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In a recent paper �Phys. Rev. B 78, 075316 �2008��, Sajeev and Moiseyev demonstrated that the bound-to-
resonant transitions and lifetimes of autoionizing states in spherical quantum dots can be controlled by varying
the confinement strength. In the present paper, we report that such control can in some cases be compromised
by the presence of Coulomb impurities. It is demonstrated that a screened Coulomb impurity placed in the
vicinity of the dot center can lead to bound-to-resonant transitions and to avoided-crossinglike-behavior when
the screening of the impurity charge is varied. It is argued that these properties also can have impact on
electron transport through quantum dot arrays.
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I. INTRODUCTION

Autoionizing states have been very thoroughly investi-
gated in conventional atomic systems. The accuracy
achieved nowadays in experiment and theory is as high as to
resolve hyperfine splittings in dielectronic resonances.1 An-
other, currently very active, research topic involving autoion-
izing states are pump-and-probe experiments with short laser
pulses, which make it possible to follow the autoionization
process in real time and thus to resolve electron dynamics in
atoms.2,3 However, the autoionization process in artificial at-
oms such as quantum dots is less known; from an experi-
mental point of view, it is much more difficult to observe
autoionization, since, contrary to “usual” atomic systems,
quantum dots are imbedded into the semiconductor. The con-
ventional atomic approach where autoionizing states are re-
vealed as resonances in the cross-section spectra for ioniza-
tion by photon or particle impact is, in the case of quantum
dots, not easily employed. Also theoretical data are rather
scarce, since the confinement of the electrons in the dot is
often modeled by a harmonic potential, which automatically
excludes the possibility of resonances, while in reality the
confining potential is, of course, finite. To circumvent this
problem, other confinement models were suggested to study
the autoionization process in two-electron quantum dots,
such as a finite well4–6 or a Gaussian potential,7,8 which in-
deed led to interesting observations such as resonance-
induced enhancement of the dot sensitivity to photons8 or
entanglement in resonances.6 In the present work, we aim to
study the effects of screened Coulomb impurities on the po-
sitions and lifetimes of such autoionizing resonances. The
impact of charged impurities on the properties of quantum
dots was addressed in connection with different confinement
models, such as a parabolic potential9–12 or an infinite well,13

but also finite potentials.14–18 Another interesting aspect is
the behavior of quantum dots with impurities in external
fields, which can give rise to effects such as emergence of
stable nondispersive electron wave packets,19 field-enhanced
electron localization,20 or change in optical properties.21

However, we are only aware of one paper explicitly investi-
gating the role of impurities in the autoionization process.4

Therein, Buczko and Bassani considered a finite potential

well with a hydrogenic impurity and chose an analytical
method based on scattering theory techniques. Here, we
adopt a different approach commonly known as “complex
scaling” or “complex coordinate rotation” to determine the
positions and widths of the resonances in a Gaussian-shaped
spherical two-electron quantum dot with a Coulomb impu-
rity. The method is described in more detail in the following
Sec. II along with the computational procedure and the re-
sults are presented in Sec. III. A discussion and conclusions
are given in Sec. IV.

II. METHOD

The Hamiltonian of a spherical Gaussian two-electron
quantum dot with a Coulomb impurity reads

H = − �
i=1

2 ��2�qi

2

2m�
+ U0e−�qi

2
+

�e2

4��0�qi
� +

e2

4��0��q1 − q2�
,

�1�

where q1 ,q2 are the coordinates of the two electrons, m� is
the effective electron mass, � is the dielectric constant of the
semiconductor, U0 is the depth of the confining potential, �
is a parameter describing the range of the latter, and � is the
effective charge of the impurity. For convenience, we intro-
duce scaled parameters as suggested in Ref. 8:

ri =
m�

me�
qi,

V0 =
me�

2

m�
U0,

� =
me

2�2

�m��2� , �2�

where me is the electron mass, so that the Hamiltonian can be
written as
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4��0ri
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+
e2

4��0�r1 − r2�
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From here on, all quantities will be given in effective atomic
units and the values for the corresponding semiconductor can
be reobtained from Eq. �2�. For example, in the case of GaAs
we have �=12.4 and m� /me=0.067, which gives the effec-
tive energy unit 1 Ha��11.857 meV and the effective
length unit a0

��9.794 nm. To determine the bound as well
as the resonant states of the system, we diagonalize the com-
plex scaled Hamiltonian within a B-spline basis set. This
method was earlier applied to describe autoionizing reso-
nances in atomic22,23 and exotic24–26 systems. The Hamil-
tonian �Eq. �3�� is dilation analytic, so that the uniform com-
plex scaling27–30 of the coordinates can be imposed:

ri → rie
i�, �4�

with a real parameter 0���� /4. The eigenvalues of the
scaled Hamiltonian are complex. However, the physical
states are invariant with respect to � while pseudocontinuum
states are rotated into the complex plane by the angle 2�.
After diagonalizing the scaled Hamiltonian for different val-
ues of �, one obtains the bound states of the system as the
eigenvalues with vanishing imaginary parts and the resonant
states as complex eigenvalues,

