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Previous attempts to accurately compute critical exponents from Wilson’s momentum shell renormalization
prescription suffered from the difficulties posed by the presence of an infinite number of irrelevant couplings.
Taking the example of the one-dimensional long-ranged Ising model, we calculate the momentum shell renor-
malization flow in the plane spanned by the coupling constants �u0 ,r0� for different values of the momentum
shell thickness parameter b by simulation using our recently developed Fourier Monte Carlo algorithm. We
report strong anomalies in the b dependence of the fixed-point couplings and the resulting exponents y� and �

in the vicinity of a shell parameter b��1 characterizing a thin but finite momentum shell. Evaluation of the
exponents for this value of b yields a dramatic improvement of their numerical accuracy, indicating a strong
damping of the influence of irrelevant couplings for b=b�.
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I. INTRODUCTION

In a recent paper1 we have presented a simulation method
that in principle allows to calculate the renormalization-
group �RG� flow and its fixed points �FPs� in the space K of
coupling constants K= �K0 ,K1 ,K2 , . . .� for Wilson’s momen-
tum shell �MS� RG scheme.2,3 These as well as the present
simulations are based on our recently developed Fourier
Monte Carlo �FMC� algorithm �see Refs. 4 and 5 and below
for details� of the classical long-range �4 model6 with di-
mensionless Hamiltonian �we assume ��0 to ensure exis-
tence of the thermodynamic limit�

H�s� =
1

2
� ddx� ddy

s�x�s�y�
�x − y�d+� +� ddx� r0

2
s2�x� +

u0

4
s4�x�� ,

�1�

whose critical behavior was first analyzed in Ref. 6. As we
also discuss in more detail below, the accompanying critical
exponents can be calculated from the eigenvalues of linear-
ized RG transformations which are fitted to the actual RG
flow patterns which we determine from a large number of
FMC simulations. It is the nonperturbative nature of such a
simulation-based approach that makes it particularly interest-
ing, as the method in principle allows, e.g., to explore global
features of the RG flow.

In the above context, the model defined by Eq. �1� is
particularly convenient for two reasons. On the one hand, for
noninteger � the dispersion term k� is nonanalytic and there-
fore left invariant under the RG as a result of the general
analytic nature of single RG transformations. The exponent
� is thus found to obey �=2−� to all orders of perturbation
theory6 and we arrive at the fact that here the RG field res-
caling factor z�b�=b�d+��/2 is known exactly. On the other
hand, the model’s upper critical dimension dc���=2� mani-
festly depends on �. Thus, defining �	dc���−d=2�−d, it is
possible to reinterpret the � expansion as an expansion in the
small parameter � at variable � and fixed integer dimension
d. Moreover, for this model we are in the fortunate situation
that both analytical results to order O��2� as well as state-of-
the-art numerical simulations using cluster algorithms in
combination with finite-size scaling are available for

comparison.7 As was shown in Ref. 8, for d�1 and ��2
−�SR, the model exhibits a crossover to standard Ising criti-
cal behavior, where �SR denotes the value of the critical ex-
ponent � corresponding the Ising universality class. We thus
concentrate on the parameter range d /2���2−�SR, for
which a nontrivial FP K� was first predicted in Ref. 6.

We now come to the central issue of the present paper. In
Ref. 1 we observed that the obtained numerical values for the
only relevant critical exponent y1	y�=1 /	 and the leading
irrelevant Wegner correction exponent y2	−� were only of
an accuracy comparable to those of a analytic O��� calcula-
tion. This unpleasant fact is, however, not specific to our
method but represents a central problem one must overcome
in any attempt to extract accurate numerical information
from Wilson’s MS prescription. In fact, to design a feasible
calculation we had to project the full RG flow around the
nontrivial FP K� of Wilson-Fisher type from the infinite-
dimensional space K onto the two-dimensional plane
spanned by the variables �u0 ,r0�. In an �-expansion analysis,
the corresponding fixed-point values �u0

� ,r0
�� both turn out to

be of order O��� while all other components of the true
infinite-dimensional FP K� are of order O��2�. This behavior
is, of course, due to the fact that r0 and u0 actually corre-
spond to the projection of the actual relevant and the least
irrelevant direction in the infinite-dimensional coupling
space K. In the same way, the fixed-point values r0

� and u0
�

also correspond to the projection of the “true” fixed point
K�= �r0

� ,u0
� , . . .��K onto this subplane. Unfortunately, how-

ever, attempts to enlarge the dimensionality of this subspace
by inclusion of further irrelevant couplings generally result
in prohibitively complicated calculation schemes. In fact,
also analytically it was just the difficulty posed by control-
ling the influence of irrelevant couplings that historically led
to the abandonment of the momentum shell RG for higher
order calculations in favor of field-theoretic perturbation
theory. In the present work we propose a solution to this
intrinsic problem of Wilson’s scheme.

