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In two-dimensional electron gases confined to two coaxial tubes the “tube degree of freedom” can be
described in terms of pseudospin-1/2 dynamics. The presence of tunneling between the two tubes leads to a
collective oscillation known as pseudospin resonance. We employ perturbation theory to examine the depen-
dence of the frequency of this mode with respect to a coaxial magnetic field for the case of small intertube
distances. Coulomb interaction leads to a shift of the resonance frequency and to a finite lifetime of the
pseudospin excitations. The presence of the coaxial magnetic field gives rise to pronounced peaks in the shift
of the resonance frequency. For large magnetic fields this shift vanishes due to the effects of Zeeman splitting.
Finally, an expression for the linewidth of the resonance is derived. Numerical analysis of this expression
suggests that the linewidth strongly depends on the coaxial magnetic field, which leads to several peaks of the
linewidth as well as regions where damping is almost completely suppressed.
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I. INTRODUCTION

Due to the Coulomb interaction between the charge carri-
ers, collective excitations called plasmons may result as the
electromagnetic response in a solid-state structure. These ex-
citations have been extensively investigated in bulk and low-
dimensional systems from both theoretical and experimental
points of view.1–5 However, the interest on plasma excita-
tions has been renewed due to the experimental possibility of
tailoring interactions such as spin-orbit coupling, which may
affect the properties of the plasmons.6–10 The recent ability
of producing novel two-dimensional systems such as
graphene has also motivated new investigations of the plas-
mon dispersion.11–14

Interestingly, collective excitations can also emerge in
systems involving two spatially separated two-dimensional
electron gases �2DEG� which couple to each other through
the Coulomb interaction.15–21 A typical example is the exci-
tation of different plasmon modes in bilayer systems, where
two quasi-2D electron systems �each with only the lowest
subband being occupied� are separated by a potential barrier.
Even when the potential barrier is large and the tunneling is
largely suppressed, the interlayer Coulomb interaction may
couple the two quasi-2D electron systems if the interlayer
separation �barrier width� is small enough. In such a case
there are intralayer plasmon excitations in which the elec-
trons in one of the layers may collectively oscillate in phase
�optic plasmon mode� or out of phase �acoustic plasmon
mode� with the electron oscillations in the neighboring
layer.19,20 By decreasing the barrier, the tunneling becomes
relevant and splits the single subband in each quasi-2D elec-
tron system. As a result new excitations consisting of inter-
layer collective charge oscillations �intersubband or trans-
verse plasmons� appear.15–18,21 Such interlayer collective
oscillations have recently been reinterpreted as pseudospin
excitations.22

Within the pseudospin approach, the electrons in one of
the layers are assigned one pseudospin state and the electrons
in the other layer the opposite pseudospin.22,23 The interlayer
excitations can be regarded as pseudospin excitations medi-
ated by the tunneling strength, which acts on the pseudospins
as an effective magnetic field. Thus, analogous to the con-

ventional ferromagnetic resonance in magnetized materials
whose electron spins are manipulated by an external mag-
netic field, the tunneling �effective magnetic field� in the bi-
layer system leads to a pseudospin resonance describing the
interlayer collective mode �intersubband plasmon�.15–17,21

Furthermore, since the pseudospin degree of freedom is an
analog to the real spin, new pseudospintronic devices could
be realized by means of controlled pseudospin manipulation,
in close analogy with the control of real spin in spintronics
applications.24,25 In particular, a pseudospintronic device
based on semiconductor bilayers has theoretically been
suggested22 as the analog to the conventional spin-transfer
oscillator.26–28

Due to many-body effects the magnetization dynamics in
magnetized systems are affected by the so-called Gilbert
damping.29,30 Such effects also have their analog in bilayer
systems, where the Coulomb electron-electron interaction
produces a shifting of the pseudospin resonance frequency
and leads to a finite lifetime of the excitations �that is, to
damping�.22 Therefore, the investigation of the pseudospin
excitations is of relevance for understanding the nature of
correlations in bilayerlike systems.

Another interesting issue is the investigation of the pseu-
dospin resonance in systems with more exotic geometries.
Nowadays techniques allow for the realization of a wide
range of possible geometries by using semiconductors or
carbon-based materials, for example. From this point of
view, the phenomenon of pseudospin resonance offers the
possibility of investigating many-body effects under different
geometric configurations. In what follows we focus our dis-
cussion on the case of generic coaxial nanotubes which can
be experimentally realized from a variety of materials includ-
ing metals, metal-oxides, carbon, and semiconductors.31–38

Coaxial nanotubes are particularly interesting systems for
pseudospintronics since they exhibit both the bilayerlike be-
havior of pseudospin excitations and the interplay between
many-body and coherent effects which become apparent
when a coaxial magnetic flux pierces the system. In such a
case, as will be shown below, pseudospin resonance can be
induced not only by an external electric field but also by
fluctuations of the coaxial magnetic field.
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Although there have been some investigations on plasma
excitations in coaxial nanotubes39,40 these studies were lim-
ited to the nontunneling regime treated within the random-
phase approximation �RPA�. Here, we consider the possibil-
ity of tunneling �and therefore of pseudospin excitations�
between the inner and outer tubes. Furthermore, we use a
perturbative scheme recently proposed in Ref. 22 which ap-
pears to be superior to the RPA.

