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The application of inhomogeneous stress, used to trap polaritons in a microcavity, results in a splitting
between different polarization states of the polaritons. The splitting of the polariton states arises primarily from
the splitting of the exciton states in the quantum wells embedded inside the microcavity due to the electron-
hole exchange interaction and the mixing of the light- and heavy-hole excitons with stress. The new mixed
exciton states have different oscillator strengths, thereby enhancing the splitting of the lower polaritons by a
factor of four more than previously reported exciton spin splittings. We observe splittings between the different
polarizations, at normal incidence, of almost 1 meV. The physical explanation and a corresponding simulation
for the fine structure splitting of the polaritons observed in stressed microcavities are presented.
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Microcavities with embedded quantum wells, which pro-
duce exciton-polariton states in the strong coupling limit, are
an active topic of experimental and theoretical research,1–7 in
particular, in regard to the recent demonstrations of nonequi-
librium Bose condensation.8–18 In our recent experiments
with GaAs-based structures, inhomogeneous stress was used
to create a harmonic potential to confine the polaritons.9,19

One extra effect of the stress is that it leads to a splitting of
the two polarization states of the polaritons. For moderate
stresses, this splitting can be huge compared to typical exci-
ton splittings in GaAs quantum wells. In this paper, we ex-
plore in detail the mechanisms which lead to this splitting.

For the experiments, three sets of four identical 70-Å
GaAs quantum wells were placed at the three antinodes of
the confined optical mode in a microcavity. The design,
which uses two GaAs/AlGaAs-distributed Bragg reflectors to
create the cavity, is essentially the same one as used in pre-
vious experiments.9,16,20 The coupling between the exciton
states and the photon states gives rise to polariton states
which are superpositions of excitons and photons. Initially,
there are four nearly-degenerate exciton states, with two
bright �J= �1� states and two dark �J= �2� states split by
about 150 �eV.21,22 When the bright excitons couple to the
two photon states, two polariton states are shifted down rela-
tive to the original exciton states and two are shifted upward,
while the dark exciton states are left nearly unaffected. The
Q factor of the cavity in our samples is around 4000 and the
Rabi splitting between the upper and lower polariton states is
about 15 meV, compared to typical line widths of the lower
polaritons of 0.25 meV. Stress was applied by a sharp pin to
the backside of the substrate of a freely suspended sample, as
in previous experiments.9,19 A minimum in the band gap is
created in the quantum wells at a point in the plane just
below the pin stressor. This energy minimum corresponds to
the center of the trap and can be approximated as a harmonic
potential for the polaritons in the plane of their motion.

A state splitting of up to 700 �eV is observed in the

lower and upper polariton branches of a stressed semicon-
ductor microcavity polariton. The split states are linearly po-
larized and orthogonal to each other. In addition, one of the
states couples to light better than the other as seen by the
difference in the Rabi splitting of the upper and lower polari-
tons. Typical spectra are shown in Fig. 1.

An example of the splitting of the lower polariton state in
a line across the stress trap is shown in Fig. 2. The difference
in energy between two bright states is extracted from photo-
luminescence measurements taken normal to the sample and
is plotted in Fig. 3�b�. The range of stress for the data of Fig.
3�b� are taken from close to zero detuning to positive detun-
ing ��=Eph−Eex�. Normal to the sample, the transverse elec-
tric and transverse magnetic modes in the cavity are
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FIG. 1. �Color online� An example of the refectivity spectra of
the polariton through a 90° and a 180° polarizer orientation. The
spectra are taken 150 �m away from the center of the stress well.
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equivalent. Hence, the longitudinal-transverse splitting of
polaritons does not contribute to the splitting. The splitting
could arise from two possibilities. One is that it could be a
direct effect of an energy splitting of the degenerate bright
exciton states �spin �1� into two orthogonally-polarized ra-
diative states. Another possibility is that it could be due to a
stress-induced birefringence in the microcavity, resulting in a
splitting of the bare photon mode into two polarized states.
However, the photonic character is not enhanced in our case
since the polariton becomes more excitonlike with increasing
stress.16,24 It is safe to assume that the splitting caused by a
small birefringence in the mirrors and cavity is not the domi-
nant cause.

