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We present theoretical results on microwave and far-infrared �FIR� absorption of single-electron transistors
obtained within exact numerical diagonalization for finite clusters. They show that both the microwave and the
FIR spectra consist of two maxima, whose origin can be understood physically. Our results on microwave
absorption provide a physically intuitive qualitative interpretation of the Kondo splitting observed by Kogan
et al. �Science 304, 1293 �2004��. The present results on the FIR absorption supplement and provide a physical
insight into previous results obtained by means of the numerical renormalization group. Based on our theoret-
ical results, we propose to conduct FIR experiments to determine the charging energy and other relevant
parameters.
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I. INTRODUCTION

In a single-electron transistor �SET�, which consists of a
Coulomb island �or a quantum dot, QD� attached to two
electrodes, a small source-drain voltage yields a current
flowing only for certain values of the gate potential Vg.1–4 At
temperatures below the Kondo temperature �T�TK�, con-
duction occurs in a Vg range delimited by the situations
where the energy of the dot level �d is such that the lowest
Hubbard “band” or the highest Hubbard band is nearly reso-
nant with the electrode Fermi energy �F, �d��F, and
�d+U��F, respectively. Here, U represents the dot charging
energy, i.e., the energy required to add an extra electron on
the dot. The zero-bias conductance G reaches the unitary
limit G=G0=2e2 /h within the Kondo plateau, which is de-
fined by �F−U��d��F.

The charging energy represents a key parameter for SETs.
The unpleasant fact is that U cannot be directly determined
from the dc zero-bias conductance; the dot energy �d cannot
be directly controlled, but rather indirectly via the potential
of a gate potential Vg, on which it linearly depends:
�d=�Vg+const. If Vg,l and Vg,u denote the gate potentials
whereat the lower and upper Hubbard bands become reso-
nant, one gets U=��Vg,l−Vg,u�. To determine U, in addition
to the difference Vg,l−Vg,u, which is available from the trans-
port data, supplementary hypotheses are needed to deduce
the conversion factor �, which, although physically plau-
sible, cannot be fully justified at the nanoscale and require
assumptions or arguable extrapolations of macroscopic rela-
tions to the nanoscale. One way is to assume a certain phe-
nomenological T dependence �convolution of a Lorentzian
with the derivative of the Fermi function� and to fit the width
of the Coulomb-blockade peaks G�T�.3,5 Another possibility
is to resort to the capacitance model, which describes the
SET in terms of three effective capacities Cg, Cs, and Cd
between the dot and the gate, source, and drain,
respectively.6–8 The conversion factor, expressed by
�=Cg /C�C�Cg+Cs+Cd�, can then be obtained from the
Coulomb diamonds of the stability diagram. Even without
inquiring whether such assumptions are justified, the inaccu-
racies of the parameters estimated in this way are rather

large; uncertainties can be as large as �20%.9 Utilizing more
accurate or at least alternative methods of investigation is
highly desirable.

It is a main goal of this paper to show that the far-infrared
�FIR� absorption represents a possible alternative technique
for the characterization of SETs and how such experiments
can be conducted.

The remaining part of this paper is organized in the fol-
lowing manner. In Sec. II we expose the theoretical frame-
work and in Sec. III present all relevant computational de-
tails. In Sec. IV, exact numerical results for the full ac
absorption spectra are presented and analyzed in terms of a
few physically relevant many-electron states. Section V is
devoted to finite-size effects. Next we discuss the two dis-
tinct spectral ranges significant for SETs separately: the
microwave/radio-frequency absorption in Sec. VI and the
FIR absorption in Sec. VII. Experimental implications of the
theoretical results for the FIR absorption are presented in
Sec. VIII. Section IX is devoted to conclusions.

II. THEORETICAL FRAMEWORK

Early studies on SETs were carried out within the so-
called orthodox theory,6,10 which treats the dot’s charge and
electrostatic energy as classical variables. Here, we shall use
the Anderson single-impurity model, which became the stan-
dard framework to describe theoretically11–13 and interpret
experiments3,5,7,8 in SETs, because it accounts for the
quantum-mechanical nature of the electron tunneling be-
tween the Coulomb island and electrodes. The model
Hamiltonian reads

H = �F �
�,n=−1

−ML

an,�
† an,� + �F �

�,n=1

MR

an,�
† an,�

− t �
�,n=−1

−ML+1

�an,�
† an−1,� + H.c.� − t �

�,n=1

MR−1

�an,�
† an+1,� + H.c.�

− td�
�

�a−1,�
† d� + a+1,�

† d� + H.c.� + �d�
�

d�
†d�

+ Ud↑
†d↑d↓

†d↓. �1�
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The left �L� and right �R� electrodes are assumed to contain
noninteracting electrons, which are characterized by the
same bandwidth D=4t and the same coupling td to the dot.
The dot is modeled by a single level, whose energy �d can be
tuned by means of a gate potential, as discussed in Sec. I.
an,��an,�

† � are annihilation �creation� operators for electrons
in the left and right leads �L, R� and d��a0,��d�

† �a0,�
† �

destroys �creates� electrons in the QD. The number of elec-
trons will be assumed to be equal to the number of sites,
N=ML+MR+1.