The paper is organized as follows: in Sec. II, the pseu-
dospin degree of freedom and the model Hamiltonian of the
system are introduced. To construct the Hamiltonian, we start
with a single-particle Hamiltonian taking into account tun-
neling effects and analyze the energy spectrum of the result-
ing, before we include the electron-electron interaction. In
Sec. III, the pseudospin resonance and its corresponding re-
sponse function are introduced. The perturbation scheme is
set up in Sec. IV. The scheme is then applied in Secs. V and
VI to calculate the resonance frequency and the correspond-
ing linewidth, respectively. The paper is concluded by a
small summary.

II. THEORETICAL MODEL

The system �see Fig. 1� consists of two coaxial tubes,
which have the radii R�d /2 and the length L�R�d. A
2DEG is confined to the surface of each cylinder.

To approximate the band structure of actual solids, we
assign an effective mass m to the electrons. Similarly, the
Coulomb interaction contains the background dielectric con-
stant �̃, which is defined by �̃=�r�0, where �r is the relative
dielectric constant of the solid. The corresponding Bohr ra-
dius in this material is then defined as aB=4��̃�2 /me2. The
interior of the cylindrical system is threaded by a static, co-
axial magnetic field B, which acts as a control parameter. To
describe paramagnetic effects induced by the magnetic field,
that is, Zeeman splitting, the g factor of the material has to
be introduced. In this model electrons can either be located
on the outer or inner tube.

A. Single-particle approximation

In the absence of tunneling �tunneling effects will be in-
cluded later on� the wave functions are localized at the tubes
and can be approximated as

�out/in�r� = 	out/in�
,z�fout/in��� , �1�

where we have used cylindrical coordinates �see Fig. 1�. The
radial localization is characterized by the function

�fout/in����2 =

��� − R 

d

2
�

�
, �2�

where ��x� represents the Dirac-delta function and the radial
quantum number denotes whether the electron is located on
the outer �out� or inner �in� tube. The longitudinal and azi-
muthal motions as well as the physical spin of the electrons
are described by the spinors 	out/in�
 ,z�. Apart from the
physical spin, the radial motion can be reinterpreted as an
effective two-level system, which we describe in terms of
pseudospin-1/2 dynamics. We then replace the functions
fout/in by pseudospinors whose labels ⇑ and ⇓ correspond to
the wave function localization in the outer and inner tubes,
respectively.

In the absence of tunneling the pseudospin system is de-
scribed by the single-particle Hamiltonian

Ĥ0 = �
n,k,�,�̃

�n,k,�,�̃â
n,k,�,�̃

†
ân,k,�,�̃, �3�

where ân,k,�,�̃ �â
n,k,�,�̃

† � is the operator of annihilation �cre-

ation� of a particle with angular momentum n, momentum

along the z-axis k, spin �= ↑ ,↓ and pseudospin �̃= ⇑ ,⇓. The
single-particle eigenenergies are given by

�n,k,�,�̃ =
�2k2

2m
+

g�2	

2meR
2	0

�

+
�2

2m�R + �̃
d

2
�2�n +

	

	0
�1 + �̃

d

2R
�2�2

. �4�

Here, and in what follows, we use capital and lowercase
Greek characters for denoting pseudospin �⇑ ,⇓� and physical
spin �↑ ,↓�, respectively. We have also introduced the average
magnetic flux 	=�BR2, the fluxon 	0=h /e, and the free
electron mass me.

We now consider the possibility of uniform tunneling be-
tween both tubes. The tunneling amplitude � is assumed to
be independent of the external magnetic field. Such an ap-
proximation is reasonable in systems in which the confine-
ment is stronger than the cyclotron effects. The tunneling
Hamiltonian

Ĥt = −
�

2
�̂x �5�

with �̂x as the corresponding pseudospin Pauli matrix, allows
for the coupling of states localized in different tubes but with
the same values of the quantum numbers � and n, which is
consistent with the conservation of spin and angular momen-
tum during the tunneling.

The form of Ĥt 	see Eq. �5�
 makes it clear that the tun-
neling amplitude can be interpreted as the pseudospin analog
to a magnetic field in the x direction. This term arises due to

d

y

x

R

x

y

z B z�

L

FIG. 1. �Color online� Schematic of two coaxial tubes in the
presence of an external magnetic field B along their axis. The length
of the tubes and the intertube distance are denoted by L and d,
respectively. The radius of the inner �outer� tube is given by R
−d /2 �R+d /2�.
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the overlap of the actual radial wave functions �which in
reality are not as perfectly localized as our �-like model
functions�.

In analogy to the spin operator we can introduce the pseu-

dospin vector operator Ŝ whose x component

Ŝx =
1

2 �
n,k,�

�ân,k,�,⇑
† ân,k,�,⇓ + ân,k,�,⇓

† ân,k,�,⇑� �6�

characterizes the tunneling between the tubes. Indeed, the
tunneling Hamiltonian in Eq. �5� can be rewritten in second
quantization as

Ĥt = − �Ŝx. �7�

The y component of the pseudospin operator is given by

Ŝy =
i

2 �
n,k,�

�ân,k,�,⇓
† ân,k,�,⇑ − ân,k,�,⇑

† ân,k,�,⇓� �8�

and measures the tunneling current flowing between the two
tubes while the z component

Ŝz =
1

2 �
n,k,�

�ân,k,�,⇑
† ân,k,�,⇑ − ân,k,�,⇓

† ân,k,�,⇓� = N̂⇑ − N̂⇓ �9�

measures the charge accumulation in the tubes. In Eq. �9� N̂⇑

and N̂⇓ denote the number-of-particles operators in the outer
�⇑ � and inner �⇓ � tubes, respectively.