Exciton splitting due to exchange anisotropy is well
studied in GaAs quantum wells and microcavities.22,25–30 The
energy splittings between the bright states in quantum wells
are typically at most a few tens of �eV.22 In unstressed
samples, the mixing between heavy-hole and light-hole ex-
citons is negligible since they are far apart in energy
��30 meV difference for 7-nm quantum wells�. In our
experiments,23 the stress shifts the light-hole energy close to
the heavy-hole energy, making the mixing between the two
states an important parameter to consider.

The breaking of the degeneracy of the two bright exci-
tonic states is the result of a lowering of the symmetry that
can be induced by external strain, inherent and induced pi-
ezoelectric fields, and/or interface roughness possibly linked
to the growth procedures.27,30,31 This would mean a reduction
in the symmetry of the QW from D2d to C2v.30 Therefore, the

�110� and �11̄0� axes are no longer equivalent, splitting the
exciton states into orthogonal, linearly polarized states. In
the D2d symmetry group, both the conduction spin-1/2 states
and valence j=3 /2 states are represented by �6. The product
gives

�6 � �6 = �1 � �2 � �5.

The representations �1 and �2 correspond to the dipole-
inactive J= �2 states and the �5 corresponds to the dipole-

active J= �1 states. When the symmetry is lowered to C2v,
the �5 doublet becomes �2 � �4, which are optically-active x
and y singlet states.

When the symmetry is lowered, it is natural to expect the
exciton oscillator strength to also be different along the two
crystal axis orientations.30 Each polarization will then have a
different Rabi splitting. In fact, the change in oscillator
strength is a big factor in creating these huge polariton split-
tings, up to 700 �eV as seen in our experiments, since the
polariton splitting amplifies the spin splitting. The polariton
energies for a given exciton state are found by diagonalizing
the matrix

H = �Ei �i

�i Ephoton
� , �1�

where �i is the radiative coupling for exciton eigenstate i,
which depends on the relative fraction of light-hole and
heavy-hole excitons in the eigenstate.

FIG. 2. An example of the lower polariton luminescence show-
ing the splitting of the two bright states across a stressed microcav-
ity sample �4.3 N force on the pin stressor; see Refs. 9 and 23 for
the stressor geometry�.
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FIG. 3. �Color online� �a� Solid black lines: the peak position of
the data of Fig. 2. Colored dashed lines: fit to the data using the full
Pikus-Bir and exchange Hamiltonian discussed in the text. �b� Mea-
sured splitting between the lower polariton states with increasing
force on the pin stressor �0, 0.2, 1.0, 2.1, 3.2, and 4.3 N�. The
highest stress splitting corresponds to the difference in the curves in
Fig. 2. The solid curves are fits of the theory discussed in the text.
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The Hamiltonian that can split the degeneracy of the two
bright states is the short-range electron-hole exchange inter-
action between a hole with spin Sh and an electron with spin
Se.

32

Hexch = − �
i=x,y,z

aiSh,iSe,i, �2�

where the a’s are the coupling constants. Anisotropy in the
exchange interaction is enough to split the degeneracy of the
exciton states but anisotropy is not a necessary condition if
there is a strong mixing between the light- and heavy-hole
excitons, which is the case of our stressed microcavity
sample. Adding the Pikus-Bir deformation Hamiltonian,
which determines the shift of the bands with stress, to the
exchange term and diagonalizing the resulting Hamiltonian
matrix leads to a splitting of the exciton energy and a differ-
ence in the coupling strength of the new states. �Details are
given in Appendix A; Bayer et al.33 used a slightly different
form of the short-range exchange interaction; the form used
here is justified in Appendix B.� From the resulting exciton
eigenstates and their corresponding coupling strengths to the
cavity photon, we can solve for the energy of new lower
polariton states. For our fits to the data, we assume that the
oscillator strength of the pure J=1 heavy-hole exciton and
the pure J=1 light-hole exciton remain constant, but as the
stress changes the relative fraction of heavy-hole and light-
hole states in each of the two new exciton eigenstates, the
oscillator strength of each exciton state must be recomputed.