Eres = Epos − i
	

2
, �5�

the real part of which gives the position of the resonance and
the negative imaginary part the halfwidth of the latter. It is
connected to the lifetime 
 as 
=� /	. The diagonalization of
the scaled Hamiltonian is carried out numerically using
LAPACK routines, and below we briefly describe the compu-
tational procedure. The radial part of the one-particle Hamil-
tonian h is given by

h =
m�

me�
2�−

�2

2me

�2

�ri
2 +

li�li + 1��2

2meri
2 − V0e−�ri

2
−

�e2

4��0ri
� ,

�6�

and in the first step, the corresponding radial Schrödinger
equation is solved in a sufficiently large box using piecewise
polynomial functions Bk �so-called B-splines31,32 of a certain
order k� defined on a given knot sequence. Thus, the radial
one-particle eigenfunctions � j are obtained in the form

� j�r� = �
k

ckjBk�r� , �7�

with expansion coefficients ckj. Subsequently, the matrix el-
ements of the interaction potential

me�
2

m�
V12 =

e2

4��0�r1 − r2�
�8�

between the obtained states are computed using multipole
expansion, where the radial integration can be carried out to

machine accuracy using Gaussian quadrature, while the an-
gular integration is performed analytically using Racah
algebra.33 The full Hamiltonian is then set up in the basis of
coupled eigenstates to the one-particle Hamiltonians under
consideration of the Pauli principle. Complex scaling is im-
posed by multiplying the kinetic terms by exp�−2i�� and the
Coulomb terms by exp�−i��. The real and imaginary parts of
the complex rotated Gaussian confining potential are given
by

Re�− V0 exp�− ��rie
i��2�

= − V0 exp�− �ri
2 cos�2���cos��ri

2 sin�2��� , �9�

Im�− V0 exp�− ��rie
i��2�

= V0 exp�− �ri
2 cos�2���sin��ri

2 sin�2��� , �10�

and are scaled accordingly. After the setup of the Hamil-
tonian matrix is completed, the latter is diagonalized in the
final step.

III. RESULTS

In the present calculations, we considered both donor and
acceptor impurities, and therefore we varied the effective
charge in the regions ��0 and ��0. This is a quite simple
picture of the screening mechanism, but it should be suffi-
cient to illustrate the effect of impurities on autoionizing
states. In a more advanced approach, one could also include
a possible spatial dependence of the screening. For example,
Kwon34 recently presented a model where the screening is
modeled by an exponentially decreasing potential

Vimp
i =

q

4���0ri
exp�−

ri

rs
� , �11�

where q is the true impurity charge and rs is the screening
length which depends on the doping concentration in the
semiconductor and the temperature �see Eqs. �9�–�15� in Ref.
34�. We simplify the treatment by varying � independently
of ri, as it is often done in atomic many-electron systems to
model the screening effects by core electrons. Also, since we
are mostly interested in autoionizing states which are situ-
ated not very close to the dot center, this approximation
seems reasonable.

The parameters of the confining potential are chosen in
the same region as suggested in Ref. 8: throughout the cal-
culations, the potential depth is kept fixed at V0=3 Ha� and
for the range parameter � we take certain values which are
well suited to illustrate the physical behavior we aim to dem-
onstrate. To represent the basis states, a sequence of 48 knot
points with a box size of R=24 a0

� is used to generate the
B-spline set, the order of which is k=7 throughout the paper.
We restrict our treatment to singlet resonances and include
all configurations of s-s , p-p, and d-d type for the 1S sym-
metry and all configurations of s-p and p-d type for the 1P
symmetry, which is enough to reach sufficient convergence.
The numerical stability of the method was confirmed by suc-
cessfully reproducing the positions and widths of the reso-
nances as given in Ref. 8 for the case �=0 obtained with a
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Gaussian basis set. Figures 1 and 2 show the positions and
halfwidths of the three lowest states and the 1s threshold for
donor and acceptor impurities with different screening
strengths. We observe that a donor impurity can turn an au-
toionizing state into a bound state, while for an acceptor
impurity the opposite behavior is seen. Somewhat similar