The single-particle Hamiltonian including the tunneling

effects is given by Ĥ0+ Ĥt. Since Ŝz and Ŝx do not commute,

the quantum number �̃= ⇑ ,⇓, which classifies the eigenvec-

tors of Ŝz, has to be replaced by another quantum number
�= �1 describing the pseudospin degree of freedom in the
presence of tunneling, whereas the momentum along the z
axis as well as the angular momentum and spin projections
on the z axis remain good quantum numbers. The new pseu-
dospinors with pseudospin quantum number � are linear

combinations of the pseudospinors with �̃= ⇑ ,⇓ and de-
scribe bonding ��=−1� and antibonding ��=+1� states. In

the basis of � pseudospinors, the Hamiltonian Ĥ0+ Ĥt be-
comes diagonal with the energy spectrum given by

�n,k,�,� =
�n,k,�,⇑ + �n,k,�,⇓

2
+

�

2
�n, �10�

where

�n � ���n,k,�,⇓ − �n,k,�,⇑�2 + �2. �11�

Here, �n,k,�,⇑ and �n,k,�,⇓ are the eigenenergies of Ĥ0 which
are given by Eq. �4�.

From Eq. �10� one can see that the energy spectrum con-
sists of one-dimensional subbands labeled by the quantum
numbers n, �, and �. The evolution of the lowest subbands
with increasing magnetic flux is shown in Fig. 2. The quan-
tity of reference in this plot is �F,ref, the Fermi energy of a flat
2DEG with the same density ne as the cylindrical 2DEG
considered here, and kF,ref=�2m�F,ref /�2. We assumed a
model system with parameters �=0.1�F,ref, d=0.1R, g=2,

rs=1, R=0.5aBrs, and m=me. Here, rs=1 /��neaB
2 is the

Wigner-Seitz density parameter. Note, that in Fig. 2 the en-
ergy spectrum is only shown in the zeroth order in d because
in the final results of our calculations the single-particle
eigenenergies enter only in the zeroth order.

At zero magnetic field 	see Fig. 2�a�
 each subband, ex-
cept the subbands with n=0, which are doubly degenerate,
has a fourfold degeneracy due to spin degeneracy and rota-
tional invariance. For the chosen parameters, two degenerate
pairs of subbands, namely, a pair denoted by n=0, �
= ↓ , �= �1 and a pair denoted by n=0, �= ↑ , �= �1,
are occupied as shown in Fig. 2�a�.

A finite magnetic field lifts the spin as well as the angular-
momentum degeneracy. With increasing strength of the mag-
netic field the energies of the two subbands with �=↑ start to
increase toward the Fermi level while the energies of the two
subbands denoted by �=↓ decrease. This results in the oc-
cupation of four, five, and six nondegenerate bands, as
shown in Figs. 2�b�–2�d�, respectively. Further increasing of
the magnetic field strength leads to the inversion on the order
of the �n=0, �=↑� and �n=−1, �=↓� subbands 	compare
Figs. 2�d� and 2�e�
 and, eventually, to the depopulation of
the �n=0, �=↑� subbands 	see Figs. 2�f�
.
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FIG. 2. �Color online� Single-particle energy spectrum in the
presence of tunneling for different values of the magnetic flux 	�a�:
	=0, �b�: 	=0.05	0, �c�: 	=0.10	0, �d�: 	=0.15	0, �e�: 	
=0.20	0, and �f�: 	=0.25	0
 with parameters �=0.1�F,ref, d
=0.1R, g=2, rs=1, R=0.5aBrs, and m=me. The quantum numbers
n, �= ↑ ,↓, and �= �1 refer to the angular momentum, physical
spin, and pseudospin, respectively. In all the cases �n,k,�,1

��n,k,�,−1, as explicitly indicated in �a�.
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B. Effects of Coulomb interaction

We now include the effects of the electron-electron inter-
action. Electrons in the same tube interact via the intratube
potentials

Vout/in�l,q� =
e2

�̃
Il��q�R � �q�

d

2
�Kl��q�R � �q�

d

2
� �12�

depending on the tube both electrons are located in. On the
other hand, the intertube Coulomb interaction between elec-
trons from two different tubes is given by

Vd�l,q� =
e2

�̃
Il��q�R − �q�

d

2
�Kl��q�R + �q�

d

2
� . �13�

In these expressions, Il�x� and Kl�x� are the modified Bessel
functions while l and q denote the change in angular and
linear momentum �along the z axis�, respectively. It is con-
venient to define linear combinations

Vout
� �l,q� =

1

2
	Vout�l,q� � Vd�l,q�
 �14�

and

Vin
��l,q� =

1

2
	Vin�l,q� � Vd�l,q�
 . �15�

Then, the electron-electron interaction can be written as

Ĥ� =
1

2�L
�
l,q

	Vout

− �l,q� + Vin
− �l,q�
Ŝz�l,q�Ŝz�− l,− q�

+
1

4
	Vout

+ �l,q� + Vin
+ �l,q�
n̂�l,q�n̂�− l,− q� +

1

2
	Vout

− �l,q�

− Vin
− �l,q�
	Ŝz�l,q�n̂�− l,− q� + n̂�l,q�Ŝz�− l,− q�
�

−
1

2�L
�
l,q

	Vout
− �l,q� − Vin

− �l,q�
Ŝz, �16�

where

n̂�l,q� = �
n,k,�,�

ân,k,�,�
† ân+q,k+l,�,� �17�

is the local density operator. The complete Hamiltonian de-
scribing our system is

Ĥ = Ĥ0 + Ĥt + Ĥ�, �18�

which comprises single-electron, tunneling, as well as Cou-
lomb coupling terms.

