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We present first-principles calculations of the impact ionization rate �IIR� in the GW approximation �GWA�
for semiconductors. The IIR is calculated from the quasiparticle �QP� width in the GWA, since it can be
identified as the decay rate of a QP into lower energy QP plus an independent electron-hole pair. The quasi-
particle self-consistent GW method was used to generate the noninteracting Hamiltonian the GWA requires as
input. Small empirical corrections were added so as to reproduce experimental band gaps. Our results are in
reasonable agreement with previous work, though we observe some discrepancy. In particular we find high IIR
at low energy in the narrow gap semiconductor InAs.
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I. INTRODUCTION

The electron-initiated impact ionization is a fundamental
process in semiconductors where a high energy electron de-
cays into an another low-energy electron together with an
electron-hole pair.1 The impact ionization rate �IIR�, which
originates from the coulomb interaction between electrons, is
a critical factor affecting transport under high-electric field,
as described by the Boltzmann transport equation �BTE�. It
is important in narrow gap semiconductors, especially for
ultrasmall devices. Impact ionization is also used in ava-
lanche photodiodes, and to supply electron-hole pairs for
electroluminescence. Recently it has stimulated interest as a
mechanism to improve efficiency in photovoltaic devices.2

The IIR has been calculated with empirical pseudopoten-
tials �EPPs� in order to include realistic energy bands.3–7

Sano and Yoshii calculated the IIR for Si �Refs. 4 and 5� and
obtained reasonable agreement with experimental data. They
also studied other materials,6 treating the transition matrix
element M as a parameter �constant matrix approximation�.
Jung et al.7 used an EPP to calculate the IIR in GaAs. They
calculated M including explicit calculation of the dielectric
function ��q ,��, rather than assuming a model form.

Recently, two groups have calculated the IIR using the
density-functional formalism to generate the one-body eigen-
functions and energy bands. Because the standard local den-
sity approximation �LDA� underestimates semiconductor
bandgaps while the IIR is very sensitive to this quantity, the
standard LDA is not suitable. Picozzi et al. used a screened-
exchange generalization8 of the LDA,9,10 and Kuligk et al.
employed the exact exchange11,12 formalism.13 Both groups
used model dielectric functions for the dynamically screened
coulomb interaction W�r ,r� ,��.

Here, we will present �nearly� ab initio calculations of the
IIR without model assumptions. First, our noninteracting
Hamiltonian H0 is generated within quasiparticle �QP� self-
consistent GW �QSGW� formalism. We have shown that
QSGW works very well for wide range of materials.14–18

Because the IIR is highly sensitive to the band gaps, we add
a small empirical scaling of the exchange-correlation poten-
tial so as to reproduce the experimental fundamental gap EG.

Corrections for semiconductors are small and systematic as
shown below. Second, W is calculated from the QSGW non-
interacting Hamiltonian. The IIR is identified with the decay
rate �or linewidth� of the QP, which is calculated from the
imaginary part of the self-energy, as we describe below. Our
method, thus, contains only one parameter, to correct the
band gap. As we have shown,19 this parameter is small and is
approximately independent of material. In principle our
method can predict the IIR in unknown systems, and also for
inhomogeneous systems such as grain boundaries, quantum
dots, or impurities, where the IIR should be strongly en-
hanced because momentum conservation is much more eas-
ily satisfied. Thus, the present ab initio method should be
superior to prior approaches. Applications to such systems
will be useful in devices that need to suppress or enhance
electron-hole pair-generation from impact ionization.