The quantity of interest, the frequency-dependent absorp-
tion coefficient ���� in the ground state �0 �case of zero
temperature�, can be expressed as a sum of contributions of
various excited states �	�H�	=E	�	�

���� = � �
	�0

	
�		Pd	�0�	2
�� − E	 + E0� , �2�

where Pd is the QD dipole moment. Equation �2� represents
the result of the linear-response theory by considering an ac
electromagnetic perturbation H�=−PdE0 cos �t. Various
aspects of the problem of a SET in an ac field within the
linear-response approximation were previously considered in
several studies �see, e.g., Refs. 14–16�. Because the
definition of the dipole operator Pd for a pointlike
QD poses some problems, it is more convenient to
express the matrix elements entering Eq. �2� 
�		Pd	�0�
=−i�
�		jd	�0� / �E	−E0� in terms of the current
operator jd= �j−1/2+ j1/2� /2, as done in similar cases,17

which can be unambiguously defined as jn+1/2
= itn�e /�����an,�

† an+1,�−H.c.�. So, the ac absorption is speci-
fied by the spectral lines 	 characterized by the intensities �	

and the frequencies �	 defined by

�	 =
1

�	

	
�		�̂	�0�	2,

�̂ � i�
�

�a−1,�
† d� − a+1,�

† d� − H.c.� ,

�	 � E	 − E0. �3�

Unless otherwise specified, we shall refer throughout to a
SET in the Kondo regime ��F−U��d��F�. Moreover, we
can restrict ourselves to the range �F−U /2��d��F because
of the particle-hole symmetry.

III. COMPUTATIONAL DETAILS

Below, we shall present results on the ac absorption of a
SET obtained by exact �Lanczos� numerical diagonalization.
The method of computation we employ here is that used in
our earlier works; see, e.g., Refs. 18–24. Because the full
details on this method were not published and because of the
significant differences between our Lanczos implementation
to compute the linear response and the more familiar contin-
ued fraction algorithm,25 we describe it below for the benefit
of the reader.

In the first run, the Lanczos procedure is iterated until,
after NL iterations, the lowest �ground state� energy E0 con-

verges. In the second run, by carrying out again NL iterations
and with the same starting Lanczos vector, the corresponding
Ritz vector �0 is computed by accumulation without the
need of storing the Lanczos vectors. To check that this
vector represents indeed the accurately evaluated ground
state �0, we straightforwardly compute the dispersion

�0	�H−E0�2	�0�1/2 and convince ourselves that it is much
smaller �usually 5–6 orders of magnitude� than the lowest
excitation energy. The above scheme can also be used to
reliably compute several lower excited eigenstates, but it is
usually unpractical to target all the eigenstates �	 needed to
compute the linear response via Eq. �2�, e.g., by orthogonal-
ization on eigenvectors already converged in previous runs.
The reason is that many eigenvectors, which are not impor-
tant for the linear response, are also targeted. To ensure that
the important eigenvectors are targeted, in a third Lanczos
run, we employ a starting Lanczos vector adequate for the
specific linear response considered. This is, in the present
case, the normalized vector Pd	�0�. The needed matrix ele-
ments 
�		Pd	�0� are given by the first component of the
tridiagonal vectors obtained in this third run. Usually, a num-
ber of iterations comparable to NL suffices for the third run.
As an important test of the results for the linear response
computed in this way, we always check whether they satisfy
the sum rule, which can be deduced exactly from Eq. �2�

�
	

	
�		Pd	�0�	2 = 
�0	Pd
2	�0� , �4�

because the rhs is known, namely, the squared norm of the
vector Pd	�0�. In certain cases, the linear response computed
within the third run does not satisfy the above sum rule, e.g.,
because of spurious vector duplication. Therefore, to be al-
ways on the safe side, we carry out a fourth Lanczos run,
wherein, similar to the second run, we also compute and
store all those Ritz vectors �	, which where found to have a
significant spectral weight 	
�		Pd	�0�	2 �in practice, above
10−5 of the rhs of Eq. �4�� in the third run. Storing these
vectors �	 is not much more demanding than storing the
ground state �0 alone, because for all the problems we in-
vestigated so far, at most �10–20 Ritz vectors are impor-
tant. The real, prohibitive limitation remains, as in all exact
diagonalization approaches, the cluster size. Again, we check
that these Ritz vectors are accurate eigenvectors by straight-
forwardly computing the dispersions 
�		�H−E	�2	�	�1/2.
By using these eigenvectors �	 we finally compute the lin-
ear response from Eq. �2� and convince ourselves that all
important eigenvectors have been targeted by checking the
sum rule Eq. �4�.