III. PSEUDOSPIN RESONANCE

Our goal is to investigate the pseudospin resonance,
which is an analog to the ferromagnetic resonance,29,30 and
how the resonance is affected by the electron-electron inter-
action. In what follows, zero temperature is considered. In
the uniform case, that is, for zero momentum and angular-
momentum transfer, the pseudospin response function is, in
the linear response regime

���� =
1

2�L
��Ŝz, Ŝz���, �19�

where the brackets denote the Kubo product

��Â,B̂��� = − i�
0

�

d�ei��+i����0�	Â���,B̂�0�
�0� . �20�

Since Ŝz measures the difference between the number of
electrons in the outer and inner tubes, the pseudospin reso-
nance describes collective oscillations of the particle densi-
ties between the tubes. This collective mode can be induced
either by an external electric potential Vext�t� applied be-
tween the tubes �as is also the case in flat-bilayer systems� or
by fluctuations Bfl�t� in the coaxial magnetic field �or by
applying an oscillating, coaxial auxiliary magnetic field�.
The latter case is dealt with in the model by replacing the
constant magnetic field amplitude B with B+Bfl�t� and treat-
ing the arising linear term containing Bfl�t� as an external
perturbation and neglecting the higher order terms. Using
linear response theory2,4 the fluctuations of the pseudospin
expectation value of the system due to those perturbations
can be calculated from the following expressions:

��Ŝz���� = −
2e

�
����Vext��� �21�

and

��Ŝz���� =
e

m

	

	0

d

R
����Bfl��� , �22�

where Vext��� and Bfl��� are the Fourier transforms of Vext�t�
and Bfl�t�. By comparing Eqs. �21� and �22� one can see that

VB��� � −
�

2m

d

R

	

	0
Bfl��� �23�

acts as an effective field which has the same effect as an
external electric potential.

The pseudospin resonance is given by the condition

Re	�−1��res�
 = 0 �24�

from which the resonance frequency �res will be extracted.
As suggested by Eq. �22�, in coaxial tubes an auxiliary mag-
netic flux piercing the system leads to fluctuations of the
pseudospin expectation value and can therefore be used as an
alternative control parameter for inducing collective oscilla-
tions.

IV. PERTURBATION THEORY

We will work in the limit d�R and introduce the dimen-
sionless intertube distance �d=d /R as an expansion param-
eter. To calculate the resonance frequency in powers of �d, a
slightly modified version of the perturbation theory devel-
oped in Ref. 22 is applied. The perturbation scheme from
Ref. 22 has been modified to account for the cylindrical ge-
ometry considered here. First, ���� is systematically decom-
posed into ground-state expectation values and correlation
functions, and an exact equation for ����, analogous to Eq.
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�3� in Ref. 22, is derived. This scheme is rather elaborate and
we refer to the Appendix 	see Eq. �A3�
 for more details. The
perturbation theory is based on the expansions

Vout
− �l,q� =

e2�q�
�̃

Il���q�R�Kl��q�R�d + O��d
2� �25�

and

Vin
− �l,q� = −

e2�q�
�̃

Il��q�R�Kl���q�R�d + O��d
2� , �26�

which vanish in the zeroth order and can be considered small
perturbations for �d=d /R�1. To calculate the correlation
functions and expectation values, it is convenient to switch
from the Heisenberg to the interaction picture and base the

perturbation scheme on the perturbation Ĥper, which consists

of those parts of Ĥ� that contain at least one factor Vout
− �l ,q�

or Vin
− �l ,q�. The unperturbed Hamiltonian Ĥunper is then given

by Ĥ with Vout
− �l ,q� and Vin

− �l ,q� set to zero. In the following,
we will restrict ourselves to the high-density limit, where we

can neglect the density-density coupling in Ĥ� �which is not

part of Ĥper� and use the Hamiltonian Ĥunper= Ĥ0+ Ĥt and its
ground state as our reference system.

The strategy is to expand ���� in powers of �d �see Ap-
pendix for details�. The expansion series of ���� is then
inverted and expanded again in powers of �d up to the same
order as ���� was. After that, the zeros of this new power
series are computed as a function of the intertube distance
and expanded once again, which provides the expansion se-
ries of the resonance frequency in powers of �d. As an im-
portant example, the pseudospin resonance frequency will be
calculated in the following section.

V. PSEUDOSPIN RESONANCE FREQUENCY

An approximate expression for the resonance frequency
can be obtained by expanding the pseudospin response func-
tion up to the first order in �d. In such a case the evaluation
of ���� 	see Eq. �A3�
 is greatly simplified �see Appendix for
details� and one obtains the following approximate relation:

���� =
�

���
2 �Mx

�0� + Mx
�1�� +

2�2

�3��
4

1

�2�L�2

� �
l,q

	Vout
− �l,q� + Vin

− �l,q�
�1�f �0��l,q� + O��d
2� ,

�27�

where

�� =��2 −
�2

�2 �28�

and

Mx =� 1

2�L
�0�Ŝx�0��

t=0
. �29�

Expanding Mx in powers of �d one obtains in the zeroth
order

Mx
�0� =

1

2�L
�

n,k,�

nn,k,�,−1
�0� − nn,k,�,+1

�0�

2
�30�

with

nn,k,�,�
�0� = ���F

�0� − �n,k,�,�
�0� � , �31�

where �F
�0�=�F

�0� /� 	�F
�0� is the Fermi energy of the system in

the zeroth order in �d
 and �n,k,�,�
�0� =�n,k,�,�

�0� /�. The correction
Mx

�1� adding the first-order terms of Mx is irrelevant for the
expansion of �−1��� up to the first order in �d. In the equa-
tions above, and in what follows, the superscripts denote the
respective order in �d. Finally, we have introduced