The splitting in energies of the bright states using the
Pikus-Bir plus exchange Hamiltonian for the exciton eigen-
states and then the polariton energy splitting using the calcu-
lated light-hole and heavy-hole fractions, is compared to the
data in Fig. 3�b�. The data is well fit using strain values, �xx,
�yy, etc., for a line across the sample 25 �m off the center of
the pin stressor and in the direction of the �100� axis. The
relevant parameters used are listed in Table I. The Rabi split-
ting � is proportional to the square root of the calculated
oscillator strength 	
f 	M	i�	2, where the final states are the �1
spin photons and the inital states are the new eigenstates.

From the eigenvectors of the effective Hamiltonian
�Pikus-Bir plus exchange�, we can determine the direction of
polarization of the exciton. One can write a general represen-
tation of the exciton polarization as

P�x� = �A+	+ + A−	−� , �3�

where A+�A−� are the amplitudes of right �left� circularly
polarized excitons 	+�	−� corresponding to the sum of ei-

genvector elements with +1�−1� spin. If the magnitude of the
amplitudes are equal, r= 	A−	 / 	A+	=1, then the polarization is
100% linear. For circular components with equal amplitude,
it is easy to show that

tan 
 =
A−	−

A+	+ =
	−

	+ , �4�


 =
�

2
, �5�

where the circular polarization is a superposition of
linear polarizations along the �100� and �010� axes,
	�= 1

�2
��1� i�2�, � is the phase difference between the am-

plitudes, A− /A+
ei�, and 
 is the direction of polarization
with respect to the �100� axis. Calculating r and 
 from our
simulations shows that the polarization is nearly 100% linear

and points effectively in the �110� and the �11̄0� directions,
for lower polaritons near the center of the trap. In our earlier
paper,9 we presented evidence of optical anisotropy in which
the emission is linearly polarized and pinned to one of the
�110� crystallographic axis above the condensation density
threshold. We believe that this effect can be attributed to the
anisotropy explained here.

These experiments provide an unusual degree of accuracy
for the electron-hole exchange parameters because the mi-
crocavity makes the spin splitting of the different eigenstates
much larger than their line widths. The sensitive dependence
of the spin splitting on stress also makes this a tool for mea-
suring stress optically that does not depend on the intensity
of the lines.

In addition, the splitting due to the stress trap removes the
degeneracy of the ground state everywhere except at the ex-
act center of the trap. This may be a crucial factor in the
reported observation of a Bose-Einstein condensate in micro-

TABLE I. Relevant parameters used for the Pikus-Bir and ex-
change Hamiltonian fit shown in Fig. 3�a�.

Hole diameter 1.25 mm

Pin diameter 25 �m

Relevant parameters for GaAs/AlGaAs: Refs. 34 and 35

Exchange coupling terms ax=ay 1.14 meV

az 0.84 meV

Bare heavy-hole radiative coupling �hh 7.55 meV

Bare light-hole radiative coupling �lh 6.0 meV
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FIG. 4. �Color online� Example of a fit using strain simulations
from ANSYS �thin line, in red� on an the single-quantum-well exci-
ton energy of a stressed double quantum well �heavy line, in blue�,
for 0.7 N force on pin stressor, for an experiment similar to a work
done previously �Ref. 19�. The following book values �e.g., Ref. 34�
for the deformation potentials for GaAs were used for these fits:
ac=−7.17 eV, av=1.16 eV, b=−1.7 eV, and d=−4.55 eV.
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cavity polaritons9,16 as compared to unstressed systems.15 If
the ground state is degenerate, the total number of particles
in the ground state is divided equally among the degenerate
states. This effectively increases the critical density threshold
for Bose condensation by a factor of two.
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APPENDIX A: HAMILTONIAN FOR THE
VALENCE-BAND STATES

The valence-band energy shifts as a function of stresses
are given by the Pikus-Bir deformation Hamiltonian:36