Proceeding in this way, the computing time is at most
�1.5–2 times larger than for implementations of the con-
tinuous fraction algorithm,25 but we can safely rule out any
numerical artifacts and have the guarantee that the solution
obtained is mathematically exact. In addition and equally
important, this method allows us to compute and resolve
individual nearly degenerate spectral lines, a situation where
the information that can be extracted from convoluted spec-
tra provided by the continued fraction algorithm does not
suffice. This represents a quite relevant aspect for SETs and
other QD-based nanosystems, where nearly degenerate states
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with the same symmetry �avoided crossings� are often en-
countered; see Refs. 22–24 and 26 and Sec. VI.

IV. EXACT RESULTS ON THE FULL ac ABSORPTION
SPECTRA AND THEIR PHYSICAL INTERPRETATION

Numerical exact results for frequencies and intensities of
all the ac-absorption signals obtained as described in Sec. III
are collected in Fig. 1. They have been obtained for N=11
and parameter values, which are typical for real cases:
t=0.5 eV �electrode bandwidth D=4t=2 eV�, td=0.2 meV,
and U=8 meV. We emphasize that these are numerical exact
results, obtained by using all the 213 444 multielectronic
configurations of the eleven-site cluster with eleven electrons
and a total spin projection Sz=1 /2. Based on the consider-
ations of Sec. III we can safely state that the ac spectrum of
the investigated cluster solely consists of four relevant ab-
sorption signals. The other transitions, although allowed by
symmetry, are completely irrelevant, as their intensities are
orders of magnitude smaller and are therefore invisible in
Fig. 1�b�.27

Exact results on the SET ac absorption have of course
their own importance, but do not yet provide much physical
insight into the problem. Since the above exact results show
that only four optical transitions are important, one can ex-
pect that, out of numerous multielectronic configurations
�namely, 213 444, see above, in the case under consideration,
of an eleven-site cluster with a total spin projection Sz=1 /2�,
there should only exist a few many-body states, which are
relevant. If so, the problem is of course to identify them and
to unravel their physical content. This shall be done next.

There are nine such significant many-electron states.
These configurations �	1� to 	9�� are schematically shown in
Fig. 2. Configurations 	1� to 	5� correspond to one electron
on the dot, in 	6� and 	7� the dot level is vacant, while in 	8�
and 	9� it is occupied by two electrons. A superficial glance
at the schematic representation of Fig. 2 can easily overlook
both the underlying physics and the computational effort in-
volved, and therefore a comment is in order at this point. Out
of the electrons in the two electrodes, only those occupying

the Fermi levels are shown for the nine states of Fig. 2. For
these nine states, the single-particle states of the electrons in
the electrodes are in momentum �k� space, and not in the real
�site, n� space, in which the exact numerical diagonalization
is carried out because the Hamiltonian matrix, Eq. �1�, is
sparse. A single-particle k state, e.g., in the left electrode
represents a superposition of ML single particle n states. In
addition, one should note that the electrons in electrodes de-
picted in Fig. 2 represent electrons at the Fermi level. This
means that these electrons are delocalized over the elec-
trodes. Consequently, although we show below that the ap-
proximative description in terms of the nine relevant states is
accurate, it is not a priori obvious that the problem can be
reduced or reasonably approximated by studying a three-site
cluster. To summarize, each of the nine states depicted in Fig.
2 contains in fact numerous multielectronic configurations in
the real space. However, what is physically important is the
existence of a very reduced number of the relevant states.

The discussion below proceeds in terms of these nine
many-body states with significant contributions to the ground
state and the four excited states 1, 2, 3, and 4 depicted in Fig.
1. From these nine most relevant states one can construct the
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FIG. 1. �Color online� Dependence on the dot energy �d of the four relevant �a� absorption frequencies � �in meV� and �b� absorption
intensities � �in arbitrary units� of the optical transitions with significant spectral intensities. In �a�, deeper within the Kondo plateau, the
exact frequencies �3,4 are well approximated by �3,4