f �0��l,q� = �l,0�q,0�2�LMx
�0��2

+
1

2 �
n,k,�,�

nn,k,�,�
�0� �1 − nn+l,k+q,�,�

�0� �

−
1

4 �
n,k,�

�
�,�

nn,k,�,�
�0� �1 − nn+l,k+q,�,�

�0� � �32�

in Eq. �27�.
Next, the approximate pseudospin response function

given in Eq. �27� is inverted and then expanded in powers of
�d. From the zero of this series the resonance frequency �res
can be calculated. After several algebraic manipulations, the
resonance frequency reads as

�res
2 =

�2

�2 +
4�

�2

e2

�̃

d

R

Mx
�0��↑�Mx

�0��↓�

Mx
�0� + O��d

2� . �33�

For the derivation of this expression, the Wronskian formula

Il�x�Kl��x� − Il��x�Kl�x� = −
1

x
�34�

for modified Bessel functions41 has been used to rewrite the
potential differences in the first order in �d

	Vout
− �l,q� + Vin

− �l,q�
�1� =
e2

�̃

d

R
. �35�

In Eq. �33� we have introduced the spin-resolved pseudo-
magnetizations Mx

�0��↑ � and Mx
�0��↓ �, which are defined as

Mx
�0���� =

1

2�L
�
n,k

nn,k,�,−1
�0� − nn,k,�,+1

�0�

2
. �36�

Recall that the pseudospin quantum number �= �1 refers to
the bonding and antibonding eigenstates of the Hamiltonian

Ĥ0+ Ĥt with eigenenergies �n,k,�,�, given by Eq. �10�. In Eqs.
�31� and �36� the energy spectrum enters only in its zeroth
order in �d.

It follows from Eqs. �31� and �36� that the spin-resolved
pseudomagnetization measures the difference between the
number of bonding ��=−1� and antibonding ��=+1� states
for a fixed spin-quantum number �. Therefore, the total
pseudomagnetization is given by the sum
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Mx
�0� = �

�=↑/↓
Mx

�0���� . �37�

From Eq. �33� one can see that the Coulomb interaction pro-
duces a shift of the resonance frequency with respect to � /�,
the resonance frequency one would have obtained within the
single-particle picture. This opens the possibility of investi-
gating many-body effects by measuring the frequency shift
of the pseudospin resonance.

At finite magnetic fields, the shift in the resonance fre-
quency, given by

�2 = �res
2 −

�2

�2 �38�

depends on the different spin populations of the subbands
denoted by the pseudospin-quantum numbers �= �1. This
is due to Zeeman splitting which lifts the spin degeneracy of
the different subbands. The division into spin-resolved
pseudomagnetizations Mx

�0��↑ � and Mx
�0��↓ � is important if

the Zeeman term is not small compared to �.
The magnetic field dependence of the shifted resonance

frequency � is shown in Fig. 3 for a model system with
parameters �=0.1�F,ref, d=0.1R, g=2, rs=1, R=0.5aBrs, and
m=me, that is, the same parameters as in Fig. 2. One can see
that for small values of the magnetic field the shift of the
resonance frequency is almost constant. This trend changes
abruptly when the magnetic flux reaches the value 0.086	0.
At this point of nonanalyticity the resonance frequency shift
sharply starts to increase with the flux. For larger magnetic
fields a pronounced peak of �2 develops. However, increas-
ing the magnetic field even further results in a sharp drop of
�2 and the shift of the resonance frequency vanishes for
higher fields.

The behavior of the resonance frequency shift is deter-
mined, essentially, by the magnetic field dependence of the
spin-resolved pseudomagnetizations 	see Eq. �33�
, which
are shown in Fig. 4. As already mentioned, the spin-resolved
pseudomagnetizations Mx

�0��↑ � and Mx
�0��↓ � measure the

difference between the number of occupied bonding ��=
−1� and antibonding ��=+1� states for up-spin and down-
spin particles, respectively. Therefore, the magnetic field de-

pendence of the spin-resolved pseudomagnetization can be
qualitatively explained by analyzing the changes of the en-
ergy spectrum with the magnetic flux 	see Fig. 2
.

In the limit of zero magnetic field both the bonding and
antibonding states are spin degenerate 	see Fig. 2�a�
. There-
fore, the single-particle energies no longer depend on the
spin, implying

Mx
�0��↑� = Mx

�0��↓� =
1

2
Mx

�0�, �39�

which can be seen in Fig. 4. In such a case the resonance
frequency shift given by Eq. �33� reduces to

�2 =
�

�2

e2

�̃

d

R
Mx

�0� + O��d
2� . �40�

Note that since the eigenstates are nondegenerate with re-
spect to the quantum number � 	Fig. 2�a�
, the bonding and
antibonding states are unequally occupied. This results in a
finite value for the spin-resolved and total pseudomagnetiza-
tions at zero magnetic field.

The relation in Eq. �40� is similar to that of the flat bilayer
system examined in Ref. 22. In fact, if we compare the dif-
ferent constituents to the frequency shift in Eq. �40� and in
Ref. 22 and their respective definitions, we can see that, in
the first order in �d, the structure of both expressions is the
same.