situations are known to occur in atomic systems, when a
certain electronic configuration gives or does not give rise to
autoionizing resonances depending on the nuclear charge.
For example, the �1s22p2�1S state is autoionizing in
beryllium,35 while in the case of any other berylliumlike ion
�e.g., berylliumlike carbon36� this state is bound. Of course,
this analogy does not fully hold in the case studied here,
since the confining potential remains unchanged, but to some
extent it allows a qualitative insight in the observed behavior.
Another interesting aspect in the case of donor impurities is
that the width of the state which remains autoionizing �blue
dotted curve in Fig. 1� is affected differently for different
total angular momenta: in the case of 1S symmetry it is
slightly increasing while for the 1P symmetry it is slightly
decreasing as the effective impurity charge grows. Further-
more, we would like to point out that, for an acceptor impu-
rity, the positions of the second and third states become very
close to each other after crossing the threshold �blue dotted
and red solid curves in the upper left panel in Fig. 2�. By
“zooming in” into the relevant region, we see that these
curves show an avoided-crossing-like behavior. It is illus-
trated in Fig. 3, where we also plot the energy difference E
of the states vs the effective impurity charge. To summarize,
we observe that the dot spectra are quite sensitive with re-
spect to impurities, both concerning the positions and, in
case of autoionizing states, also the lifetimes, in particular
because impurities can cause threshold crossings so that
bound states become resonant or vice versa. In the following
Sec. IV, we discuss the physical implications of the observed
behavior which allows us to draw some conclusions.

IV. DISCUSSION AND CONCLUSIONS

In the context of the presented results, we focus on two
main topics in our discussion: resonance-enhanced sensitiv-
ity of the quantum dots to photons and the role of autoion-
izing resonances in transport processes through quantum dot
chains. The practical purpose behind controlling the posi-
tions and lifetimes of resonances in quantum dots by adjust-
ing the confining potential8 was a possible application of the
latter as sensitive photodetectors. As demonstrated therein,
the presence of an autoionizing resonance leads, in fact, to a
very significant increase in the photoionization rate, since
autoionizing states can be intermediately populated in the
photoionization process. Our results, however, indicate that
in case of such an application attention should be paid to the
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FIG. 1. �Color online� Donor impurity ���0�. Upper panels:
energy positions of the three lowest states �colored lines� and the
position of the 1s threshold �solid black line� as the function of the
screening strength shown for 1S �left� and 1P �right� symmetries.
Lower panels: halfwidths of the occurring resonant states. As the
position of the second state crosses the threshold, it becomes a
bound state and its width vanishes. The values for the range param-
eter were taken as �=0.21�a0

��−2 for the 1S symmetry and �
=0.13�a0

��−2 for the 1P symmetry. The energies and halfwidths are
given both in scaled hartree units �left axis� and meV �right axis�
with material parameters of GaAs.
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FIG. 2. �Color online� Same as in Fig. 1 for an acceptor impu-
rity ���0�. Here, we observe that two states �blue dotted and red
solid lines� cross the threshold. However, in the case of 1S symme-
try, the width of the second state �red solid line� is orders of mag-
nitude smaller than the one of the third state and is not shown in the
plot since it is not distinguishable from zero on the given scale. The
values for the range parameter were taken as �=0.10�a0

��−2 for the
1S symmetry and �=0.08�a0

��−2 for the 1P symmetry.
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FIG. 3. �Color online� Left panel: “zoom in” into the plot shown
in the upper left panel of Fig. 2. Right panel: energy difference
between the two states. The behavior is similar to an avoided cross-
ing. The range parameter of the confinement is �=0.10�a0

��−2.
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purity of the semiconductor, since a donor impurity could
turn an autoionizing state into a bound state which would
considerably decrease the detector sensitivity. In other
words, donor impurities counteract the controlled efficiency
of such photodetectors. As for the role of acceptor impurities,
we would like to mention their possible impact on electron
transport through quantum dot chains. Let us, for example,
imagine an array of quantum dots, prepared in a way that
each of them initially contains one electron and consider the
propagation of an electronic wave packet from one end of the
chain to another.37 If, in such a situation, acceptor impurities
are present in one or several dots and give rise to autoioniz-
ing resonances, it could lead to an additional channel for
quantum transport where the electron is captured into a reso-
nant state and remains there for a time span comparable to
the lifetime of the resonance before it is released back to the
continuum. This mechanism would thus compete with tun-
neling between coupled quantum dots, possibly even giving
rise to interference effects among the propagation paths.
Qualitatively, one may even compare the situation to the first
step in the process of dielectronic recombination in ions,
when free electrons are captured into doubly excited states
by simultaneous excitation of a core electron. Of course, in a

semiconductor the resonant characteristic would be less pro-
nounced since the propagating electrons are not monochro-
matic; nevertheless, such a parallel between “usual” and ar-
tificial atoms is quite intriguing.

In conclusion, we studied autoionizing resonances in the
presence of Coulomb impurities in spherical Gaussian-
shaped two-electron quantum dots using the complex scaled
direct diagonalization method. We found that donor impuri-
ties can turn resonant states with a finite lifetime into bound
states, while acceptor impurities have the opposite effect.
Implications of these features were discussed in the context
of photoionization and transport processes in quantum dots,
underlining the importance of the semiconductor purity in
these particular applications.
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