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The nonadiabatic coupling of an adsorbate close to a metallic surface leads to electronic damping of
adsorbate vibrations and line broadening in vibrational spectroscopy. Here, a perturbative treatment of the
electronic contribution to the lifetime broadening serves as a building block for a new approach, in which
anharmonic vibrational transition rates are calculated from a position-dependent coupling function. Different
models for the coupling function will be tested, all related to embedding theory. The first two are models based
on a scattering approach with �i� a jellium-type and �ii� a density functional theory based embedding density,
respectively. In a third variant a further refined model is used for the embedding density, and a semiempirical
approach is taken in which a scaling factor is chosen to match harmonic, single-site, first-principles transition
rates, obtained from periodic density functional theory. For the example of hydrogen atoms on �adsorption� and
below �subsurface absorption� a Pd�111� surface, lifetimes of and transition rates between vibrational levels are
computed. The transition rates emerging from different models serve as input for the selective subsurface
adsorption of hydrogen in palladium starting from an adsorption site, by using sequences of infrared laser
pulses in a laser distillation scheme.
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I. INTRODUCTION

Energy relaxation is an ubiquitous problem when dealing
with molecular dynamics in dissipative environments.1–7 For
example, for a vibrating molecule embedded in a “bath,” the
system vibrational states have finite lifetimes, which can af-
fect their properties and chemical reactivity. Various relax-
ation channels can be operative. For molecules in the vicinity
of metallic surfaces, nonadiabatic coupling is known to play
a dominant role in the transfer of energy from the system to
its surroundings, which leads, among other phenomena, to
line broadening in spectroscopy and vibrational energy-loss
in molecule-surface scattering.6–11 The current explanation of
these phenomena resides in the breakdown of the Born-
Oppenheimer approximation, which poses that the electron
react instantaneously to any nuclear motion. While the mol-
ecule is vibrating the electrons at the surface begin to adapt
to the new local environment at finite speed and lag behind
the molecular motion.7 When the charge lags sufficiently be-
hind the vibrating molecule, electron-hole pairs are created
in the metal conduction band, a phenomenon sometimes
called “electronic friction.”

Several authors proposed perturbative expressions for
treating the effect of electron-hole pair coupling.11–20 In par-
ticular, Puska and Nieminen13 introduced a model based on
the dephasing of the electronic wave function at the Fermi
level to estimate lifetimes. This model was also pushed for-
ward more recently by Echenique and co-workers20 and by
Juaristi and co-workers,11 among others. Another important
approach, based on the dynamic self-energy for a vibrational
mode of interest, was introduced and developed by Persson
and co-workers.12,14 A similar expression was obtained by
Head-Gordon and Tully, who proposed a cluster-based single
Hartree-Fock determinant procedure to evaluate the
lifetimes,16,17 which was further refined to better treat ex-
tended systems.19 All these models define lifetimes in a site-
local picture and focus on the first excited vibrational state,

typically under the harmonic approximation. The lifetime is
generally defined as

�vib = ��1→0 − �0→1�−1, �1�

where �1→0 is the transition rate from the first excited to the
ground vibrational state and �0→1 is an upward rate, related
to the former by detailed balance �see below�.

When performing dissipative vibrational dynamics, e.g.,
ladder climbing driven by tunneling electrons21 or by infra-
red laser pulses,22 however, lifetimes for and transition rates
between all states need to be considered. The lifetime of
higher excited states in the typically used single-mode, site-
local harmonic approximation leads to one-phonon selection
rules �n=−1 for relaxation, and excited-state transition rates
which scale linearly with the vibrational quantum
number,17,22 i.e.,

�n→n−1 = n�1→0. �2�

For strongly coupled systems where the quantum numbers
are not well defined, and for corrugated potential energy sur-
faces with multiple minima, this approximation fails.

We thus introduced recently23 a position-dependent state-
to-state transition rate model to circumvent these limitations,
which relies on a certain number of simplifications. In par-
ticular, this rate model was based on embedding theory using
a simple, jelliumlike embedding density. It has been argued
that jellium-type �free electron gas� embedding models un-
derestimate the amount of electronic damping when com-
pared to self-energy calculations using first-principles,
gradient-corrected density-functional theory.24 In order to
support or disprove the generality of this statement, it is a
first objective of this paper to compare embedding/jellium-
type models with first-principles methods for hydrogen on
Pd�111�. A second goal is to go beyond the jellium-type ap-
proaches but still adapt an embedding model, by using more
realistic embedding densities which are derived from
gradient-corrected density functional theory �DFT� calcula-
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tions. Finally, first-principles calculations in the framework
of dynamic self-energy theory will be used to calculate har-
monic lifetimes for selected reference sites which are then
used, in semiempirical fashion, to calibrate the embedding
models. The goal is to obtain good representations of the
global behavior of electronic friction, and to calculate anhar-
monic transition rates for H/Pd�111�. Furthermore, the rates
arising from different models will be used in dynamical cal-
culations within open-system density matrix theory to en-
force subsurface adsorption of H atoms, starting from an
adsorbed state, by ladder-climbing induced by a sequence of
infrared laser pulses.

The paper is organized as follows. In Sec. II we will de-
scribe the various methods to calculate the electronic damp-
ing rates, and the dynamical simulations using the open-
system density matrix approach, respectively. In Sec. III B
we present results for the transition rates in various models,
and their performance in IR-driven vibrational dynamics in
Sec. III C. Section IV concludes this work.

II. THEORY

A. Transition rate model

1. General expression

We study the case of an adsorbate, hereafter called the
subsystem, located in the vicinity of a metallic surface. The
subsystem vibrational dynamics is affected by energy dissi-
pation due to electron-hole pair coupling. The state-to-state
transition rates can be evaluated perturbatively using Fermi’s
Golden Rule for the nonadiabatic coupling elements.12,14–19

At T=0, the transition rate is

�n�→n =
2�

�
�
i,f

��n��f �Ŵ�i��n���2��Ei − Ef� , �3�

where Ei�Ef� is the energy of the initial �final� vibronic state
and ��Ei−Ef� is the Dirac delta-function, ensuring energy
conservation. The total wave function is represented as a
product of vibrational and electronic states. States �n� and
�n�� are associated with the vibrational degrees of freedom,
while �i� and �f� are the electronic initial and final states. The

operator Ŵ that represents the electron-hole pair coupling is
the kinetic energy operator of the subsystem, which is, for a
monoatomic adsorbate with coordinates q�=x ,y ,z� and mass
m given as

Ŵ = −
�2

2m
� �2

�x2 +
�2

�y2 +
�2

�z2� . �4�

To simplify the derivation, we assume that the contributions
of each coordinate q to the total downward transition rate
from state n� to n are decoupled, that is

�n�→n = �
q=1

3

�n�→n
�q� . �5�

In case of a molecular adsorbate with NA atoms, we treat
every atom separately and the sum in Eq. �4� consists of 3NA
terms. Note that only downward transitions are possible at

T=0 and that there are no upward rates. At finite temperature
T, upward transitions which are related to the downward
rates by detailed balance come into play

�n→n�
�q� = �n�→n

�q� e−��n�−�n�/kBT, �6�

where kB is the Boltzmann constant and �n,n� are vibrational
energies.