0 . The dashed lines are the analytical continuations of the full lines. The parameter values
are: t=0.5 eV, td=0.2 meV, and U=8 meV.
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FIG. 2. �Color online� Multielectronic configurations with sig-
nificant contributions to the ground state �0 and the excited states
�1,2,3,4 important for ac absorption. For each configuration, we
show the electrons at the Fermi levels of the left and right elec-
trodes and on the dot �red, blue, and green, respectively�. In either
electrode, the single-electron states below the Fermi level are
occupied.
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following states with definite spin Sz=S=1 /2 �notice that the
total electron number is odd�, which are either even �g� or
odd �u� under space inversion

	u1� = �	1� − 	5� + 	2� + 	4� − 2	3��/�8,

	u2� = �	6� − 	7��/�2,

	u3� = �	8� − 	9��/�2,

	g1� = �	1� + 	5� − 	2� + 	4��/2,

	g2� = �	1� + 	5� + 	2� − 	4��/2,

	g3� = �	6� + 	7��/�2,

	g4� = �	8� + 	9��/�2. �5�

The eigenstates important for ac absorption can be well ap-
proximated as

	�0�  	u1�cos  − 	u2�sin  → 	u1� ,

	�1�  	g1�cos � − 	g3�sin � → 	g1� ,

	�2�  	g2� ,

	�3�  	g1�sin � + 	g3�cos � → 	g3� ,

	�4�  	g4� . �6�

Equation �6� hold for �F−U /2��d��F. We can restrict our-
selves to this range because of the particle-hole symmetry.
For �F−U��d��F−U /2, the states 	6� and 	7� must be re-
placed by 	9� and 	8�, and vice versa.

To illustrate that the eigenstates �0,1,2,3,4 computed ex-
actly are indeed very well approximated by the expressions
in the rhs of the symbols  in Eq. �6�, we present in Figs. 3
and 4 the curves of the weights p1,2

0 �	
u1,2 	�0�	2 and
pi

j �	
gj 	� j�	2�i , j=1,3�. In all these cases, the two functions

entering the expressions in the rhs of Eq. �6� exhaust the
expansions of the exact eigenstates �0,1,3 within an
accuracy of �10−3. This fact fully justifies the use of the
intuitive notations in terms of cosines and sines in Eq. �6�,
cos2 = p1

0 and cos2 �= p1
1. As concerns the other two exact

eigenstates, the approximations 	�2,4�	g2,4�, are also accu-
rate within �10−3.

As visible in Figs. 3 and 4, deeper within the Kondo re-
gime, cos 1 and cos �1, and therefore 	�0,1,3� are rea-
sonably approximated as expressed in the rhs of the arrows
in Eq. �6�. Bearing this in mind and inspecting Eqs. �6� and
�5� and Fig. 2, one can identify two groups of important
eigenstates, which are well-separated energetically. The first
group comprises the eigenstates �0,1,2, which basically con-
sist of superpositions of the nearly degenerate configurations
	1�− 	5�, corresponding to states with a singly occupied dot.
This fact nicely reveals the spin entanglement and the role of
the coherent superpositions of all the possible spin-flip pro-
cesses �	1�� 	3� , 	3�� 	5� , 	2�� 	3� , 	4�� 	3�� in the for-
mation of the nearly degenerate states �0,1,2 important for
the Kondo effect. The absorption frequencies �1,2 of these
optical transitions are low, falling into the microwave28 or
even radio-frequency �rf� range. The second group comprises
the higher energy states �3 and �4, which correspond to a
dot that is either doubly occupied or empty. Loosely speak-
ing, they amount to excite a particle-hole pair, wherein the
hole state is on the dot and the particle state in electrodes, or
vice versa. The corresponding absorption frequencies,
�3�3

0=�F−�d and �4�4
0=�d+U−�F �cf. Fig. 1�a��, are

on the order of the charging energy U, falling therefore into
the FIR range.

V. FINITE-SIZE EFFECTS

As is well known, the drastic limitation of the exact nu-
merical diagonalization to rather small cluster sizes N often
precludes a reliable finite-scaling analysis. There are well-
known examples �see, e.g., Refs. 19, 29, and 30� of non-
monotonic N-dependent properties, or qualitatively different
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behaviors at smaller and larger N due to a different underly-
ing physics �see, e.g., Ref. 30� at the sizes where exact nu-
merical diagonalization is feasible. This limitation is even
more severe in the case of SETs, in the sense that not even all
these small sizes can be included in a finite-scale analysis. A
careful selection of the N values to be included in the finite-
scale analysis is often necessary, as is well known, e.g., in
the case of cyclic polyenes CNHN or related systems, where
Hückel �N=4n+2� and anti-Hückel �N=4n� systems behave
differently �n is an integer�; see, e.g., Refs. 29–31 and refer-
ences cited therein. With our implementation described in
Sec. III, we can reliably treat the linear response of half-filled
clusters up to N=14, amounting to a dimension of the Hilbert
space of 11 778 624. This is not too much different from the
largest size �N=12� treated by exact diagonalization of most
recent studies on the dc conductivity of model Eq. �1�.32 In
view of the analysis in terms of the relevant many-body
states of Fig. 2, it is clear that considering symmetric clusters
�identical electrodes� is advantageous. Because short elec-
trodes with an even number of sites are known to yield spu-
rious results �compare Ref. 33 with Ref. 32�, what remains is
to consider electrodes with an odd number of sites, which
mimic “metallic” electrodes �i.e., electrodes with a partially
occupied Fermi level�.23,34 Concretely, this means that we are
left with the values N=3, 7, and 11. Obviously, one cannot
expect to reliably deduce a scaling law solely based on these
three N values.