At small magnetic fields the energy shift �and, therefore,
the difference in occupation� of the bonding and antibonding
states for both up- and down-spin particles changes smoothly
with the field strength, leading only to small effects on the
spin-resolved pseudomagnetizations. Nevertheless, one can
still observe an increase �decrease� in Mx

�0��↑ � 	Mx
�0��↓ �
 as

the nondegenerate subbands with n=0, �= ↑ , �= �1 �n
=0, �= ↓ , �= �1� shift up �down� toward �from� the
Fermi level and the difference between their populations in-
creases �decreases�. The opposite behavior of Mx

�0��↑ � and
Mx

�0��↓ � compensate each other, resulting in almost mag-
netic field-independent total pseudomagnetization and reso-
nance frequency shift, in the region 0�	 /	0�0.086 	see
Figs. 3 and 4
. The situation changes drastically at 	
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FIG. 3. �Color online� Magnetic field dependence of the shift in
the resonance frequency for a model system with parameters �
=0.1�F,ref, d=0.1R, g=2, rs=1, R=0.5aBrs, and m=me.
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FIG. 4. �Color online� Magnetic field dependence of the spin-
resolved and total pseudomagnetizations for the same generic sys-
tem as in Fig. 3.
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�0.086	0, at which point a fifth subband, namely, the sub-
band with n=−1, �= ↓ , �=−1, becomes occupied 	see
Fig. 2�c�
. This results in a sharp increase in Mx

�0��↓ � be-
cause now there is an additional subband, which is rapidly
populated and contributes to the �=−1 states in Mx

�0��↓ �
while there is only one band with �=+1 that contributes to
Mx

�0��↓ �. At these magnetic fields, the spacing in the energy
spectrum between states which differ only in their pseu-
dospin quantum number � is already much smaller than the
spacing between states which differ only in their real spin-
quantum number �. At 	�0.117	0, the subband with n=
−1, �= ↓ , �=+1 becomes occupied 	see Fig. 2�d�
, which
consequently leads to a decay in the absolute value of
Mx

�0��↓ �. This behavior continues until the subbands with
n=−1, �= ↓ , �=−1 and n=−1, �= ↓ , �=+1, which are
energetically very close to each other, lie far below the Fermi
level 	see Fig. 2�f�
, and the decay becomes less pronounced.
If we look at the behavior of Mx

�0��↑ � in Fig. 4, we can
observe a steady increase, which becomes steeper as the
minimum of the antibonding subband with n=0, �= ↑ , �
=+1 moves closer to the Fermi level 	see Figs. 2�c� and
2�d�
. At 	�0.21	0 this subband is no longer occupied
while the bonding subband with n=0, �= ↑ , �=−1 is still
populated 	see Fig. 2�e�
. This results in the peak of
Mx

�0��↑ �, which can be seen clearly in Fig. 4. With even
higher magnetic fields the remaining bonding subband with
n=0, �= ↑ , �=−1 moves up and becomes less and less
populated, leading to the decay of Mx

�0��↑ � until the band
minimum crosses the Fermi level �at 	�0.234	0�. For 	
�0.234	0 the spin-up subbands lie already above the Fermi
level and only spin-down subbands are occupied 	see Fig.
2�f�
. Consequently, Mx

�0��↑ � vanishes in this region 	see
Fig. 4
.

Finally, the magnetic field dependence of the resonance
frequency shift 	see Fig. 3
 is determined by the interplay of
the above discussed behaviors of both the spin-resolved and
total pseudomagnetizations. In Figs. 5 and 6 we show the
magnetic field dependence of the resonance frequency shift
for realistic model systems and for magnetic fluxes which
correspond to magnetic fields of up to 40 T. In Fig. 5 the
system parameters �r=2.4, m=0.25me, and g=2 have been

chosen to simulate a narrow carbon nanotube system with
the radii Rin=1.1 nm and Rout=1.44 nm and the electron
density per unit length n1=9.1 nm−1.33,39,42–44

In Fig. 6 the parameters correspond to a model InGaAs/
GaAs nanotube system �aB=9.8 nm and g=−0.44� with an
average radius of R=10 nm, a distance d=1 nm between
the two tubes, and an electron density n=1011 cm−2.34,35,45

As in Figs. 3 and 4, the magnetic field dependence of the
pseudomagnetizations and resonance frequency shift dis-
played in Figs. 5 and 6 can be explained by analyzing how
the single-particle energy spectrum evolves with the external
magnetic field. The only difference is that in Figs. 5 and 6
more subbands are occupied than in Fig. 3, which results in
a more complicated structure of �2. Furthermore, the effect
of Zeeman splitting is not as strong as in Fig. 3, where the
parameters were chosen for simplicity to illustrate Eq. �33�.
Therefore, one would have to go to unrealistically high mag-
netic fields to observe the vanishing of the resonance fre-
quency shift. For magnetic fields below 40 T one has not yet
entered this regime for the systems shown in Figs. 5 and 6.
There are several peaks for magnetic fields below 40 T in the
InGaAs/GaAs nanotube system �see Fig. 6�. In the narrow
carbon nanotube system, on the other hand, the resonance
frequency shift does not vary much for the fields considered
�see Fig. 5�. Only at unrealistically high magnetic fields pro-
nounced peaks would appear in this system and one would
need even higher magnetic fields to observe the vanishing of
the shift of the resonance frequency.