After a theoretical discussion, we present some results.
They are in reasonable agreement with previous calculations,
except for InAs where IIR is calculated to be much higher
than what Sano and Yoshii found.6

II. METHOD

The first step is to determine a good one-body Hamil-
tonian H0, which describes QPs. We obtain H0 from QSGW
calculations.14–16 As we explain in Sec. III, we follow Ref.
19, and modify H0 by a simple empirical scaling �� correc-
tion� to ensure the fundamental gap reproduces experiment.
From this modified H0, we obtain a set of eigenvalues ��kn�
and eigenfunctions ��kn�, which are used to calculate the
self-energy ��r ,r� ,�� within the GW approximation
�GWA�, �= iG�W. The inverse of the QP lifetime �kn

−1 is
obtained from the imaginary part of � as

�kn
−1 =

2Zkn

	
�Im �kn� , �1�

where Im �kn= ��kn�Im ���kn���kn�=�d3r�d3r��kn
� �r�

�Im ��r ,r� ,�kn��kn�r��. By Im ���kn� we mean the anti-
Hermitian part. Zkn is the wave function renormalization fac-
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tor to represent the QP weight. k denotes the wave vector in
the first Brillouin zone �BZ�, and n the band index. The
expression Eq. �1� for �kn

−1 is derived in Appendix B of Ref.
20. Im � is obtained from the imaginary part of the convo-
lution of G and W. For an unoccupied state kn, it is

Im �kn = −	 d3rd3r� 

k�n�

�kn
� �r��k�n��r��k�n�

� �r���kn�r��

� 
 Im W�r,r�,�kn − �k�n�� , �2�

where states k�n� are restricted to those for which �F
��k�n���kn. W is calculated in the random phase approxi-
mation �RPA� as

W = v + v�v = �1 − v�0�−1v , �3�

where v is the coulomb interaction; � is the full polarization
function in the RPA, and �0 is the non-interacting polariza-
tion function. With Eqs. �1�–�3�, �kn

−1 is calculated from H0 in
principle. In the Lehmann representation, � is

��r,r�,�� = 

m

�0�n̂�r��m��m�n̂�r���0�

� � 1

� − �m − i
−

1

� + �m + i
� , �4�

where �m� denotes the eigenstates �intermediate states� with
excitation energy �m relative to the ground state �0�. Here,
n̂�r� is the density operator.

In the RPA, �m� are the eigenfunctions of a two-body �one
electron and one hole� eigenvalue problem in the RPA. In
simple cases such as the homogeneous electron gas, �m� for
high �m are identified as plasmons; �m� for low �m are as
independent motions of an electron and a hole. Thus, �kn

−1 for
low-energy electrons calculated in GWA can be identified as
the transition probability to such states for the independent
motion of an electron and a hole together with an electron;
that is, we identify �kn

−1 as the IIR.
There are some questionable points for the identification.

It might be not so easy in some cases to identify a state �m�
as such a independent motion because the electron-hole pair
can be hybridized with plasmons. However, such hybridiza-
tion is sufficiently small for the simple semiconductors
treated here, because plasmons appear only at high energies
as �m�1 Ry. Another problem is that the final state consist-
ing of two electrons and one hole is not symmetrized for the
electrons in the GWA. Thus Fermi statistics are not satisfied.
Below we discuss how much error it causes.

Our formula Eq. �1�� for �kn
−1 is different from the custom-

ary expression found in the literature,3–7 e.g., see Eq. �1� in
Ref. 3. It is written as

�kn
−1 =

4


	


k�n�



k1n1



k2n2

�M�2 � ��kn − �k�n� − �k1n1
+ �k2n2

� ,

�5�

where �M�2= 1
2 ��MD�2+ �ME�2+ �MD−ME�2� includes both di-

rect and exchange processes. The sum over k� ,k1 ,k2 is re-
stricted to satisfy k=k�+k1−k2. The matrix element MD for
the direct process is

MD = �	 d3rd3r��kn�r��k�n�
� �r�

� W�r,r�,�kn − �k�n���k1n1

� �r���k2n2
�r��� . �6�

ME for the exchange process is the same as MD, except that
the two electrons in final states �k�n�↔k1n1� are exchanged.
Equation �5� can be derived in time-dependent perturbation
theory, where the final states consists of two electrons and
one hole. This is based on the physical picture that W causes
transitions between the Fock states made of QPs. However,
the final states made of the three QPs are interacting each
other. Thus such a picture do not necessarily well defined.
This is related to a fundamental problem about how to mimic
the quantum theory by the BTE. Definition of the IIR suit-
able for the BTE is somehow ambiguous. The difference
between Eqs. �1� and �5� is related to the ambiguity. One is
not necessarily better than the other.