2. First-principles theory of harmonic, site-local transition rates

Various ways have been suggested of how to evaluate the
rate expression �3�, under additional approximations. In a
first-principles approach, a rate expression can be used in
which the dynamical self-energy is evaluated.14,16 The two
main lines of research to do so express the latter in a plane-
wave basis in the framework of density functional theory, as
proposed by Persson and Hellsing,12,14 Persson and
co-workers,18 and Tully and co-workers,19 or alternatively by
Hartree-Fock wave functions for a small cluster, as advo-
cated by Tully and co-workers.16,17 In most actual investiga-
tions, �i� periodic DFT calculations using gradient-corrected
exchange-correlation functionals are used, �ii� a harmonic
approximation is made for the adsorbate vibrations, and �iii�
the separability of nuclear and electronic degrees of freedom

in the nonadiabatic coupling element �n��f �Ŵ�i��n�� is as-
sumed. In practice, an adsorption site on the surface is deter-
mined by geometry optimization, followed by normal mode
analysis to obtain the harmonic frequency �q of mode q and
the corresponding normal mode eigenvector, Rq. Consider-
ing periodically repeated cells, one can work in the basis of
Bloch states and rewrite expression �3� for the rate of the first
excited vibrational state decaying to the ground state �T
=0 K�, under the separability approximation as18

�1→0
�q� =

2�

�
�
f ,i,k
	�ik�

�Ĥ

�Rq
�0�fk�	2

	��1��Rq�0��2��
 f ,k − 
i,k + ��q� . �7�

Here, i is an occupied and f an empty band index, k is a
wave vector of the Brillouin zone, and 
n,k are band energies

at k-point k. Further,� �Ĥ
�Rq

�0 is the derivative of the electronic
Hamiltonian with respect to the qth normal mode coordinate
at the position of the equilibrium geometry, which can be
evaluated by finite differences. �Note that second derivatives
of the electronic wave function with respect to nuclear coor-
dinates have been neglected.� The nuclear matrix element
�1��Rq�0� is given by 
 �

2mq�q
in the harmonic oscillator ap-

proximation. Finally, the delta function can be approximated
by a Gaussian of width �, and the transition rate is then
determined from the condition d�1→0

�q� /d�=0. These proce-
dures are detailed elsewhere18 and have proven to give ex-
cellent results. Equation �7� will be referred to below as the
“first-principles” method.

3. Rate expressions based on embedding theory

Puska and Nieminen13 have proposed related expressions
for electronic friction and relaxation rates, also advocated by
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Hellsing and Persson14 and more recently by Juaristi and
co-workers,11 based on scattering properties of the Kohn-
Sham wave function of an atom embedded in a free electron
gas. Accordingly, in the harmonic approximation,

�1→0
�q� = ��3�

m
�� 4

9�
�1/3

�
l=0

�

�l + 1�sin2��l+1��F� − �l��F�
�rs
−2.

�8�

The phase shifts at the Fermi level, �l��F�, are tabulated
elsewhere.13 The electron gas parameter rs is

rs = � 3

4�
emb
�1/3

, �9�

where 
emb is the embedding density. For a homogeneous
electron gas, 
emb and rs are constants. In a real system, in
particular at surfaces the embedding density 
emb is a func-
tion of coordinates �x ,y ,z� of the atom.

It has been suggested23 to generalize Eq. �8� to

�n�→n
�q� = ��q�	�n��
emb

1/3 �x,y,z�
�

�q
�n�	2

. �10�

The prefactor ��q� in Eq. �10� can be interpreted as a scaling
factor. For �i� the free-electron gas embedding model, �ii�
specializing to the case n�=1 and n=0, and �iii� treating the
vibrations as harmonic, we have

	�n��
emb
1/3 �

�q
�n�	2

=
m�q

2�
� 3

4�rs
3�2/3

�11�

and therefore by comparing Eq. �10� with Eq. �8�,

��q� = � 8�2

m2�q
���

3
�1/3

�
l=0

�

�l + 1�sin2��l+1��F� − �l��F�
 .

�12�

Therefore, by construction, in the harmonic approximation
and the free-electron gas limit with the density defined by
Eq. �9�, Eq. �10� gives the result Eq. �8�.

We can determine the scaling factor ��q� alternatively by
adjusting it to match the first-principles limit by construction.
Let us suppose that we know, from the first-principles ap-
proach, for a particular mode and adsorption site a harmonic
transition rate �nref� →nref

�q�,ref connecting two reference states nref�

and nref. This can be, for example, the rate from the first
excited state of H vibrating in the fcc surface site of Pd�111�
in q=z direction, to the ground vibrational state �see below�.
From Eq. �10�, we then have

��q� =
�nref� →nref

�q�,ref

	�nref� �
emb
1/3 �x,y,z�

�

�q
�nref�	2 . �13�

By construction, the scaling factor Eq. �13� reproduces the
first-principles reference rate. Of course, any other reference
might be used instead, e.g., experimental transition rates or
lifetimes for the, say, perpendicular and parallel vibrations of
H in a Pd�111� fcc site if available.