VI. LINEWIDTH OF THE PSEUDOSPIN RESONANCE

Additional corrections to Eq. �33� are obtained by ex-
panding the pseudospin response function up to the second
order in �d, at which point a finite imaginary part of �−1���
emerges. A nonvanishing imaginary part implies damping
and a finite lifetime of the mode. This means that the pole of
���� is at least up to the second order in �d replaced by a
roughly Lorentzian-shaped peak at the resonance frequency.
The linewidth � of the resonance can be obtained from the
imaginary part of the zero of �−1��� �in contrast to the zero
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FIG. 5. �Color online� Magnetic field dependence of the shift in
the resonance frequency for a narrow model carbon nanotube sys-
tem ��r=2.4, m=0.25me, g=2, Rin=1.1 nm, Rout=1.44 nm, n1

=9.1 nm−1, and �=0.1�F,ref�.
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FIG. 6. �Color online� Magnetic field dependence of the shift in
the resonance frequency for an InGaAs/GaAs nanotube system
�aB=9.8 nm, g=−0.44, R=10 nm, d=1 nm, n=1�1011 cm−2,
and �=0.1�F,ref�.
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of Re	�−1���
, which only yields the resonance frequency�.
This situation is the pseudospin analog to the finite linewidth
of the ferromagnetic resonance induced by the Gilbert damp-
ing.

Using the shorthand notations u= �n ,k�, v= �l ,q�, and v�
= �l� ,q��, the linewidth up to second order in �d is given by

� =
�

Mx
�0��3� e2

�̃

d

R
�2

lim
�→�/�

�A���
�

+
B���

�
� + O��d

3� �41�

Here, A��� and B��� denote the sums

A��� =
�

4

1

�2�L�3�
u,�

�
v,v�

�
�,�

�	� − ���v,v��


��1 − nu+v,�,�
�0� ��1 − nu−v�,−�,�

�0� �nu,�,�
�0� nu+v−v�,−�,−�

�0�

�42�

and

B��� =
�

2

R2

�2�L�3 �
u,v,v�

�
�,��,�

V2�v��	� − �̃�v,v��


��1 − nu+v,�,�
�0� ��1 − nu−v�,��,�

�0� �nu,�,�
�0� nu+v−v�,��,�

�0�

−
�

2

R2

�2�L�3 �
u,v,v�

�
�,�

V�v�V�v���	� − �̃�v,v��


��1 − nu+v,�,�
�0� ��1 − nu−v�,�,�

�0� �nu,�,�
�0� nu+v−v�,�,�

�0� ,

�43�

where

���v,v�� =
�

2mR2 ll� +
�

m
qq� +

�

�
� , �44�

�̃�v,v�� =
�

2mR2 ll� +
�

m
qq� �45�

and

V�v� = �q�	Il���q�R�Kl��q�R� + Il��q�R�Kl���q�R�
 . �46�

The zeroth-order band occupation numbers nu,�,�
�0� have al-

ready been introduced in Eq. �31�. The physical origin of the
damping can be understood by looking at the expressions for
A��� and B���. The mode loses energy by exciting two
particle-hole pairs out of the single-particle spectrum. The
process described by A��� consists of an excitation where
the pseudospin is conserved and another one where the pseu-
dospin is flipped. Furthermore, the total momentum, the total
angular momentum and the total spin are conserved during
this double excitation. The second process is given by B���,
which also describes a double-particle-hole excitation. Like
before, the process is momentum, angular momentum, and
spin conserving. But in this case the process involves either
only bonding or only antibonding states and there is no pseu-
dospin flip. The process given by A��� can also be found in
the flat bilayer system22 while B��� is a manifestation of the
cylindrical system and the existence of two different in-
tratube potentials.

The magnetic field dependence of the resonance decay
rate computed from Eq. �41� is shown in Fig. 7 for the case
of a semiconductor system with the same parameters as in
Fig. 6. Additionally, we chose a finite length L=1 �m for
the nanotubes to speed up the time-consuming numerical
evaluation of Eq. �41� by discretizing the linear momenta in
Eq. �41�. The decay rate exhibits a strong dependence on the
magnetic field with several pronounced peaks at which the
resonance linewidth is enhanced and regions where the
damping is almost suppressed �that is, where � is close to
zero� and the pseudospin resonance becomes very sharp.
This interesting behavior makes the external magnetic field,
which is an experimentally tunable parameter, attractive for
the controlled switching of the damping of the pseudospin
oscillations.

VII. CONCLUSION

We have considered a cylindrical bilayer system consist-
ing of two coaxial tubes. To account for the presence of two
tubes, we have introduced a quantum number which de-
scribes the two-level system. This two-level system was then
interpreted in terms of pseudospin-1/2 dynamics. We have
incorporated tunneling between the two tubes and calculated
the energy spectrum of the single-particle Hamiltonian. The
inclusion of tunneling between the two tubes made it pos-
sible to find a pseudospin analog to the ferromagnetic reso-
nance. Taking into account the electron-electron interaction,
the pseudospin resonance frequency has been calculated up
to the first order in the intertube distance by using a pertur-
bative scheme, which has been developed for a flat bilayer
system and appears to be superior to the RPA.22 Due to the
Coulomb interaction there is a shift in the resonance fre-
quency, which is also dependent on the coaxial magnetic
field. This dependence results in pronounced peaks of the
resonance frequency shift at certain magnetic fields. The
shift, however, disappears at higher magnetic fields. The
damping effects induced by the Coulomb electron-electron
interaction on the pseudospin resonance have been investi-
gated by computing the linewidth of the resonance. The line-
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FIG. 7. �Color online� Magnetic field dependence of the line-
width of the pseudospin resonance for an InGaAs/GaAs nanotube
system �aB=9.8 nm, g=−0.44, R=10 nm, d=1 nm, L=1 �m, n
=1�1011 cm−2, and �=0.1�F

0�.