HPB = av��xx + �yy + �zz� + b��Jx
2 − J2/3��xx + c . p .�

+
2d
�3

1

2
�JxJy + JyJx��xy + c . p .� , �A1�

where av, b, and d are deformation potentials, �ij’s are
stress-tensor components, J’s are the angular momentum
operators acting on the spin states of the valence band
�m=3 /2, 1/2, −1 /2, and −3 /2�, and c . p.’s correspond to
cyclic permutations with respect to x , y , z. Relevant mate-
rial properties used in our simulations, e.g., deformation po-
tentials and elastic constants, are found in Refs. 34, 35, and
37. Acting on the heavy-hole and light-hole basis,
	 3
2 , 3

2 � , 	 3
2 , 1

2 � , 	 3
2 ,− 1

2 � , 	 3
2 ,− 3

2 �, Eq. �A1� gives the matrix
form34,38 of the Pikus-Bir Hamiltonian

HPB = −�
P + Q − S R 0

− S� P − Q 0 R

R� 0 P − Q S

0 R� S� P + Q
� , �A2�

where

P = − av��xx + �yy + �zz�, Q = −
b

2
��xx + �yy − 2�zz� ,

R =
�3

2
b��xx − �yy� − id�xy, S = − d��xz − i�yz� .

Diagonalizing this the matrix gives the shift of the valence-
band energies. The shift of the conduction band is given
simply by �Ec=ac��xx+�yy +�zz�.

To be able to diagonalize HPB throughout the sample, we
need the values for the strain at different points on the
sample as we stress it �see Refs. 19 and 23 for the stressor
geometry�. The strain terms, �xx, �yy, etc., can be computed
using programs that use finite-element analysis, e.g., ANSYS.
Finite-element analysis numerically calculates the displace-
ments of a discretized mesh representation of the sample
using the constitutive relations of GaAs.38 We begin by cal-
culating the equilibrium displacement of the mesh points by
solving Newton’s law for continuous media. Following no-
tation from Ref. 38, we have

�
j

��ij

�xj
= �üi, �A3�

where � is the density of GaAs and ui is the diplacement of
a volume element in the i direction. Combining this with
Hooke’s law, �ij =�lmCijlm�lm, we get

�üi = �
jlm

Cijlm
�2ul

�xj � xm
, �A4�

where we define

�lm =
1

2
� �ul

�xm
+

�um

�xl
� .

Equation �A4� is discretized and applied to all points of the
constructed mesh representation of the sample when doing
the actual simulation. A force on the stressor pin, for ex-
ample, corresponds to a displacement of the mesh points
under the stressor. The right-hand side of Eq. �A4� calculates
the force felt by the other mesh points due to the initial
displacement. The next iteration then is a displacement of
each mesh point in the same direction as force with magni-
tude proportional to the force felt by each point. After the
displacement, the force is again calculated. The process re-
peats until equilibrium is reached. From the equilibrium dis-
placements �ui’s�, one can calculate the strain terms, �xx, �yy,
etc., that go into HPB. Figure 4 shows a typical calculation of
the exciton energy in a quantum well using ANSYS for the
strains and book values for the deformation potentials.

The Hamiltonian that can split the degeneracy of the two
bright states is the short-range electron-hole exchange inter-
action between a hole with spin Sh and an electron with spin
Sh �Ref. 32�

Hexch = − �
i=x,y,z

aiSh,iSe,i, �A5�

where the a’s are the coupling constants �see Appendix B for
the derivation of this term�. Acting on the hole-electron ba-
sis, 	 3

2 �	↑ �, 	 3
2 �	↓ �, 	 1

2 �	↑ �, 	 1
2 �	↓ �, 	− 1

2 �	↑ �, 	− 1
2 �	↓ �, 	− 3

2 �	↑ �,
and 	− 3

2 �	↓ �, this is
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−

⎝
⎜
⎜
⎜
⎛ az

4
0 0

− �ax − ay�
�3

0 0 0 0

0 −
az

4

− �ax + ay�
�3

0 0 0 0 0

0
− �ax + ay�

�3

az

12
0 0

2�ax − ay�
3

0 0

− �ax − ay�
�3

0 0 −
az

12

2�ax + ay�
3

0 0 0

0 0 0
2�ax + ay�

3
−

az

12
0 0

− �ax − ay�
�3

0 0
2�ax − ay�

3
0 0

az

12

− �ax + ay�
�3

0

0 0 0 0 0
− �ax + ay�

�3
−

az

4
0

0 0 0 0
− �ax − ay�

�3
0 0

az

4
⎠
⎟
⎟
⎟
⎞

. �A6�

The exchange term is added to the Pikus-Bir deformation matrix to account for the shift of the bands due to both exchange
and deformation. The Pikus-Bir Hamiltonian, acting in the same basis state as the exchange, is