The derivation presented in our previous work relies on a
certain number of simplifications, starting with the separa-
tion of the nuclear and electronic degrees of freedom. The
“first-principles” expression is based on the free electron gas
�FEG� model, as characterized by parameter rs in Eq. �8�. For
an atom in the vicinity of a metallic surface, the FEG param-
eter depends of the position of the embedded atom at the
surface. This idea was first introduced by Juaristi et al. for
the purpose of calculating friction coefficient for classical
dissipative dynamical simulations of atoms at metallic
surfaces.11 In this context, the function 
emb

1/3 �x ,y ,z� appears
naturally in Eq. �8� to include the inhomogeneity of the elec-
tron density cloud at the surface. Specializing on the first
excited state along a chosen harmonic mode, the “first-
principles” model �8� and the perturbative approach �Eq.
�10�
 can be connected so that the latter reproduces the
former in that particular limit. The numerical comparison
with the model of Persson and co-workers12–14,18 shows con-
vincingly that the generalization of Eqs. �8�–�10� yields re-
sults of great accuracy, at least for the system studied here.

4. Three different embedding-based methods to calculate
vibrational lifetimes

In the following, we will use, besides the “first-principles
model” �7� within the harmonic approximation, three other
methods which are based on the more approximate, but gen-
eral embedding expression Eq. �10�. These methods differ in
their choice of the scaling factor ��q� and the embedding
density 
emb�x ,y ,z�.

The simplest approach is to use a jelliumlike, constant
electron density inside the metal, while for atoms outside the
jellium some z dependence can be introduced. The z depen-
dence is introduced by noting that far from the surface, in the
asymptotic limit for z, the electron density of a metal is equal
to23


emb�x,y,z� = 
0e−2
2Iz, �14�

where I is the metal work function, and 
0= 3
4�rs

3 is the asso-
ciated free electron gas density for a given Wigner-Seitz ra-
dius rs. This simple model, called “jellium” model in what
follows, was used in our previous work23 in conjunction with
the �harmonic� scaling factor �12�, to calculate anharmonic
transition rates according to Eq. �10�.

The jellium model neglects lateral variations of the em-
bedding density. A more realistic model can be obtained us-
ing the electronic density of the metal 
�x ,y ,z�,11,20,25


emb�x,y,z� = 
�x,y,z� . �15�

The latter can be determined from a single periodic DFT
calculation at all positions above and below the metal sur-
face. This choice for 
emb, when still used in conjunction
with the scaling factor �12�, will be called the “metal” �den-
sity� model in the following.

The latter model relies on the assumption that the pres-
ence of the adsorbed species in the vicinity of the surface
does not significantly modify the electronic density of the
metal. To circumvent this limitation, we can define a more
refined model for the embedding density. The idea is to place
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an embedded atom at different positions above and below the
metal surface, and to look at the density at the cusp defining
the position of the nucleus, 
tot�x ,y ,z�. The relative value of
the embedding density, 
emb�x ,y ,z�, is then obtained by re-
moving the cusp density value of the free atom, 
 free, i.e.,


emb�x,y,z� = 
tot�x,y,z� − 
 free. �16�

The absolute value of the embedding density is then obtained
by normalizing the state-to-state transition rate of Eq. �10� to
match the desired lifetime of a reference state, i.e., by using
the scaling factor ��q� as defined in Eq. �13�. This procedure
introduces some arbitrariness in the definition of the embed-
ding density but includes the perturbation of the electronic
density of the metal surface. This is the third method to be
tested below, which will be referred to as the “perturbed”
model.

B. Dynamical simulations

In the following, IR-laser driven vibrational dynamics in
the presence of vibrational relaxation will be considered for
H/Pd�111�. To perform dynamical simulations, the subsystem
dynamics will be treated using the reduced density matrix
formalism, in which the effects of the surface are considered
implicitly.26 The reduced density matrix is obtained by trac-
ing out the contributions of the environment from the total
density matrix of the full system. Energy and phase relax-
ation due to the proximity to the metallic surface are in-
cluded via the perturbative transition rate models described
above. The subsystem dynamics will be steered in a desired
direction by rationally designed short, intense laser pulses.
The time evolution of the reduced density operator, 
̂�t�,
obeys the Liouville–von Neumann equation.26 By �i� ex-
pressing the density operator in the basis of the vibrational
eigenstates �n= �n� of the vibrating H atom, �ii� using the
semiclassical dipole approximation to treat the coupling of
these vibrations to an external field, and �iii� employing so-
called Lindblad operators27 to enforce environment-induced,
dissipative transitions between the vibrational levels with
rates �n→n�, the time evolution of the reduced density matrix
elements becomes22,28,29

d
nn

dt
= −

i

�
�

p=x,y,z
Ep�t��

i

��ni
�p�
in − 
ni�in

�p��

+ �
i

��i→n
ii − �n→i
nn� , �17�

d
n�n

dt
= − i�n�n
n�n −

i

�
�

p=x,y,z
Ep�t��

i

��n�i
�p�


in − 
n�i�in
�p��

− �n�n
n�n. �18�

Here, �n�n= ��n�−�n� /� is the energy difference between
states n� and n, Ep is the pth component of the laser field, and
�n�n=1 /2�

l

��n�→l+�n→l� is a dephasing rate, arising from

the energy relaxation processes. Further, �ni
�p�= �n���p��i� is

the transition dipole moment associated with the pth compo-
nent of the dipole function ��p�. The dipole moment function

was obtained from cluster model calculations using density
functional theory.23 In the case studied here, the dynamics
follows the direction perpendicular to the surface. Further-
more, the component of ��p� parallel to the surface is small
in comparison to the perpendicular one. Thus, only the z
component of the dipole moment was computed. The diago-
nal elements of the density matrix, 
nn in Eq. �17�, represent
the subsystem state populations, and the off-diagonal ele-
ments, 
n�n in Eq. �18�, represent coherences.

It must be mentioned that the spectral lines associated
with the adsorbate vibrational transitions will appear as small
features on the top of a much broader spectrum, which has its
origin in the excitation of the continuum of electronic states.
In theoretical simulations, it is extremely difficult to take into
account the perturbation of the electronic density at the sur-
face by the external electric field. Thus, this contribution is
left aside in most theoretical treatments, as is the case here. It
is postulated that the continuum absorption should not affect
the control mechanism. On the other hand, the adsorbate
vibrations and the surface electronic states are known to be
strongly coupled. Inclusion of the perturbation to the elec-
tronic density in our model might change the dynamical be-
havior of the system. This said, the Lindblad dynamical
semigroup approach and the perturbative treatment of the
nonadiabatic coupling should account for most of the homo-
geneous line broadening of the resonant transitions. Thus, a
significant part of the effect of the non-Born-Oppenheimer
coupling on the adsorbate dynamics is already taken into
account by our dissipation model.