In view of the aforementioned limitations, similar to our
previous works,23,34 we shall simply inspect whether the rel-
evant properties computed for N=3, 7, and 11 are signifi-
cantly size dependent or not. Typical results are shown in
Figs. 3–5. They reveal that certain quantities like the lowest
excitation energies �1,2 of Fig. 5�b� are strongly size depen-
dent. Obviously, such results for �1,2 of exact diagonaliza-
tion cannot be trusted, at least not quantitatively �see also
Sec. VI�.

But, similarly to the examples presented in Refs. 34 and
23, there also exist quantities, which only slightly depend on
N. Most important for the main purpose of this work, this is
the case of the two higher absorption frequencies �3,4 of Fig.
5�a�, the key quantities to be measured in the FIR experi-
ments we propose here �see Sec. VIII�, Therefore, to give
further support to the fact why we believe that, deeper in the
Kondo plateau, the results for the curves �3,4��d� are not
significantly affected by finite-size effects, we carried out
supplementary calculations. Namely, we considered asym-
metric clusters, wherein the QD is attached to the end of a
single “metallic” electrode with an odd number of sites Nu.
This procedure, which amounts to unfold the original sym-
metric cluster,14,32,35 has the advantage that the size Nu of the
single electrode can be larger, roughly twice that of one elec-
trode of a symmetric cluster. The largest relevant �odd� size
that we can treat by exact diagonalization is Nu=13 �13+1
sites�. The shortcoming of the asymmetric cluster is that it
misses the two lowest excitations �1,2 related to the coherent
spin fluctuations responsible for the Kondo effect. The first
excitation of the asymmetric cluster, which is almost degen-
erate with the singlet ground state, is a spin triplet, and the
small singlet-triplet splitting could be considered as the
counterpart of �1,2 in symmetric clusters. However, this trip-

let excited state is irrelevant for the spin conserving ac-
absorption processes. Most important is that the next two
excitations of the asymmetric cluster are singlet states, which
are optically active, and their energies are the counterpart of
the above �3,4. As noted in the caption of Fig. 5�a�, the
curves for Nu=7, 9, 11, and 13 cannot be distinguished from
those of the symmetric cluster with N=11, which is the
counterpart of the asymmetric cluster with Nu=5.

For completeness, we mention that the size dependence of
�3,4 remains weak even beyond the Kondo plateau
�cf. Fig. 5�, although this fact is not very important
because of the small absorption intensities �cf. Fig. 1�b��.
There, the physical character of the �3,4 excitations is
different. Within the Kondo plateau they are related to
excitations of a particle-hole pair, while beyond the
mixed-valence points they are related to excitations of two
particle-hole pairs. This becomes clear if one inspects
Fig. 5�a�, where the energies of the latter processes in the
absence of electrode-dot coupling �td→0� are represented by
the thin lines 2��d−�F�+U= ��d−�F�+ ��d+U−�F� and
2��F−�d�−U= ��F−�d�+ ��F−�d−U�.36 A similar change in
the physical character can be seen, e.g., in the mixed-valence
region between the singly occupied and the vacant dot.
There, the curve �3, which corresponds to the excitation of
an electron from the singly occupied dot into electrodes
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FIG. 5. �Color online� Results on the �a� higher �FIR� frequency
�3,4 and �b� lower �rf/microwave� frequency �1,2 ac absorption for
several cluster sizes N and same parameter values as in Fig. 1. In
panel �a�, the triangles and circles are for clusters with N=3 and 7,
respectively, and solid lines are for clusters with N=11. The latter
cannot be distinguished within the drawing accuracy from those of
asymmetric clusters, wherein the dot is attached to a single elec-
trode with 7, 9, 11, and 13 sites. In the Kondo regime, �3,4 are only
slightly size dependent while �1,2 are strongly size dependent. No-
tice the logarithmic scale on the ordinate in panel �b�.
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��3��3
0=�F−�d�, evolves into that amounting to bring an

electron from electrodes to the vacant dot ��3��d−�F�; see
the lower right corner of Fig. 5�a�.

By inspecting Figs. 3 and 4, one may argue that the size
dependence of the wave functions �0, �1, and �3 is com-
parable; so, where does the difference between the size de-
pendence of �1,2 on one side and �3,4 on the other side come
from? The reason is the following. While the �1,2 values are
close to 0, the �3,4 values vary close to the �3,4

0 values,
which correspond to electrode-dot excitations in the limit of
vanishing electrode-dot coupling �td→0�, and are large
��U� deeper within the Kondo plateau. In fact, the size de-
pendence of the difference �3,4−�3,4

0 is comparable to that of
�1,2−0, as seen in Fig. 5�a�. It is the same strong N depen-
dence of �1,2 that makes �1,2 �cf. Eq. �3�� strongly size de-
pendent; the matrix elements of the hopping operator �̂ are
nearly N independent.