Recall that a general RG transformation consists of three
steps, namely, �1� coarse graining, �2� rescaling of lengths/
momenta, and �3� renormalization of field variable�s�. This
procedure defines a mapping R�· ,b� :K→K, where b mea-
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sures the “shell thickness” for RG transformations defined
for a momentum shell 
 /b� �k��
 at fixed cutoff 
 in
wave-vector space. Nontrivial critical behavior is connected
to those fixed points R�K� ,b�	K� of R�· ,b� that exhibit an
infinite correlation length ��K��=�. In the absence of so-
called Griffiths-Pearce singularities9 �which is usually
granted at least in a neighborhood of K� �Ref. 10�� R�· ,b�
can be linearized near K�, leading to the matrix equation

Ki� = 

j

Mij�K��K j + O�K2� , �2�

where K=K−K� and the eigenvalues of the matrix
Mij�K��=�

�Ri�K,b�
�Kj

�K=K� which are expressed by a set of expo-
nents yi as

�i 	 byi �3�

are related to the physical critical exponents. These eigenval-
ues are termed relevant, irrelevant, and marginal if yi�0,
yi�0, and yi=0, respectively.

In analyzing and comparing results of calculations based
on different RG schemes, it is necessary to distinguish be-
tween nonuniversal quantities �e.g., the location of the FP
K�� and universal ones like the values of the critical expo-
nents and amplitude ratios. Quite trivially, nonuniversal
quantities may strongly depend on a large number of addi-
tional features of a system under investigation that reflect its
microscopic details but are irrelevant for its universal long-
distance behavior. Specifically, the type of underlying lattice
or the exact value and geometry of the chosen cutoff 
 are
usually free at our disposal in designing a convenient com-
putational or analytic approach aimed at computing critical
quantities. For instance, in a real-space RG calculation10 any
particular choice of an underlying lattice structure limits the
possible values of b to a discrete set. Nevertheless, in an
ideal “exact” calculation any such choice of b should cancel
from the results obtained for universal quantities, since, after
all, the RG is just a mathematical device that allows a certain
bookkeeping of the physics at different length scales. For
instance, in their seminal review3 Wilson and Kogut found it
convenient to choose b=2 for illustrating structural aspects
of the momentum shell RG. In contrast, the exact location of
the fixed point K� may strongly depend on the chosen
scheme. Different RG schemes may thus exhibit different
fixed points. Yet, these fixed points should be located on the
same critical manifold of the corresponding universality
class, as the divergence of the correlation length is—of
course—not related to any choice of RG scheme.

In principle, as long as we aim for an ideal �analytical�
calculation, we are thus free to work with any convenient
choice of b�1. In this respect, the advantages of choosing
b	1+� ,��1, infinitesimally close to 1 are manifold, as
this allows to replace discrete recursion relations by differ-
ential equations. Quite generally, following Ref. 11, if we
define the Gell-Mann-Low functions �i�K�ª−�Ri�K ;1
+�� /�� ��=0, a FP K� is determined by the simultaneous van-
ishing of all �i�K��	0, i=1,2 , . . ., and the exponents yi di-
rectly arise as the eigenvalues of the matrix Bij�K�
=−��i�K� /�Kj �K=K� without any reference to the physically

irrelevant auxiliary quantity b=1+�. Technically, the deter-
mination of most low-order contributions involving loop in-
tegrals in perturbative momentum shell RG calculations sim-
plifies dramatically, as, e.g., �
/�1+���k�


ddk
�2��d

1
�k2+r0�n

=
�̂d
d

�
2+r0�n ·�+O��2�, where �̂d=
�d

�2��d and �d denotes the sur-
face of the unit sphere in d dimensions. On a deeper level,
the simplifications arising from such a choice of b allow to
formulate the momentum shell RG completely in terms of an
�alas complicated� exact RG differential equation,12 exact
meaning that in principle irrelevant couplings are fully taken
into account. However, a discussion of the subsequent devel-
opments, which led to the at present most advanced formu-
lation of the RG �see, e.g., Ref. 13 and references therein�
will not be attempted here, for the simple reason that our
simulations must necessarily be carried out at finite shell
thickness.