III. RESULTS

A. Computational realization

1. Anharmonic subsystem eigenstates

We apply our transition rate models to study the dissipa-
tive dynamics of a single hydrogen atom adsorbed on a pal-
ladium �111� surface. The full-dimensional Hamiltonian of
the subsystem is given by

Ĥ = −
�2

2m
� 1

sin2���
�2

�s1
2 −

2 cos���
sin2���

�2

�s1 � s2

+
1

sin2���
�2

�s2
2 +

�2

�z2� + V�s1,s2,z� . �19�

Here, s1 and s2 are skewed coordinates parallel to the surface
chosen to follow the 1	1 unit-cell borders, at an angle �
=60° and coordinate z defines the distance from the surface.
Figure 1�a� shows a cartoon of the hydrogen-palladium sys-
tem. The cartesian and skewed in-plane coordinates, as well
as the angle � are defined in Fig. 1�b�. The transition rates
were computed along the rotated cartesian coordinates qd and
qp, which better follow the nodal structure in the 1	1 unit
cell. For more details, the reader is referred to our previous
work.23 We use the potential energy surface of Osawa et al.30

to describe the interaction of the hydrogen atom with the
surface. The Osawa surface was obtained from periodic DFT
calculations, similar to ours as reported below.

The time-independent Schrödinger equation was solved
using the variational method. A linear combination of tensor-
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products of one-dimensional basis functions was used as a
trial function. Coordinate s1�s2� was represented in a basis of
25 plane-wave discrete variable representation �exp-DVR�
functions31 on the interval spanned by the 1	1 unit-cell.
A basis of 100 sinc-DVR functions32 on the range
�−4.5,2.0
 Å was used for the z coordinate �Fig. 1�a�
. The
392 lowest eigenstates up to 7600 cm−1 above the potential
energy minimum were extracted using an implementation of
the coupled two-term Lanczos algorithm with full
reorthogonalization.33,34 All states were used in the dynamics
calculations in Sec. III C.

The potential energy minimum corresponds to the fcc ad-
sorption site �“fcc site”�. Besides that, other important
minima to be considered below are the hcp adsorption site
which is only about 300 cm−1 higher in energy �“hcp site”�,
the octahedral subsurface adsorption site about 2500 cm−1

above the global minimum �“Oh �sub� site”
, and, finally, the
octahedral bulk absorption site �“Oh �blk� site”
, about
3200 cm−1 above the minimum �see Fig. 1 in our previous
paper23 and also Fig. 2 below�. All of these minima support
perpendicular �“z”� and parallel modes �“p”�, the latter being
doubly degenerate. The fundamental frequencies at the fcc
center are 922 cm−1 for the perpendicular mode and
717 cm−1 for the parallel mode. In the subsurface octahedral

cavity, the energy ordering is reversed, with 606 and
638 cm−1 for the parallel and perpendicular mode frequen-
cies, respectively. In the bulk site, we find a very similar
transition frequency for the perpendicular mode �640 cm−1�,
but the parallel mode remains slightly higher in energy
�648 cm−1�. For a deeper analysis of the vibrational states of
hydrogen on palladium, the reader is referred to our previous
work.23 There it is also shown how the derivatives of the
vibrational wave functions with respect to coordinate q as
required in �10� were done.

2. Electronic structure calculations

To calculate embedding densities, density functional cal-
culations were performed with the plane-wave based VASP

code,35,36 using the PW91 exchange-correlation functional.37

The substrate was represented by a six-layer slab containing
only one atom each �1	1 supercell�. The reciprocal space
was sampled with an automatically generated 15	15	1
Monkhorst-Pack grid.38 In the relaxation process, the atoms
of the three top layers of the slab were free to move, their
coordinates changed until a force of 0.01 eV /Å or less was
reached. We then extracted the self-consistent electronic den-
sity 
�x ,y ,z� of the system, which was used as the embed-
ding density in the “metal” model �see Eq. �15�
. The calcu-
lation of the “perturbed” density �Eq. �16�
 was performed
exactly at the same level of accuracy by including a hydro-
gen atom and varying its position along the z-coordinate,
while maintaining the palladium atoms fixed. This was done
for four positions of the hydrogen atom in the �x ,y� plane:
the fcc, hcp, top and bridge sites. For each site, ten points in
the range �−4.5,2.0
 Å were used to calculate the perturbed
density. Exploiting the C3v symmetry of the system to gen-
erate a denser set of points, the perturbed metal density was
interpolated on the resulting grid using three-dimensional
�3D� natural splines.

To compute first-principles harmonic lifetimes according
to Eq. �7�, we preferred to use a bigger supercell �2	2
	6� in order to avoid effects arising from the periodically
repeated cells. These include attraction or repulsion of the
adsorbate in adjacent cells, as well as possible constraints in
the lateral motion, along the diffusion coordinate. An ionic
relaxation was first performed to obtain the equilibrium ge-
ometry of the system and in particular to get a realistic ad-

x
y

z

H

x,s1

y

qd

qp

s2

α

(b)(a)

FIG. 1. �Color online� Schematic representation of the dynamical system. Panel �a�: Cartoon of the H/Pd�111� system showing the three
cartesian axes. Panel �b�: Coordinates describing the hydrogen atom position on the surface. The 1	1 unit cell is represented by balls,
triangles, and inverted triangles for the first, second and third palladium atom layer, respectively. See text for more details.
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FIG. 2. Ground and first excited vibrational states of the full-
dimensional Hamiltonian sorted according to the site where they are
localized. The labels �b� and �s�, refer to the bulk and subsurface
octahedral site, and the labels �h� and �f� to the hcp and fcc adsorp-
tion sites, respectively.
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sorption distance. A normal mode analysis was then per-
formed as outlined earlier. Two modes of special interest are
the perpendicular mode of H, adsorbed in the fcc site, and
the perpendicular mode of H in the octahedral subsurface
site. Both correspond to normal modes with coordinates Rq
which show an almost pure H motion along z, with only
minor contributions from the surrounding Pd atoms. The cor-
responding harmonic vibrational frequencies are �z

�f�

=976 cm−1 for the fcc adsorption site, and �z
�s�=565 cm−1

for the octahedral subsurface site—the anharmonic values of
the previous section, obtained from the full potential surface,
were 922 cm−1 and 606 cm−1, respectively.