HPB = −�
P + Q 0 − S 0 R 0 0 0

0 P + Q 0 − S 0 R 0 0

− S� 0 P − Q 0 0 0 R 0

0 − S� 0 P − Q 0 0 0 R

R� 0 0 0 P − Q 0 S 0

0 R� 0 0 0 P − Q 0 S

0 0 R� 0 S� 0 P + Q 0

0 0 0 R� 0 S� 0 P + Q

� . �A7�

Diagonalizing HPB+Hexch at every point of a numerically
discretized mesh of GaAs gives the shifted band energies
with stress.

The heavy-hole excitons are those with the valence-band
3/2 states while the light-hole excitons are those with the
valence-band 1/2 states. Only the states with J=1 are bright
states, i.e., states 	 3

2 �	↓ � and 	− 3
2 �	↑ � for the heavy hole exci-

tons, and states 	 1
2 �	↑ � and 	− 1

2 �	↓ � for the light hole excitons.
The radiative oscillator strength for each eigenstate is pro-
portional to 	
vac	p	i�	2, where

	i� = �1	hh,2� + �2	hh,1� + �3	lh,1� + �4	lh,0�a��

+ �5	lh,0�b�� + �6	lh,− 1� + �7	hh,− 1� + �8	hh,− 2�

is the eigenstate found in the above electron-hole basis;

vac	p	hh , �1�=Mhh and 
vac	p	lh , �1�=Mlh are fit param-
eters, and the other matrix elements are zero.

APPENDIX B: DERIVATION OF ELECTRON-HOLE
EXCHANGE

To deduce the electron-hole exchange term from first
principles we begin by following the method of Hanamura
and Haug.39 The interaction energy is written in terms of the
electron Fermi field operators as

H = �
s,s�
� d3x� d3x�

e2

4��	x� − x��	
�s

†�x���s�
† �x����s��x����s�x�� ,

�B1�

where

�s�x�� =
1

�V
�
n,k�


unk�	x�,s�eik�·x�bnk�

in which 
unk� 	x� ,s� is the spin-s projection of the Bloch cell
function for an electron with band index n and momentum k�,
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and bnk� and bnk�
† are the fermionic annihilation and creation

operators. Substitution gives

H = �
�n,k��

bnk�
† bn�k��

† bn�k��bn�k���
s,s�
� d3x� d3x�

�e−i�k�·x�+k��·x��−k��·x��−k��·x��
x�,s	unk��
x�� ,s�	un�k���
un�k�	x�� ,s��

�
un�k��	x�,s�
e2

4��	x� − x��	
, �B2�

where the summation over �n ,k�� stands for summation over
all bands n and momenta k�. We make the long-wavelength
approximation that all k’s are small compared to the Bril-
louin zone, which means that the plane-wave terms are
nearly constant over a unit cell.38 We write x� =X� +y�, where X�
is the position of a cell and y� is the position inside a cell, and
take the lowest order of the k� · p� expansion for the Bloch cell
functions,38 to write

1

V
� d3xe−i�k�−k���·x�
x�,s	unk��
un�k��	x�,s�

�
1

N
�
X�

e−i�k�−k���·X� 1

Vcell
�

cell
d3y
y�,s	un0�
un�0	y�,s� ,

where N is the number of unit cells and Vcell is the volume of
a unit cell. This yields the approximate result

H � �
�n,k��

bnk�
† bn�k��

† bn�k��bn�k��
1

N2 �
X,X�

e−i�k�·X� +k��·X��−k��·X��−k��·X� �

� �
s,s�

1

Vcell
2 �

cell
d3y�

cell
d3y�
y�,s	un0�
y�� ,s�	un�0�

�
un�0	y�� ,s��
un�0	y�,s�
e2

4��	x� − x��	
. �B3�

The denominator 	x� −x��	 must be treated with care. We
break the sum over X� and X� � into two parts, one with X�

=X� � �short range� and one with X� �X� � �long range�. The
latter term is approximately

H � �
�n,k��

bnk�
† bn�k��

† bn�k��bn�k��
1

N2 �
X�X�

�e−i�k�·X� +k��·X��−k��·X��−k��·X� � e2

4��	X� − X� �	

� ��
s

1

Vcell
�

cell
d3y
y�,s	un0�
un�0	y�,s��

���
s�

1

Vcell
�

cell
d3y�
y�� ,s�	un�0�
un�0	y�� ,s��� .�B4�

The sum over X� and X� � can be converted to an integral and
resolved as38

1

2V

e2/�
	�k	2

�k+k�,k�+k�,

where �k=k� −k��=k��−k��. For n=n� and n�=n�, this term
gives the standard intraband Coulomb interaction, either be-
tween two carriers in the same band, or in the case of an
electron and hole, the direct Coulomb interaction between an
electron and hole that causes exciton formation. The long-
range exchange term vanishes in the long-wavelength limit
assumed here due to the orthonormality of the Bloch cell
functions; higher-order k� · p� expansion of the Bloch cell func-
tions will give a k-dependent term.

On the other hand, the short-range term has a matrix ele-
ment


Un,n�,n�,n�� = �
s,s�

1

Vcell
2 �

cell
d3y�

cell
d3y�
y�,s	un0�
y�� ,s�	un�0�

�
un�0	y�� ,s��
un�0	y�,s�
e2

4��	y� − y��	
, �B5�

which can be nonzero for Bloch cell functions in different
bands. To determine the exchange energy for an exciton, we
use the Wannier exciton state, written as

	cv� = �
k�

��k��bck�
† bvk� ,

where c and v are indices that pick out specific conduction
and valence-band states, respectively, and ��k�� is the
momentum-space wave function of the relative exciton mo-
tion �we assume that the center-of-mass motion of the exci-
ton is negligible�. The exchange energy is then given by


ex	H	ex� � 

0	�
p��

���p���bvp��
† bcp���Vcell

V

Ucvcv�

� �
k�,k��,q�

bc,k�
† bv,k��

† bc,k��+q�bv,k�−q�
�
p�

��p��bcp�
† bvp�	0�� ,

�B6�

where the sum over X� �=X� �� has been used to give a
momentum-conserving � function. When all the creation and
annihilation operators are resolved into constraints on the
momentum vectors, this becomes,


ex	H	ex� � − ��
p��

���p����Vcell

V

Ucvcv���

p

��p���
+ ��

p

	��p��	2�Vcell

V

Ucvcv�

� − 	��0�	2Vcell
Ucvcv� , �B7�

where we have found the real-space exciton wave function
through the the Fourier transform ��r��= �1 /�V��k��k�eik�·r�;
the second term in the first line of Eq. �B7� is negligible
since the wave function is normalized so this term is of order
1 /V times the first term. The short-range exciton exchange
energy is therefore proportional to the probability of the elec-
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tron and hole in the exciton Wannier wave function being at
the same place.

The matrix element, Eq. �B5�, for interband transitions
relies on the spatial variation in the Coulomb potential to
give a nonzero integral. However, the Coulomb interaction
does not flip spin. Therefore, the exchange interaction ap-
plies only for electron and hole states with the same spin.
Since the case of same spins corresponds to the spin-triplet
case and the case of different spins corresponds to the spin-
singlet state, in the case of pure spin states, we account for
this with a factor −S�e ·S�h.38

In the case when the conduction-band eigenstates are pure
spin states but the valence-band eigenstates are not, as in
GaAs, we cannot just worry about the diagonal terms

ex	H	ex� for the exciton energy; we must also worry about
mixing terms 
ex�	H	ex�, where the exciton states can be
different, and the resulting terms Uc�v�cv. The four relevant
GaAs valence band states at zone center are