SCHARF, FABIAN, AND MATOS-ABIAGUE PHYSICAL REVIEW B 81, 125428 �2010�

125428-8



width exhibits a strong dependence on the magnetic field
with a multipeak structure. Apart from the peaks, where the
decay rate is enhanced, in some ranges of the magnetic filed
strength the damping of the pseudospin oscillations is almost
suppressed.
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APPENDIX

Here, we present the expression for ���� on which the
perturbation scheme is based. The application of the Kubo
product formulas

��Â,B̂��� =
1

�
�0�	Â�0�,B̂�0�
�0� +

i

�
���tA,B̂��� �A1�

and

��Â,B̂��� =
1

�
�0�	Â�0�,B̂�0�
�0� −

i

�
��Â,�tB̂���, �A2�

which can be verified by partial integration, leads to the fol-
lowing expression for the pseudospin response function:

���� =
�

���
2 Mx −

i�

2�L�2��
2 C1��� +

�

�2��
4

1

�2�L�2�
v

V1�v��− i�g�v� +
2�

�
f�v�� −

i��

�2��
4

1

�2�L�2�
v

V2�v�	hy�v� − 2�LMy


−
�2

�3��
4

1

�2�L�2�
v

V2�v�	hz�v� − 2�LMz
 +
�2

�4��
4

1

�2�L�3�
v

�
v�

V1�v�V1�v��L0�v,v�,��

+
�2

�4��
4

1

�2�L�3�
v

�
v�

V1�v�V2�v��L1�v,v�,�� +
�2

�4��
4

1

�2�L�3�
v

�
v�

V2�v�V1�v��L̃1�v,v�,��

+
�2

�4��
4

1

�2�L�3�
v

�
v�

V2�v�V2�v��L̃0�v,v�,�� −
i�2

�4��
4

1

�2�L�2�
v

	V1�v�C2�v,�� + V2�v�C3�v,��
 , �A3�

where we have introduced the quantities

V1�v� = 	Vout
− �v� + Vin

− �v�
 , �A4�

V2�v� = 	Vout
− �v� − Vin

− �v�
 , �A5�

Mi =� 1

2�L
�0�Ŝi�0��

t=0
, �A6�

f�v� = �0�Ŝx�v�Ŝx�− v� − Ŝz�v�Ŝz�− v��0��t=0, �A7�

g�v� = �0�Ŝy�v�Ŝz�− v� + Ŝz�v�Ŝy�− v��0��t=0, �A8�

hi�v� =
1

2
�0�Ŝi�v�n̂�− v� + n̂�v�Ŝi�− v��0��t=0, �A9�

L0�v,v�,�� = ��Ŝxz�v�,Ŝxz�v�����, �A10�

L1�v,v�,�� = ��Ŝxz�v�,Q̂�v�����, �A11�

L̃0�v,v�,�� = ��Q̂�v�,Q̂�v�����, �A12�

L̃1�v,v�,�� = ��Q̂�v�,Ŝxz�v�����, �A13�

C1��� = ��	Ŝy,Ĥ0
, Ŝz���, �A14�

C2�v,�� = ��Ŝxz�v�,	Ŝy,Ĥ0
���, �A15�

C3�v,�� = ��Q̂�v�,	Ŝy,Ĥ0
���, �A16�

Ŝxz�v� = Ŝx�v�Ŝz�− v� + Ŝz�v�Ŝx�− v� , �A17�

Q̂�v� =
1

2
	Ŝx�v�n̂�− v� + n̂�v�Ŝx�− v� − 2Ŝx
 �A18�

and the shorthand notations v= �l ,q� and v�= �l� ,q��. This
equation is analogous to Eq. �3� in Ref. 22 but due to the

intrinsic dependence of the single-particle eigenstates of Ĥ0
on the interlayer difference and different interlayer Coulomb
potentials in each tube, there are additional terms. If this
intrinsic interlayer dependence were absent, both intralayer
Coulomb interactions would be identical, which means every
term that contains the factor 	Vout

− �l ,q�−Vin
− �l ,q�
 would van-

ish. Furthermore, Ĥ0 would no longer depend on d and

would commute with Ŝy. In this case, Eq. �A3� would reduce
to Eq. �3� in Ref. 22.
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To obtain the resonance frequency in the first order, we
need to expand the response function in Eq. �A3� up to first
order in �d. In such a case, we do not have to consider the
terms containing the products Vi�v�V j�v�� �i , j=1,2� because
they are already of second order or higher in �d. The situation
is further simplified by looking at the commutator of Ĥ0 and

Ŝy, which also vanishes in the zeroth order in �d and thus can
only contribute to first or higher order of the pseudospin
response function. This implies, however, that products of
this commutator with Vi�v� �i=1,2� do not add to the pseu-
dospin response function up to the first order. As a result,
many terms in Eq. �A3� can be omitted in the first order. The

calculation of the remaining terms shows that only f�l ,q� and
the pseudomagnetization Mx do not vanish in the zeroth

order in �d. Moreover, ��	Ŝy , Ĥ0
 , Ŝz��� also vanishes in ze-
roth and first orders in �d, which means that this term cannot
contribute to the pseudospin response function up to the first
order. Consequently, we are left with the formula given in
Eq. �33�, which is a simplified expression of the response
function accurate up to the first order in �d. For the linewidth
of the pseudospin resonance, one has to calculate ���� in at
least second order in �d, which means no term in Eq. �A3�
can be omitted.
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