The matrix elements �ik� �Ĥ
�Rq

�fk� in Eq. �7� were evaluated
by finite differences and the delta function was approximated
by a Gaussian of width �=0.2 eV, chosen according to the
criteria given in Sec. II A 2. As discussed in the work of
Lorente and Ueba,21 the k-point sampling is critical in order
to obtain reliable results. We used a 7	7	1 grid, which
gives a good sampling according to references 19 and 21.

Two vibrational lifetimes have been calculated by the
first-principles method: For the perpendicular mode in the
fcc site, we obtain a lifetime �=1 /��z

�f�→gs�f� of 393 fs. For
the octahedral subsurface site, we get �=1 /��z

�s�→gs�s�

=416 fs. The first of these transition rates, ��z
�f�→gs�f�, has

been used as the reference rate to calibrate the “perturbed”
embedding-density model according to Eq. �13�. The life-
times will be discussed in more detail in Sec. III B 2.

B. Vibrational lifetimes from embedding-based methods

1. Embedding density

Before doing so, it is necessary to compare the different
models introduced in Sec. II A 4 to calculate embedding den-
sities. The “jellium” model is defined using constants I
=0.1881 for the work function of Pd�111� and 
0= 3

4�rs
3 with

rs=2.9 �all in atomic units� for the density inside the metal.
The jellium model is to some extent trivial �it is flat inside
the surface and decays exponentially outside� and not shown
here.

Figure 3 shows a two-dimensional cut of the embedding
densities of the “metal” �Eq. �14�
 and “perturbed” models
�Eq. �15�
. The coordinate z has its zero defined as the first
layer of palladium atoms �the black dots�. The other coordi-
nate is a linear combination of the two skewed coordinates
that bisects the 1	1 unit cell through all the highly symmet-
ric points above and below the surface �fcc, hcp, bridge, and
Oh�. For clarity, fcc �f� and hcp �h� adsorption sites, as well
as subsurface �s� and bulk �b� absorption sites are indicated
in the left panel of Fig. 3.

The electronic density of the free metal shown on the left
rises slowly when coming down the z direction along the
hydrogen absorption path at the fcc center �at about

s1+s2

2
=3.29 Å�. After reaching a saddle point at the surface the
embedding density goes down slowly to reach a local mini-
mum a little below the subsurface octahedral site, at about
z=−1.2 Å. Another local minimum can be seen at the end of
the unit-cell and a depth of z=−3.5 Å, which is a bit lower
than the bulk octahedral site. The electronic density also in-

creases steeply when approaching the palladium atoms.
The comparison to the perturbed density model �right

panel� is striking. First, the embedding density rises much
more quickly when the hydrogen atom approaches the sur-
face. The local minima and maxima, as well as the saddle
points, are indeed located at about the same position as for
the free metal density case, but perturbed density gradients
are much larger at all other positions. The steeper fluctua-
tions of the perturbed density can be explained by: �1� the
increase in the number of electrons by volume due to the
addition of the hydrogen atom in the system, �2� the increase
of the electron density in the vicinity of the hydrogen atom to
stabilize the positive charge as it approaches the palladium
atoms. The first point does not cause any problem since the
embedding density is scaled to a desired value using Eq.
�13�. Furthermore, the high values of the embedding density
correspond to geometries that are not energetically acces-
sible, and that will consequently not affect the transition
rates. Also, the perturbed density does not appear to be iso-
tropic at the vicinity of the palladium atoms. This can be
rationalized by the fact that the environment is not of spheri-
cal symmetry around the atoms. This could also be an arti-
fact of to the relatively small number of sampling points
used for generating the perturbed metal density.

2. Lifetimes

First excited states. In Table I we give the lifetimes asso-
ciated with the different embedding-density models for the
first excited state of the perpendicular mode of the hydrogen
atom, obtained by integrating Eq. �10�. The lifetimes are
sorted according to the ad-or absorption site in which their
maximum amplitude is located, which was determined by
direct inspection of the wave functions. It is important to
keep in mind that these assignments are approximate, as all
degrees of freedom of the system are strongly coupled and
the wave functions are only partially localized in the local
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FIG. 3. Comparison of the embedding density for a hydrogen
atom on a palladium �111� surface. The dots represent the palladium
atoms and the first metal layer defines the zero of the surface. In the
left panel, fcc �f� and hcp �h� adsorption sites, as well as subsurface
�s� and bulk �b� absorption sites are indicated. The contours range
from 0 to 0.2 a0

−3 and are separated by 0.006 666a0
−3 increments.

Left panel: Free metal density. Right panel: Perturbed metal density.
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potential wells. The label “mode” refers to the state-to-state
lifetime, obtained by inverting the state-resolved transition
rate from the first excited state to its associated local mini-
mum. The label “sum” refers to the lifetime including the
contribution of all decaying channels. That is, we sum the
transition rates of all lower-lying states, �k

�sum�=�n=1
k−1�k→n.

For example, the first perpendicular mode excited state cen-
tered at the fcc site lies fifth in the energy spectrum. Thus,
the “sum” lifetime is given by �4= 1

�4
�sum� = ��4→3+�4→2

+�4→1+�4→0�−1. States �2, 3� correspond to the degenerate
parallel mode and the state-to-state lifetime from the first
perpendicular mode to the parallel mode is about 3.3 ps. The
transition to the hcp site �state 1� is much longer, at about
400 ps. The sum lifetime is dominated by the contribution of
the 4→0 transition, but coupling to the parallel mode re-
duces it to about 302 fs. The discrepancy between the two
lifetime values is a good indication of the anharmonicity of
the wave functions and the degree of coupling between the
different modes. For comparison, we give in Table I also the
two first-principles rates obtained in Sec.III A 2

From the Table, the following conclusions can be drawn:
�i� When comparing the “first principles” to the “per-

turbed” model lifetimes for the fcc adsorption and subsurface
Oh sites, we note first of all that they are, by construction,
�almost� identical for the former, but deviations in the order
of 20% occur for the latter. Since the first-principles subsur-
face lifetime has not been used for calibration, this is the
order of magnitude which we expect for the accuracy of the
�nonjellium� embedding schemes, relative to the first-
principles approach. Of course, the harmonic first-principles
approach has also limitations.