	+ 3
2� = − i	1�	↑� ,

	+ 1
2� = i

�3
	1�	↓� + i�2

�3
	0�	↑� ,

	− 1
2� = i

�3
	− 1�	↑� + i�2

�3
	0�	↓� ,

	− 3
2� = − i	− 1�	↓� , �B8�

where the states 	1� , 	0� and 	−1� are the Bloch spatial cell
functions with p symmetry. The spin-3/2 states are the
“heavy-hole” states and the spin-1/2 states are the “light-
hole” states. The requirement that we take the projection of
the valence-band state onto the same spin state as the

conduction-band state, for the eight exciton states listed in
Appendix A, gives us the set of coefficients

⎝
⎜
⎜
⎜
⎛1 0 0 0 0 0 0 0

0 0 −
4
�3

0 0 0 0 0

0 −
4
�3

2

3
0 0 0 0 0

0 0 0
1

3

4

3
0 0 0

0 0 0
4

3

1

3
0 0 0

0 0 0 0 0
2

3
−

4
�3

0

0 0 0 0 0 −
4
�3

0 0

0 0 0 0 0 0 0 1
⎠
⎟
⎟
⎟
⎞

. �B9�

This is the same result as obtained using 1
2S�e ·S�h+ 1

2 , which is
the same as the matrix in Eq. �A6� in Appendix A, except for
the additive constant, for the case ax=ay =az. This shows that
at a fundamental level, the electron-hole exchange splitting
term is proportional to S�e ·S�h, not S�e ·J�h, which does not give
an equivalent matrix.

In a quantum well and under shear stress, the p states
	1� , 	0�, and 	−1� are no longer the orbital eigenstates, as x,
y, and z are no longer equivalent. The new eigenstates be-
come 	x�= 1

�2
�	−1�− 	1�� , 	y�= i

�2
�	−1�+ 	1�� and 	z�= 	0�.

When these are used in Eq. �B5�, the values of the coeffi-
cients ax, ay, and az can be obtained.

*Present address: Iligan Institute of Technology, Mindanao State
University, 9200 Iligan City, Philippines.

†snoke@pitt.edu
‡Present address: Department of Electrical Engineering, Princeton

University, Princeton, NJ 08544, USA.
1 S. Savasta, O. DiStefano, V. Savona, and W. Langbein, Phys.

Rev. Lett. 94, 246401 �2005�.
2 T. C. H. Liew, Y. G. Rubo, and A. V. Kavokin, Phys. Rev. Lett.

101, 187401 �2008�.
3 S. Christopoulos, G. Baldassarri Höger von Högersthal, A.

Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G.
Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean,
Phys. Rev. Lett. 98, 126405 �2007�.

4 R. Shimada, J. Xie, V. Avrutin, U. Ozgur, and H. Morkoc, Appl.
Phys. Lett. 92, 011127 �2008�.

5 C. Leyder, T. C. H. Liew, A. V. Kavokin, I. A. Shelykh, M.
Romanelli, J. Ph. Karr, E. Giacobino, and A. Bramati, Phys.
Rev. Lett. 99, 196402 �2007�.

6 S. Kundermann, M. Saba, C. Ciuti, T. Guillet, U. Oesterle, J. L.
Staehli, and B. Deveaud, Phys. Rev. Lett. 91, 107402 �2003�.

7 J. Keeling, P. R. Eastham, M. H. Szymańska, and P. B. Little-
wood, Phys. Rev. Lett. 93, 226403 �2004�.

8 J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun,
J. M. J. Keeling, R. Andre, J. L. Staehli, V. Savona, P. B. Little-
wood, B. Deveaud, and L. S. Dang, Nature �London� 443, 409
�2006�.

9 R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, Sci-
ence 316, 1007 �2007�.

10 J. J. Baumberg, A. V. Kavokin, S. Christopoulos, A. J. D.
Grundy, R. Butté, G. Christmann, D. D. Solnyshkov, G.
Malpuech, G. Baldassarri Höger von Högersthal, E. Feltin, J.-F.
Carlin, and N. Grandjean, Phys. Rev. Lett. 101, 136409 �2008�.

11 A. Baas, K. G. Lagoudakis, M. Richard, R. André, Le Si Dang,
and B. Deveaud-Plédran, Phys. Rev. Lett. 100, 170401 �2008�.