To compare Eq. �1� with Eq. �5�, let us assume that Im �0
is small enough. Then we have

Im W � WR Im �0WR, �7�

from Eq. �3�, where WR= �1−v Re �0�−1v. Re �0 denotes the
Hermitian �real� part of �0. If we apply Eq. �7� to Eq. �2�, Eq.
�1� is reduced to an expression similar to Eq. �5�,

�kn
−1 �

4
Zkn

	


k�n�



k1n1



k2n2

�MD�2

� ��kn − �k�n� − �k1n1
+ �k2n2

� , �8�

where MD is defined in Eq. �6� but with WR instead of W.
Through Eq. �8� we can elucidate the differences between
Eqs. �1� and �5� as follows:

�a� Eq. �8� and thus Eq. �1�� contain the Z factor. This is
because Eq. �5� was derived without taking into account the
modification of QPs by the coulomb interaction. Typically
Zkn is �0.8.

�b� Eqs. �1� and �8� do not include ME contributions. In
the extreme case when ME= 1

2 MD, �M�2=0.75� �MD�2. This
occurs in the Hubbard model when W is a point interaction;
the Feynman diagrams for MD and ME become the same
except for their sign. Theoretically, including ME is advanta-
geous because it symmetrizes the two electrons in the final
state �though only for Im �0 in the linear response regime�.
Fermi statistics are not perfectly satisfied because not all the
exchange-pair diagrams are included. Omitting the exchange
contribution reduces the IIR by a factor 0.75 at most, as
explained above.

�c� Eq. �8� contains only the real part of W, in contrast to
Eq. �5�. The difference originates from higher order contri-
butions to Im �0. Moreover, when Eq. �7� is not satisfied
there are further higher-order contributions to Im �0.

We may have to pay attention to these differences. For
small Im �0, �a� and �b� predominate, and the difference be-
tween Eq. �1� and the Kane formula Eq. �5� should be a
factor in the range 0.5 to 1. However, this difference is rela-
tively minor on the log scale in the figure.
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III. RESULTS

Here, we treat Si, GaAs, InAs, zincblende ZnS, and
wurtzite GaN. For each material we calculate a self-
consistent noninteracting Hamiltonian H0 through the
QSGW formalism. Spin-orbit coupling is neglected, follow-
ing prior work.6,7 Table I shows calculated values at high-
symmetry points, compared with available experimental
data. As we and others have noted,15,16,22 the QSGW gap is
systematically overestimated because the RPA underesti-
mates the screening. �Also the GaAs calculation used a
smaller basis what was reported in,15 resulting in an addi-
tional overestimate of �0.05 eV.� The QSGW method is
one of the most reliable procedure to predict the QP eigen-
functions and eigenvalues, at least as reliable as other meth-
ods such as one-shot GW from LDA23 or exact exchange

�EXX�-LDA.13 To compare the QSGW results to experiment,
we must take into account other contributions: spin-orbit
coupling, zero-point motion,24 and finite temperature all re-
duce the gap slightly.25

To obtain the most reliable IIR, we slightly modify H0 to
reproduce the experimental gap at room temperature without
including these contributions explicitly. To do this, we add an
empirical scaling �“QSGW�” correction� following the pro-
cedure used in Ref. 19. This kind of correction is inevitable
even if we start from other first-principle methods when we
require 0.1 eV level of accuracy for the QP energies. We
scale the one-body Hamiltonian as follows:

H� = H0 + �1 − ����̃ − Vxc
LDA� , �9�

where �̃ is the static version of the self-energy see Eq. �10�
in Ref. 16�. Table I shows numerical values both with and
without the scaling. As we showed in Ref. 19, effective
masses are also well reproduced. Thus, we can set up a sat-
isfactory H� with a single parameter �. This procedure is
reasonable because the uncorrected gaps are already close to
experiment and 1−� is not large. The materials dependence
of � shown in Table I originates largely from the dependence
of SO coupling and finite temperature on material. If these
were taken into account by improving H0 explicitly, a uni-
versal choice of ��0.8 would reproduce the experimental
gaps in the Table to within �0.1 eV. �Alternatively, adopt-
ing the present procedure with a universal ��0.75 accom-
plishes much the same thing.� Table I shows that the experi-
mental energy dispersions are also well reproduced where
they are well known �Si and GaAs�. This systematic ten-
dency is found for many other materials, including ZnO,
Cu2O, NiO and MnO,14,16 and GdN.18 It implies that the
QSGW� procedure is broadly applicable with comparable
accuracy to many environments, e.g., to InAs/GaAs grain
boundaries. The QSGW� energy bands are shown in Fig. 1.

TABLE I. Eigenvalues of semiconductors relative to the valence
band maximum at �. The QSGW column depict results without
spin-orbit coupling; values in parentheses include spin-orbit cou-
pling. Column QSGW� shows values after scaling defined in Eq.
�9�. � is chosen so that the QSGW� potential �without spin-orbit
coupling� reproduces the experimental minimum band gap at room
temperature. See Eq. �9� and its explanations.

Si Expt.a QSGW
QSGW�
��=0.85�

�15c 3.34 3.45�3.41� 3.32

L6c 2.04 2.35 2.21

Eg 1.12 1.23�1.11� 1.12

�2�c 4.15 4.38 4.21

GaAs Expt.a QSGW
QSGW�
��=0.68�

�6c 1.42 1.93�1.81� 1.42

L6c 1.66 2.11 1.72

X6c 1.97 2.12 1.90

�7c 4.50 4.74 4.42

InAs EmpPPb QSGW
QSGW�
��=0.65�

�6c 0.37 0.79�0.68� 0.38

L6c 1.53 1.86 1.51

X6c 2.28 2.10 1.90

�7c 4.39 4.84 4.51

ZnS Expt.a QSGW
QSGW�
��=0.83�

�6c 3.68 4.04�4.01� 3.68

L6c 5.45 5.05

X6c 5.05 4.74

�7c 8.67 8.26

aExperimental data at room temperature, taken from Ref. 21.
bEmpirical pseudopotential data are taken from Ref. 21. The experi-
mental direct gap is �0.4 eV.

FIG. 1. Energy bands calculated by the QSGW� method Eq.
�9��, with � chosen to reproduce the experimental band gap EG. In
wurtzite GaN, EG=3.44 eV �Ref. 21� and �=0.79. Data for other
compounds can be found in Table I.
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Given H�, we perform a one-shot GWA calculation using
the method detailed in Ref. 16, and calculate �kn

−1 from Eq.
�1�. To reduce the computational time we truncate the prod-
uct basis for each atomic site to l�1. This limits the degrees
of freedom for the local-field correction in the dielectric
function. However, we checked that this little affects the re-
sults. To obtain Zkn in Eq. �1�, we need to calculate the
derivative of the self-energy � Re ����

�� at �kn, though Z con-
tributes a relatively unimportant factor �0.8. The main com-
putational cost of the IIR calculation comes from the sum of
the pole weights on the real axis; see Eq. �58� in Ref. 16.
This corresponds to the convolution of Im G and Im W, Eq.
�2�, after Im W is obtained from integration by the tetrahe-
dron method.16 This allows us to calculate accurate dielectric

functions with less number of k points in comparison with
simple sampling methods.