�ii� Most of the computed lifetimes are in the range of a
few hundred fs, some extending into the ps regime. This is
quite typical for adsorbate vibrations at transition metal
surfaces.11–20

�iii� One can see that, for all three embedding-density
models, the lifetimes in both the subsurface and the bulk
octahedral sites are very similar. Only the perturbed density
model yields slightly longer lifetimes. Further, the difference
between the two octahedral absorption sites is a bit larger
than for the two other models. This is possibly due to the
larger gradient of the embedding density inside the surface in

the perturbed metal model than in the other two. In all cases,
though, one can see that the “sum” and “mode” lifetimes are
almost equal. This indicates that, inside the surface, the first
excited state of the perpendicular mode is almost harmonic
and does not couple to the lateral mode.

�iv� This is not the case for the vibrational states of the
hydrogen atom above the surface, in fcc and hcp adsorption
sites. First, the lifetimes are significantly longer for the jel-
lium model than for the free metal model for both the fcc
�1.35 ps vs 370 fs� and hcp sites �2.51 ps vs 1.19 ps�. This is
an indication that the embedding density is much too thin
outside the surface in that crude model. Also, the lifetime
appears to be much longer in the hcp site than in the fcc site
for both models, when looking only at the “mode” lifetime.
This effect is more pronounced when using the free metal
density in Eq. �10�. When including all dissipative channels,
though, the lifetimes in the fcc and hcp centers become much
more similar �302 and 323 fs, respectively, for the free metal
model�. The trend for the lifetimes is even slightly reversed
for the jellium model �1.06 and 1.00 ps for the fcc and hcp
centers, respectively�. This is indeed an indication of strong
intermode coupling and large anharmonicity, even for the
first excited state. This effect is strongest for the hcp site,
because the wave function is more diffuse inside this well.
This is due to the very low diffusion barrier between the two
adsorption sites, with a classical value on the same order of
magnitude as the energy level.23

�v� While the difference between the simple “jellium,”
and the more sophisticated “metal” and “perturbed” embed-
ding models can be very substantial, the difference between
these latter two are generally not huge, in particular for the
adsorption �rather than absorption� sites: The “perturbed”
model gives typically slightly higher lifetimes than the
“metal” model. As an example, the perpendicular mode in
the fcc adsorption site has a lifetime of 392 fs in the “per-
turbed” model case, compared to 370 fs for the “metal” case.
The latter is in some sense more “ab initio” since no semi-
empirical scaling is involved. For the perpendicular subsur-
face Oh vibration, the “metal” density model predicts a life-
time of 373 fs which agrees even better with the first-
principles value of 416 fs, than the “perturbed” model �526
fs�. This is encouraging, since the “metal” model requires
only the density of the naked Pd surface which can be ob-

TABLE I. Perpendicular mode lifetime of a hydrogen atom in the stable ad- and absorption sites of a
palladium �111� surface for three different embedding-density models, and, for selected cases, for the first-
principles approach �see text for details�. All lifetimes are given in femtoseconds. The label “mode” refers to
the state-to-state lifetime in the decoupled mode picture. The label “sum” refers to the state lifetime including
all dissipation channels. In the lowest row, the vibrational energies �in cm−1� relative to the ground state of
the local center are given.

Model

fcc site hcp site Oh �sub� site Oh �blk� site

Mode Sum Mode Sum Mode Sum Mode Sum

Jellium 1349 1057 2513 1004 389 389 367 367

Metal 370 302 1191 323 373 373 350 350

Perturbed 392 324 1270 341 526 526 451 451

First principles 393 416

Frequency 922 829 606 648
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tained from a single periodic DFT calculation, in contrast to
the “perturbed” model which requires many DFT calcula-
tions on a 3D grid.

We finally note that according to Table I, the first-
principles lifetime can be longer or shorter than the lifetimes
obtained with embedding schemes. This depends on which
model was used for the embedding density, and also if the
atom is adsorbed or absorbed. Hence, the statement made by
Luntz et al.,24 according to which models based on atoms
embedded in a homogeneous electron gas generally underes-
timate the amount of electronic friction, is not supported by
our calculations.

Higher excited states. Concerning now higher-excited
state lifetimes, according to Eq. �2� the transition rates in-
crease linearly with initial quantum number, n in the har-
monic approximation, or, equivalently, the lifetime �n�→n

scales as �n�→n= 1
n�

�1→0. Figure 4 shows the lifetimes for
vibrational progressions of the perpendicular mode centered
at different sites, in our anharmonic, coupled approach. The
red circles and black squares represent the “mode” and
“sum” lifetimes, respectively, and the solid line is the ideal
harmonic scaling. The lifetimes were obtained using the free
metal density, but similar trends are observed for the other
embedding-density models. �Selected “mode” lifetimes for
higher excited states for all three models �jellium, metal, and
perturbed�, are also shown in Fig. 5.


From Fig. 4 we see that at the fcc center, the state-to-state
lifetimes follow approximatively the harmonic scaling up to
the third excited state. The fourth and fifth quanta appear
strongly off the ideal scaling, the latter even having a longer
lifetime than the 1→0 transition. This is in stark contrast
with the “sum” lifetime, which keeps going down regularly
as the vibrational quantum number increases. Strong cou-
pling between the modes and large anharmonicity are again
the main responsible for the discrepancies between the life-

times. For the octahedral cavities in the bulk and in the sub-
surface, the progression breaks even earlier for the “mode”
lifetime, whereas the “sum” lifetimes behaves again more
regularly.

A peculiarity arises at the hcp center, where the assign-
ment of the first excited state is not unambiguous. The two
states which can pretend to the label have some nodal struc-
ture in both the fcc and hcp wells, and have about the same
energy. The full-dimensional vibrational eigenstates ex-
tracted here are linear combinations of motions parallel and
perpendicular to the surface. This renders their assignments
dubious and thus both lifetimes are reported in Fig. 4 for the
two first vibrational quanta. As was the case for the other
sites, the scaling is not respected by the state-resolved life-
times, but the transition rates have a more regular behavior
when all dissipation channels are included.

Parallel modes. The lifetimes for the mode parallel to the
surface are reported in Table II for different sites. The life-
time in the fcc adsorption site is similar but slightly smaller
than the perpendicular mode for all three embedding-density
models. The lifetimes in the hcp site are also slightly longer
than those in the fcc site in all three cases. Interestingly, the
lateral motion in both the subsurface and bulk octahedral
sites are very similar in magnitude for the jellium model
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�289 and 291 fs, respectively�, and for the free metal model
�279 and 277 fs, respectively�.

