonequilibrium case. Recall that
the solution ��b� for the nonequilibrium case is given by Eq.
�D25�. The correction to the zero-temperature distance from
criticality, r, is then given by

�r = 3ū1�
0

ln b�

dxe−3x�f�Teffe
3x,�e−x� − f�0,�e−x�� . �D39�

We then obtain

�&K�1,�� = − i����
I�Teff

��� �
1 + ��� +��2/4

, �D40�

where we have dropped the drift and the mass terms from the
denominator since they remain small during the flow.8 Once

again, the � integral is appreciable only for ���"2Teff. In
this region, we have

I�Teff

��� � �
Teff

���
2



. �D41�

Performing the � integral up to 2Teff, we then obtain to
lowest order in Teff,

�f =
2


3�Teff
2 + O�Teff

3 � . �D42�

The mass correction is then given by

�r = 3ū1�
0

1 dy

3y

Teff

y
�f�y,��Teff

y
�1/3� . �D43�

Performing the integral, we obtain

�r =
3ū1


3 �Teff
4/3. �D44�

To summarize the results, the correlation length in equi-
librium reads

�eq
−2 = r +

ū1


2T�1 +
3�

2
T1/3� �D45�

while out of equilibrium, one obtains

�neq
−2 = r +

3ū1�


3 Teff
4/3. �D46�

This is in exact agreement with the results obtained in the
main text �cf. Eqs. �90� and �92��.

1 A. G. Green, J. E. Moore, S. L. Sondhi, and A. Vishwanath,
Phys. Rev. Lett. 97, 227003 �2006�.

2 D. Dalidovich and P. Phillips, Phys. Rev. Lett. 93, 027004
�2004�.

3 A. G. Green and S. L. Sondhi, Phys. Rev. Lett. 95, 267001
�2005�.

4 P. M. Hogan and A. G. Green, Phys. Rev. B 78, 195104 �2008�.
5 S. Kirchner and Q. Si, Phys. Status Solidi B 247, 631 �2010�.
6 S. Kirchner and Q. Si, Phys. Rev. Lett. 103, 206401 �2009�.
7 A. Mitra, S. Takei, Y. B. Kim, and A. J. Millis, Phys. Rev. Lett.

97, 236808 �2006�.
8 A. Mitra and A. J. Millis, Phys. Rev. B 77, 220404�R� �2008�.
9 J. A. Hertz, Phys. Rev. B 14, 1165 �1976�.

10 A. J. Millis, Phys. Rev. B 48, 7183 �1993�.
11 P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435

�1977�.
12 A. Mitra, Phys. Rev. B 78, 214512 �2008�.
13 H. von Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Rev. Mod.

Phys. 79, 1015 �2007�.
14 G. R. Stewart, Rev. Mod. Phys. 73, 797 �2001�.
15 A. Kamenev and A. Levchenko, Adv. Phys. 58, 197 �2009�.
16 G. D. Mahan, Many-Particle Physics �Plenum Press, New York,

1990�.

17 J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 �1986�.
18 D. Belitz, T. R. Kirkpatrick, and T. Vojta, Phys. Rev. B 55, 9452

�1997�.
19 J. Rech, C. Pépin, and A. V. Chubukov, Phys. Rev. B 74, 195126

�2006�.
20 T. Moriya, Spin Fluctuations in Itinerant Electron Magnets

�Springer-Verlag, Berlin, 1985�.
21 This is in contrast to the system studied in Ref. 7 where a non-

equilibrium renormalization to the Stoner criterion was obtained
at the mean-field level.

22 V. Oganesyan, S. A. Kivelson, and E. Fradkin, Phys. Rev. B 64,
195109 �2001�.

23 M. Zacharias, P. Wölfle, and M. Garst, Phys. Rev. B 80, 165116
�2009�.

24 C. Xu, Phys. Rev. B 81, 054403 �2010�.
25 I. Paul, C. Pepin, and M. R. Norman, Phys. Rev. B 78, 035109

�2008�.
26 C. C. Hill, R. K. P. Zia, and B. Schmittmann, Phys. Rev. Lett.

77, 514 �1996�.
27 B. Schmittmann, C. C. Hill, and R. K. P. Zia, Physica A 239,

382 �1997�.
28 S. Sachdev, Quantum Phase Transitions �Cambridge University

Press, Cambridge, 1999�.

NONEQUILIBRIUM QUANTUM CRITICALITY IN BILAYER… PHYSICAL REVIEW B 81, 125430 �2010�

125430-17