Although the results presented above have shown that the
size dependence of the two higher optical transitions is not
substantial, the important question is whether the absorption
peaks �3,4 survive when the cluster is linked to semi-infinite
electrodes. Based on our previous investigation of
photoionization23 and on extensive calculations of the FIR
absorption in broad ranges of SET parameters, we expect the
following. As the size increases, the single-electron levels in
electrodes become more and more dense, and the straight
lines �3,4

0 of Fig. 1 or Fig. 5 will intersect the numerous
horizontal �i.e., �d-independent� lines corresponding to exci-
tations of particle-hole pairs in electrodes, in a way similar to
that of the energies of various ionization processes �one hole,
two hole-one particle, etc� shown in Fig. 2a of Ref. 23. Simi-
lar to Ref. 23, this gives rise to a sequence of avoided cross-
ings, but the spectral intensity remains concentrated in two
diabatic states, as if these intersections were absent. From
this perspective, one can also understand why, sufficiently
away from the mixed-valence points, the curves for �3,4��d�
for the symmetric three-site cluster of Fig. 5�a� represent
reasonable approximations: roughly, they correspond to one
electron-hole pair excitations, wherein the state of one mate
of the pair is on the dot and the other at the electrode Fermi
level. For the same reason, even the asymmetric two-site
cluster provides a qualitatively correct description of the FIR
absorption.

As is well known,37 a weak electrode-dot coupling yields
a small broadening ��2td

2 / t� of the isolated dot level �d.
The analysis of Sec. IV indicated that, basically, each of
these transitions amounts to excite an electron-hole pair.
Therefore, the electrode-dot coupling should reflect itself in a
small broadening of the FIR peaks centered on the values
�3�3

0=�F−�d and �4�4
0=�d+U−�F, which replace the

delta-shaped �3,4 lines of the finite cluster. From a strictly
mathematical standpoint, to demonstrate that these FIR
peaks survive when the finite cluster is linked to real elec-
trodes, we can simply invoke their presence in the numerical
renormalization-group �NRG� results,14 which are exact and
consider semi-infinite electrodes.

To end this section, we emphasize that the value
U=8 meV used for all the numerical results presented in
this paper corresponds to largest charging energy of the fab-
ricated SETs.39 For smaller U’s, the finite-size effects ana-
lyzed above are substantially weaker.

VI. RADIO-FREQUENCY/MICROWAVE ABSORPTION

The existence of the two transitions 	�0�→ 	�1,2� with
low-absorption frequencies �1,2 in the rf/microwave range is
a remarkable theoretical result, because it is directly related
to the recent experimental findings in SETs irradiated with
microwaves.28 At present we cannot offer a reliable quanti-
tative analysis and must restrict ourselves to a few qualitative
considerations. The first, obvious reason of this impossibility
is the strong size dependence discussed in Sec. V. But there
still exists another reason. As the electrodes become longer
�N→��, we expect that �1 tends to the Kondo resonance
width �TK. At larger U, this width falls off exponentially
with U, while our exact diagonalization data exhibit a much
weaker, power law decrease with U. This U dependence is
similar to that of the width in the density of states �DOS�
obtained within a one-particle Green’s function approach.38

In that approach �see Ref. 32 and citations therein�, the finite
cluster is embedded into semi-infinite electrodes via a Dyson
equation, wherein the self-energy is supposed to be not af-
fected by electron correlations. We are not aware of similar
developments for the two-particle Green’s function needed
for the ac absorption. Still, the aforementioned similar and
�in this respect� incorrect U dependence of that approach and
the present one seems to signal the need for a method that
�presumably approximately but accurately enough� accounts
for correlations in clusters of sizes much larger than the exact
diagonalization can handle. In this sense, we think that the
description of Sec. IV in terms of a few relevant many-body
states is useful, since it emphasizes the similarity of the low-
est two frequencies �1,2 to a tunnel splitting. The coherent
spin fluctuations embodied into the functions �0,1,2 of Eqs.
�5� and �6� amount to a coherent tunneling between configu-
rations that are classically degenerate and have indeed simi-
larities to the tunneling between the degenerate minima of a
symmetric double-well potential. Most relevant, exponential
decays of the tunnel splittings with the interaction strength
are typical.30,31 In view of the severe size limitation within
exact numerical diagonalization, and because it is unlikely
that the small difference between �1 and �2, which becomes
much smaller at larger sizes, can be resolved within the
density-matrix renormalization group �DMRG�, we believe
that the only possible approach is a semianalytical one, e.g.,
based on symmetry-adapted trial wave functions for the low-
est states �0,1,2, which also turned out useful for other
strongly correlated electron systems.30