Again, it appears that the simple jellium model captures
the main features of the embedding density inside the metal.
The perturbed metal density shows a small difference be-
tween the two octahedral cavities �391 fs vs 362 fs�. Further,
these lifetimes are much longer than in the other two models.
This is probably an artifact of the method we proposed for
calculating the perturbed metal density. It must also be em-
phasized that in the “perturbed” model the perpendicular fcc
mode has been used for the first-principles calibration, and
none of the parallel modes. Note that, in contrast with the
perpendicular mode, the “sum” and “mode” lifetimes are
very similar for all three embedding-density models and all
four metastable sites. This seems to indicate that the first
excited state along this mode is not significantly affected by
anharmonicity nor delocalization of the wave function.

C. Infared-laser driven subsurface absorption

We will now test the effect of the different state-resolved
lifetime models on the laser-driven dynamics of a single hy-
drogen atom on a palladium �111� surface. It is believed that
subsurface hydrogens are involved in heterogeneous cataly-
sis at metal surfaces and that they are more reactive than the
bulk hydrogens.39–47 In a recent paper,23 we proposed a strat-
egy for controlling the selective population of the subsurface
octahedral site. Since the subsurface states are not directly
accessible from the vibrational ground state, we showed that
an indirect path can prove the most efficient solution. The
main idea is to excite the perpendicular mode at the fcc cen-
ter up to a high-lying target state by vibrational ladder climb-
ing. This intermediate, or target state is chosen because it
decays with some probability toward the subsurface site.

Figure 5 shows schematically the desired reaction path.
For better illustration, we show only selected “perpendicu-
lar” states, namely the fcc levels �labeled k�z

�f� or gs�f�� and
the Oh subsurface states �labeled k�z

�s� or gs�s��. Here, “gs”
denotes the vibrational ground state in a given site, and k�z
the kth excited state, for vibration along coordinate z. The
labels given here are by no means unique, since the different
“modes” and the different sites are all strongly coupled. They
merely serve as a tool to guide the intuition in understanding
the intricate dynamics. Thus, although the parallel modes and
levels localized in other minima are not shown in the figure,
they were included in the dynamics. The same is true for all

“delocalized states,” the one used to connect subsurface and
fcc adsorption wells being indicated in Fig. 5. The transition
frequencies and the transition dipole moments are given for
the states forming the vibrational ladder, outside the surface
at the fcc center. The transition dipole moments are for the z
components only, i.e., we assume laser pulses polarized per-
pendicular to the surface �see below�. The transition dipole
moments have been obtained from a dipole function which
has been calculated using a cluster model and density func-
tional theory.23 As stated, we also show in the figure the
state-to-state lifetimes in parenthesis for the jellium, the free
metal, and the perturbed metal model, respectively. Note that
the state-to-state lifetimes are shorter in the subsurface than
at the surface for all three embedding-density models, how-
ever, the integral lifetimes can be substantially different be-
cause of the strong anharmonicity and the coupling between
the states located at different ad- and absorption sites �see
above�. In all cases but the perturbed metal density, the
“sum” lifetime is nonetheless smaller for the decay from the
intermediate state to the subsurface site than to the surface.
Further, the lifetimes of both the perturbed metal and the free
metal models are significantly shorter than for the jellium
model, for which the approach was originally developed.
This should adversely affect the dynamics.

Figure 6 shows the short time evolution of the state popu-
lation when the subsystem is forced along the reaction path
described above by a z-polarized electromagnetic field Ez. A
single pulse of the form,

Ez�t� = E0 sin2���t − ti�
tf − ti

�cos��t� , �20�

starting at time ti=0 and ending at time tf =500 fs, was tai-
lored to pump the population up the vibrational ladder. Here,
E0 is the field amplitude, chosen so that the field’s average
intensity is I=1013 W /cm2, i.e., E0=100 MV /cm. The fre-
quency � was tuned at the average of the z-mode vibrational
ladder frequencies, at 940 cm−1.

From top to bottom, we see that there is very little differ-
ence in the intricate short-term population dynamics for the
different embedding-density models. Energy is indeed very
quickly pumped in the z-mode up to the fifth excited state,
with a maximal yield ��7.5%� for the subsurface ground
state gs�s� at 100 fs for the jellium model. This yield is better
than for the other two models, which can be easily rational-
ized by the fact that the lifetimes are much longer in that case

TABLE II. Parallel mode lifetime of a hydrogen atom in the stable ad- and absorption sites of a palladium
�111� surface for different embedding-density models. In the lowest row, the vibrational energies �in cm−1�
relative to the ground state of the local center are given. See Fig. 1 and text for more details.

Model

fcc site hcp site Oh �sub� site Oh �blk� site

Mode Sum Mode Sum Mode Sum Mode Sum

Jellium 1130 1130 1366 1304 289 289 291 291

Metal 327 326 395 376 279 279 277 277

Perturbed 350 349 428 406 391 391 362 362

Frequency 717 640 638 640
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than for both the free and perturbed metal models. The large
intensity of the pulse allows nevertheless to transfer signifi-
cant population to the fourth z-overtone in both other simu-
lations �about 5% in both cases�. The fraction of population
reaching the intermediate state �dashed line� is found similar
to that of state 5�z

�f� in all three models, only at a later time.
The subsurface population at the end of the pulse is rela-
tively modest for the jellium �4%� and the free metal models
�3.5%�, and is lower for the perturbed metal model �1.5%�.
This is due to the larger transition rate to the adsorbed sites
than to subsurface for the latter embedding density. Thus,
although it is possible to reach the intermediate target state
with a comparable yield as in the other two models, the
vibrationally excited atom preferably returns where it comes
from, outside the surface.

The main strategy to bring the population in the subsur-
face does not rely on the transfer yield after a single pulse,
however. Instead we exploit the fact that the subsurface
ground state is quasistable to accumulate the population in
the subsurface. The idea is to perturb the system using the
pulse in Eq. �20�, let the system relax for a short period, and
collect the population that accumulates in the subsurface site.
This idea is known as laser distillation.48–50 We have thus
performed series of the 500 fs pulses described above, fol-
lowed by 2.5 ps periods. In Fig. 7 we show the population
dynamics for the first 20 pump-dump sequences using the
three different embedding-density models. Only the fcc
ground state �dashed lines� and the subsurface ground state
�solid lines� populations are shown. We can see that about
23.1% of the population is found in the subsurface after the
relaxation period in the jellium model, which is significantly
more than for both other embedding-density models.