12 A. P. D. Love, D. N. Krizhanovskii, D. M. Whittaker, R.
Bouchekioua, D. Sanvitto, S. Al. Rizeiqi, R. Bradley, M. S.
Skolnick, P. R. Eastham, R. André, and L. S. Dang, Phys. Rev.
Lett. 101, 067404 �2008�.

13 K. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto,
R. Andr, Le Si Dang, and B. Deveaud-Pldran, Nat. Phys. 4, 706
�2008�.

14 A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M.
D. Martin, A. Lemaitre, J. Bloch, D. N. Krizhanovskii, M. S.
Skolnick, C. Tejedor, and L. Viña, Nature �London� 457, 291

HUGE SPLITTING OF POLARITON STATES IN… PHYSICAL REVIEW B 81, 125311 �2010�

125311-7



�2009�.
15 D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemai-

tre, and J. Bloch, Phys. Rev. Lett. 100, 047401 �2008�.
16 R. Balili, B. Nelsen, D. W. Snoke, L. Pfeiffer, and K. West, Phys.

Rev. B 79, 075319 �2009�.
17 C. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D.

Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y.
Yamamoto, Nature �London� 450, 529 �2007�.

18 H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto,
Science 298, 199 �2002�.

19 V. Negoita, D. W. Snoke, and K. Eberl, Appl. Phys. Lett. 75,
2059 �1999�.

20 H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, Proc.
Natl. Acad. Sci. U.S.A. 100, 15318 �2003�.

21 E. Blackwood, M. J. Snelling, R. T. Harley, S. R. Andrews, and
C. T. B. Foxon, Phys. Rev. B 50, 14246 �1994�.

22 N. Romanov and P. Baranov, Nanotechnology 12, 585 �2001�.
23 R. Balili, D. Snoke, L. Pfeiffer, and K. West, Appl. Phys. Lett.

88, 031110 �2006�.
24 O. Berman, Y. Lozovik, and D. Snoke, Phys. Status Solidi 3,

3373 �2006�.
25 E. L. Ivchenko, A. Y. Kaminski, and U. Rössler, Phys. Rev. B

54, 5852 �1996�.
26 S. Jorda, U. Rössler, and D. Broido, Phys. Rev. B 48, 1669

�1993�.
27 R. Seguin, A. Schliwa, S. Rodt, K. Potschke, U. W. Pohl, and D.

Bimberg, Physica E 32, 101 �2006�.
28 H. W. van Kesteren, E. C. Cosman, W. A. J. A. van der Poel, and

C. T. Foxon, Phys. Rev. B 41, 5283 �1990�.
29 K. Cho, Phys. Rev. B 14, 4463 �1976�.
30 L. Klopotowski, M. D. Martin, A. Amo, L. Viña, I. A. Shelykh,

M. M. Glazov, G. Malpuech, A. V. Kavokin, and R. André,
Solid State Commun. 139, 511 �2006�.

31 Z. Vörös, Ph.D. thesis, University of Pittsburgh, 2008.
32 E. Ivchenko and G. Pikus, Superlattices and Other Heterostruc-

tures, 2nd. ed. �Springer, Berlin, 1997�; E. L. Ivchenko, Optical
Spectroscopy of Semiconductor Nanostructures �Alpha Science
International, Oxford, UK 2005�, p. 258.

33 M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A.
Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N.
Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, Phys. Rev. B
65, 195315 �2002�.

34 S. Chuang, Physics of Optoelectronic Devices �Wiley, New York,
1995�, Appendices J and K.

35 R. I. Cottam and G. A. Saunders, J. Phys. C 6, 2105 �1973�.
36 P. Y. Yu and M. Cardona, Fundamentals of Semiconductors, 3rd

ed. �Springer, Berlin, 1996�, p. 119.
37 J. S. Blakemore, J. Appl. Phys. 53, R123 �1982�.
38 D. Snoke, Solid State Physics: Essential Concepts �Addison-

Wesley, San Francisco, 2009�.
39 E. Hanamura and H. Haug, Phys. Rep. 33, 209 �1977�.

BALILI et al. PHYSICAL REVIEW B 81, 125311 �2010�

125311-8