Figure 2 shows our results for �kn
−1. The x axis denotes the

initial electron energy �in measured from the bottom of the
conduction band; �in�EG is a hard threshold below which
IIR is zero. The present results, depicted by large plus signs,
are superposed on results taken from previous works. For
these calculations, we used 500 k points in the 1st Brillouin
zone for GaN, and 12�12�12=1728 k points for others
with cubic structures �regular mesh including the � point16�.
Owing to the limited number of k points, there are some
numerical errors; based on our convergence tests by compar-
ing these results with calculations with less number of k
points, we estimate that errors can be a factor of two or so for
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FIG. 2. �Color online� Impact ionization rates �kn
−1 as a function of the initial electron energy �in �measured from the bottom of conduction

band�. The present GWA calculation is shown by large �red� plus signs. It is superposed on previous calculations: Si and InAs from Sano and
Yoshii �Ref. 6�, GaAs from Jung et al. �Ref. 7�, ZnS and GaN from Kuligk et al. �Ref. 13�. Open boxes in the ZnS and GaN data are screened
exchange results from Picozzi et al. �Ref. 10�; solid circles are exact exchange results �Ref. 13�. We used 500 k points in the 1st Brillouin
zone for GaN, and 1728 points for the cubic compounds regular mesh including the � point �Ref. 16��.
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the IIR when they are less than �1010 s−1 �the IIR are con-
verged better for the larger IIR�. Such errors may sound too
large, however, it is not so serious when it is plotted on Fig.
2; note the log scale in y axis. Furthermore, note that the low
IIR at low �in are very sensitive to changes of �in. Changes of
�in by �0.1 eV can easily change the IIR so much, though
�0.1 eV accuracy of the QP energies is more or less what
we expect in our QSGW methods. Thus we think it is not so
meaningful to persuade further convergence. In either way,
these errors are not large enough to affect our conclusions
shown in this paper.

The IIR has a typical feature as already shown in Fig. 1 in
Ref. 5, that is, the IIR as function of �in are widely scattered
at low �in because of the limited number of transitions that
conserve energy and momentum. The scatter diminishes at
high energy because of an averaging effect which smears the
anisotropy in the Brillouin zone as discussed in.5 Our results
for Si and GaAs correspond rather well to previous works.
Details for the IIR are already well analyzed.4–7,9,10,13

Turning to ZnS and GaN, we superpose our results on
those presented by Kuligk et al. in Figs. 9 and 10 of Ref. 13,
which include EXX �solid symbols� and screened exchange
results from Ref. 10 �open symbols�. The EPP and the
present calculations appear mostly similar apart from an ap-
proximately constant factor; however the EXX results show
rather different behavior, particularly in GaN. This is likely
because the EPP and QSGW� energy bands are quite similar
to each other, but they are quite different from the EXX case
�see Figs. 2 and 3 in Ref. 13�.

A large discrepancy with EPP is seen only in InAs. Our
data is superposed on the calculations by Sano and Yoshii.6

We obtain high IIR at low-initial electron energies �in
�1 eV. Such high IIR comes from initial electrons near the
conduction band minimum at the � point. Since the band gap
and effective mass are small in InAs, there are states not far
from � with energy �in�EG, which can generate an electron-
hole pair. This occurs only for InAs in the cases studied, but
generally occurs for narrow gap semiconductors. For the dis-
crepancy with results of Sano and Yoshii may be due to their
constant matrix elements approximation, which is not suit-
able for such a narrow gap material see Ref. 6 near Eq. �2��.

In conclusion, we have calculated the IIR for several ma-
terials in the GWA, after a theoretical discussion of its appli-
cation to the IIR. In principle, the method presented here will
be applicable even to inhomogeneous systems such grain
boundaries and quantum dots where we expect very strong
IIR. The present calculations correspond reasonably well to
prior work, with the exception of the narrow gap material
InAs. High IIR would be expected universally in similar nar-
row gap materials such as GaSb, InSb, and InN. This indi-
cates that careful consideration for the IIR might be required
when we use such materials for devices.
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