This is simply due to the fact that the lifetimes are much
longer in the former case, thus allowing to pump more en-
ergy in the perpendicular mode at the surface. The preferred
decay channels lead to the subsurface site, and thus a signifi-
cant transfer yield is obtained. In comparison, dynamics in
the free metal model yields marginally above 15.5% popula-
tion in the desired octahedral cavity. This is comparatively
better than the dynamics in the perturbed metal embedding
density, where only about 12.6% population transfer is ob-
tained after the first pump-dump sequence although the life-
times are slightly longer in the latter model. As already
pointed out, the subsurface transition rates are smaller than
the relaxation to the subsurface in this case, which justifies
this behavior.

To characterize the convergence of the laser distillation
mechanism, we fit the subsurface population at the end of
each pulse-relaxation sequence, P�t�, to a simple exponential
function of the form P�t�= Pmax�1−e−Rt�. Here, Pmax is the
maximal population attainable and R is the convergence rate.
Interestingly, all three models yield a projected 99.6% sub-
surface population in the limit of an infinite number of
pulses. The convergence rate, on the other hand, follows
more tightly the ratio of the subsurface population after a
single pulse. We find that the laser distillation converges at a
rate of RJ=0.0705 /ps for the jellium model, and of RM
=0.0533 /ps for the metal density. The convergence ratio of
RJ

RM
=1.32 compares fairly well with that of the single pulse

yield of 1.49, but the correlation is not direct. The correspon-
dence is much better between the two metal embedding-
density models, with a ratio of

RP

RM
=0.81 for the laser distil-

lation yield �RP=0.0428 /ps� and a ratio of 0.80 for the
corresponding single pulse excitations.

The main conclusions are thus that dissipation can indeed
be used to selectively populate the subsurface octahedral ab-
sorption sites of palladium with hydrogen atoms using
simple infrared laser pulses, and that laser distillation should
transfer quantitatively the population to the subsurface pro-
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for the selective subsurface absorption of hydrogen in the palladium
�111� octahedral subsurface site. The average laser intensity is I
=1013 W /cm2 for a single pulse of 500 fs duration tuned at a tran-
sition frequency of �=940 cm−1.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

S
ta

te
po

pu
la

tio
n

Time (ps)

Jellium
Metal

Perturbed

FIG. 7. �Color online� Selective subsurface absorption of hydro-
gen in the palladium octahedral subsurface site using laser distilla-
tion affected by our different dissipation models. The solid curves
represent the subsurface ground state population and the dotted
curves the fcc ground state population. The red, blue, and black
curves are obtained with the jellium model, the free metal model
and the perturbed metal model, respectively.

TREMBLAY, MONTURET, AND SAALFRANK PHYSICAL REVIEW B 81, 125408 �2010�

125408-10



vided at least some atoms are dumped in the surface after a
single excitation-relaxation cycle. Although the convergence
rate toward the final target depends on the embedding-
density models, the general dissipative dynamics and the fi-
nal yield of the laser-driven subsurface absorption of hydro-
gen by laser distillation appears robust with respect to the
definition of the embedding density.

IV. SUMMARY AND CONCLUSION

In conclusion, we have presented a state-resolved pertur-
bative transition rate model for describing the nonadiabatic
coupling of an adsorbate to a metal surface based on Fermi’s
Golden rule. The treatment relies on the embedding of the
adsorbate in an effective ambient electron density due to the
surface. Anharmonicity is included by evaluation of the gra-
dient of the full-dimensional vibrational wave function with
respect to each nuclear coordinate. The single-mode contri-
butions to the lifetime are coupled through the embedding-
density scheme.

We proposed three different embedding-density models:
�i� the simple jellium model, neglecting electron density
variations inside and parallel to the surface, �ii� the free
metal electron density, which neglects the effect of the im-
purity on the electronic wave function of the metal, and �iii�
the perturbed metal density, using a simple pointwise defini-
tion for the density. By comparison with the single-point ab
initio model of Persson et al. it was found that the jellium
model gives unphysically long lifetimes for an hydrogen
atom adsorbed on a Pd�111� surface, but realistic estimates
when the atom is found inside the metal. The state-resolved
lifetimes obtained using the two other embedding-density
models are on the other hand realistic and comparable in
both case to the first-principles estimates. In all three cases,
the harmonic scaling law for the state-to-state transition rates
as a function of the vibrational quantum number was not
respected. It was shown that this is due to the strong cou-
pling of the different modes and the numerous adsorption
sites. Including all dissipation channels the lifetimes fol-
lowed a more regular behavior.

To evaluate the effect of the different dissipation models
described above on state-resolved nuclear dynamics, we per-
formed numerical simulations of the laser-driven selective
subsurface absorption of hydrogen in a palladium �111� sur-
face using laser distillation. Some small effects were found
on a short time scale, the longer lifetimes of the surface
states in the jellium model compared to the two other em-
bedding densities allowing for a better excitation of an inter-
mediate state which is subsequently decaying in the subsur-
face selectively. Repeating the excitation-relaxation sequence
for performing laser distillation proved as efficient in the
long run for all three embedding densities, although the
longer-lived states of the jellium model converged more rap-
idly.

To summarize, only marginal differences for the lifetimes
and the dynamics are found between the free metal and per-
turbed metal embedding-density models. Further, both mod-
els yield lifetimes which are in fair to good agreement with
the model of Persson and co-workers for different reference
geometries, contrary to the jellium model. However, the
computation of the perturbed metal density is a tedious pro-
cedure involving many ab initio calculations and a fitting
procedure that can become nontrivial for low sampling of
complex environments. Further, the perturbation has to be
computed for each type of atom, which renders the transition
model presented above less transparent. On the other hand
the free metal electronic density can be extracted for all po-
sitions of the adsorbate above and below the surface using a
single periodic DFT calculation, and is valid for all atoms at
once. Considering the small discrepancies between both
models, we would strongly advocate using the latter for fu-
ture applications, possibly in combination with the more
flexible scaling factor in Eq. �13�.
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