To end, we believe, in spite of the above somewhat specu-
lative considerations, that one can plausibly ascribe the ex-
citation energy �1 as the Kondo resonance width, while the
excitation energy �2, close to but still different from �1, can
be interpreted as the splitting of the Kondo resonance ob-
served experimentally.28

VII. FIR ABSORPTION

We shall now switch to the other two transitions
	�0�→ 	�3,4�. As seen in Fig. 1�a�, the absorption frequen-
cies �3,4 are on the order of U. For many fabricated
SETs,2,3,39 these values belong to the FIR range. The explicit
forms in Eqs. �5� and �6� show that in the Kondo regime
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these two transitions amount to excite the electron from the
QD lower Hubbard band �of energy ��d� into the electrode
Fermi level and from the electrode Fermi level into the QD
upper Hubbard band �of energy ��d+U�; sufficiently away
from the mixed-valence ranges ��d��F , �d��F−U�,
the exact excitation energies are well approximated by
�3

0=�F−�d and �4
0=�d+U−�F �see Fig. 1�a��.

Based on Fig. 1, one expects in general two absorption
peaks in FIR. In the middle of the Kondo plateau
��d

�=�F−U /2� the two transitions 3 and 4 are degenerate,
and therefore a single peak can be observed experimentally.
There, the absorption frequency is just one half of the charg-
ing energy, �3=�4=���U /2. By moving away from this
point in either direction, the absorption peak splits into two
peaks of different intensities located symmetrically with re-
spect to the degenerate peak, �3,4��� 	�d−�d

�	. The farther
from the symmetric point, the more pronounced is the asym-
metry in intensity, the stronger is the peak �3 at the lower
frequency �3, and the weaker the peak �4 at the higher fre-
quency �4.

Out of the studies on SETs in ac fields,14–16 excepting in
part for Ref. 14, none considered the above aspects. Without
establishing any relationship to the FIR absorption, the nu-
merical results on frequency-dependent conductance de-
duced within the NRG of Ref. 14 show, interestingly, a weak
peak �to which the authors paid little attention� for two val-
ues of �d: at �d=�F−U and at �d=�F−U /2 �see Figs. 2 and
3, respectively, of Ref. 14, to which we refer below�. This
peak is directly related to our results. The situation
�d=�F−U /2 corresponds just to the point of particle-hole
symmetry, and the peak position is visible, just as predicted
by the present approach, at �=�� �note that �F is set to zero
in Ref. 14�. For �d=�F−U, the peak in Fig. 2 of Ref. 14
occurs at ���6�10−3 /0.025�U=0.24U, but the authors
provide no physical interpretation of this value. In excellent
agreement with this value, the lower frequency peak �3 pre-
dicted by our approach is �3=U /4. In addition, we predict
another absorption peak �4 at a higher frequency
�4= �3 /4�U ��4 /D=0.01875 in the notation of Ref. 14�,
which, although in the range showed in Fig. 3, is invisible
there. We can explain this fact: for the parameters of Ref.
14,40 we estimate that the higher frequency peak would be
one order of magnitude less intense than the lower frequency
one. This weak intensity could hardly be distinguished in the
background of the curve of Fig. 3 at � /D=0.01875. To re-
veal the two peaks in FIR absorption, the NRG calculations
should have used situations sufficiently away from the
particle-hole symmetry point �	�d−�d

�	 should exceed the
peak widths� but still sufficiently close to it, because other-
wise the high-frequency peak would be too weak and thence
not visible.

Finally, we note that the two peaks in the FIR absorption
at �3 and �4 are the counterparts of two maxima located
close to the energies �d and �d+U, which are present in the
DOS along with the sharp Kondo peak �see, e.g., Fig. 3 of
Ref. 41�.

VIII. EXPERIMENTAL IMPLICATIONS

Based on the above theoretical results, we propose to em-
ploy the FIR absorption as an experimental tool to character-

ize SETs. To avoid misunderstandings, we emphasize that
the proposed experiments are different both from those car-
ried out using rf or microwave radiation suitable for studying
the Kondo resonance �e.g., Ref. 28� and from those recently
proposed by us to use photoionization,23 where photons
should have energies on the order of the work function �ul-
traviolet radiation�.

In experiments, even using a very well focused flux of
FIR photons to irradiate a SET, it is important but, fortu-
nately, easy to discriminate between absorption processes oc-
curring in the dot and in electrodes or due to acoustic
phonons. One should simply monitor absorption by varying
Vg: the former signals are affected and should be analyzed,
while the latter are not and should be disregarded. To exploit
the present results, most desirable would be to record FIR
absorption spectra of SETs directly. The absorption intensi-
ties may be very weak and their measurement a challenge for
experimentalists. Even though difficult, this can no longer be
considered a hopeless experimental task, particularly in view
of the very recent advances in the field of molecular devices,
enabling to measure the photon emission42 or Raman
response43 of a single molecule, see Refs. 44 and 47.

IX. CONCLUSION

Larger QDs possess smaller charging energies
�e.g., U�64 �eV �Ref. 45��, and could be investigated by rf
or microwave techniques. However, smaller QDs, as those
often used in a SET setup, are characterized by considerably
larger charging energies �e.g., U�1.9 meV �Ref. 3� or
U�7–8 meV �Ref. 39��, and, consequently, for them the
aforementioned techniques cannot be directly employed. In
the present paper, we have presented theoretical results dem-
onstrating that FIR experiments on such SETs, which are
feasible, permit to accurately determine the charging energy
�and other important parameters, see Ref. 47� in a direct way.
Concerning the FIR absorption, fourth aspects are worth to
be mentioned.

First, one should emphasize the cross-fertilization be-
tween NRG and exact numerical diagonalization. Based on a
few significant many-body configurations, the latter method
is very intuitive and allowed us to give a physical content to
the NRG numerical findings unraveled so far. Conversely,
the agreement between the NRG results, valid for semi-
infinite electrodes, and the exact diagonalization, which can
be carried out only for short electrodes, demonstrates that the
latter is able to make certain valuable predictions that are not
affected by finite-size effects, as already noted.23,34

Second, we note that the investigation with the aid of FIR
radiation is by no means limited to SETs. For example, in
nanodevices based on double QDs, FIR absorption can also
be used to deduce other relevant parameters,46 like the inter-
dot electrostatic coupling �or V-Hubbard strength�, which are
related to important properties of nanostructures �see, e.g.,
Refs. 22 and 24�, and which cannot be straightforwardly de-
duced from zero-bias dc-conductance data.

Third, we emphasize that, in comparison with other meth-
ods, the FIR absorption possesses important advantages. It is
not affected by parasitic currents due to unavoidable capaci-
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tive couplings, as it is the case of rf or microwave tech-
niques. Likewise, it is much less challenging than photoion-
ization studied recently:23 in the FIR experiments discussed
in the present paper one simply needs to determine absorp-
tion energies on the order of a few millielectron volt with a
reasonable accuracy, while photoionization requires the de-
termination of ionization energies �on the order of the work
functions, typically �1 eV� with an accuracy �1 meV.23

Fourth, one may ask when and why physical results ob-
tained for finite clusters of sizes much smaller than the
Kondo length �K� t /TK are relevant. Similar to
photoionization,23 the crucial condition for the FIR absorp-
tion discussed here is a singly occupied dot �nd�1�. It is this
condition, which is satisfied for ���F−�d�U−�, that al-
lows electron transitions from the dot to electrodes and vice
versa. Moreover, the dot remains singly occupied in the
aforementioned �d range even at temperatures T well above
the Kondo temperature TK. For the FIR absorption, T should
only be sufficiently smaller than �3,4�U. For SETs with
U=1.9 meV=22 K,3 U=7–8 meV=81–92 K,39 or even
U=64 �eV=0.74 K �Ref. 45� the needed temperature is
much lower than that T�TK�1 mK required to observe the
Kondo anomaly in zero-bias conductance data. Importantly,
the charge plateaus obtained by using an isolated cluster �as
used here and in Refs. 34 and 23� or a cluster embedded in
semi-infinite electrodes32,38 are very similar. For illustration,
one can compare the nd curves in Fig. 6 of Ref. 34 and
Fig. 1 of Ref. 23 of isolated clusters with that in Fig. 8c of
Ref. 32 for an embedded cluster. The differences in nd for

isolated and embedded clusters are quantitatively significant
only in the mixed-valence regions ��F��d and �F��d+U�,
but are negligible deeper into the Kondo plateau
����F−�d�U−��.46 For excitations of a single particle-
hole pair of energies �3,4 on the order of U �Kondo�correla-
tions over large spatial regions ��K are not decisive. This is
the physical reason why finite-size effects are not essential
for the FIR absorption.

On the contrary, the rf/microwave absorption is related to
the coherent superposition of spin-flip processes of energies
�TK, basically the same that are responsible for Kondo con-
ductance. In this case, the Kondo length is important, and
because it is huge for realistic SET parameters �much beyond
the present DMRG capabilities�, alternative methods �see
Sec. VI� to the presently known numerically �almost� exact
ones are necessary. In the present paper we also presented
results on the SET microwave/rf absorption, which although
preliminary are interesting in the context of the recent ex-
periments revealing the splitting of the Kondo resonance.28

We hope to return soon to this important issue, which de-
serves further work.
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