However, in an actual �analytic or computer-based� com-
putation, truncations and approximations are unavoidable,
and thus one can anticipate that in practical calculations the
exact invariance with respect to the choice of b be will be
broken. And indeed, contrary to the strategy of Wegner and
Houghton,12 in Ref. 14 Aharony undertook RG calculations
to order O��2� using a large b factor. The corresponding
claim that the choice b�1 would serve to suppress the un-
wanted influence of irrelevant couplings discussed above
was subsequently worked out by Bruce et al.15 perturbatively
to second order but did not lead to a widespread calculation
scheme due to the difficulties posed by determining higher
order loop integrals for finite shell thickness. Using FMC
simulations, however, it becomes possible to study the case
of arbitrary b nonperturbatively, as we now show.

II. SIMULATIONS

As opposed to analytical arguments, computer simulations
are necessarily confined to finite systems. Using a simple-
cubic lattice of Ld sites with periodic boundary conditions
and lattice constant a=1, neighboring k-vector components
must at least differ by 2� /L, such that both the limit b→1 as
well as the limit b→� are unreachable for finite L. Thus the
question arises naturally how the quality of the results ob-
tained using a particular approximation scheme might be in-
fluenced by the concrete choice of b. Of course, from the
computational point of view, finding a b� value close to one
in accordance with Ref. 12 would be definitely more attrac-
tive than the opposite case b��1 predicted in Ref. 15, as
FMC simulations using thin momentum shells involve only a
small number of nonzero modes �see below�. In trying to find
out whether the choice of a large or small b value for the
simulations will also improve their numerical quality, our
strategy is thus to calculate RG flows and the accompanying
critical exponents for a wide range of different values of b.
As the emphasis is on covering a possibly large range of b
values while at the same time minimizing finite-size effects,
the present simulations were carried out for one-dimensional
systems. For d=1 the � values which qualify for exhibiting a
Wilson-Fisher-type FP are confined to 1 /2���1 since
�SR=1.7 The case d=1 is also special insofar as there is no
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phase transition in the short-range Ising model for ��1 and
the crossover to short-range critical behavior observed for
�=2−�SR in d�1 is replaced by a Kosterlitz-Thouless type
of transition at �=1.16

The present simulations are based on our FMC algorithm
which was introduced in Ref. 4 to study coarse-grained free
energies. While we refer to Refs. 4 and 5 for full details of
the algorithm, here it suffices to say that its central idea is to
use the real and imaginary parts of the Fourier amplitudes of
the underlying spin field configurations as the basic MC vari-
ables. The algorithm is thus advantageous in simulations
where only modes corresponding to k vectors from certain
subspaces of the Brillouin zone are allowed to fluctuate
while all other modes are kept fixed to zero. In particular, as
explained in Refs. 1 and 4, this is the case for the coarse-
graining step of our reproduction of Wilson’s RG scheme.
Starting from parameter values �u0 ,r0�, the coarse-graining
step is performed by averaging out all “fast” fluctuations s̃�k�
for Fourier amplitudes with wave vectors 
 /b� �k��
,
leading to an effective potential for the fluctuating homog-
enous amplitude s̃�0� which is proportional to the “bare”
magnetization of the coarse-grained system. The fast modes
s̃�k� thus act like a “heat bath” for s̃�0� while all other modes
with wave vectors 0� �k��
 /b are kept zero during the
simulation run. The resulting effective potential for s̃�0� is
fitted to a potential of the �4 type. Altogether, this procedure
yields a mapping1

�u0,r0� � �ũ0, r̃0� �4�

of the original onto coarse-grained parameters �ũ0 , r̃0�. To
account for the rescaling step in Wilson’s scheme necessary
to restore the original momentum scale 
, these parameters
are rescaled to give

�u0�,r0�� = �b−3dz4�b�ũ0,b−dz2�b�r̃0� . �5�

As mentioned above, it was shown in Ref. 6 that a fixed
point of Wilson-Fisher type emerges for the choice z�b�
=b�d+��/2 of the field rescaling factor z�b�. In d=1 the recur-
sion relations �Eq. �5�� then reduce to

�u0�,r0�� 	 RFMC��u0,r0�,b� = �b2�−1ũ0,b�r̃0� . �6�

Specifically, we considered the parameter values �=0.65,
0.75, and 0.85. In full similarity to the procedure used in Ref.
1, 30�30 initial parameter points �u0 ,r0� were used to de-
termine each RG flow pattern and we chose to average the
resulting flow diagram over six independent runs for im-
proved statistics. After roughly locating the fixed point
�u0

�� ,r0
���	�u0

� ,r0
��, we applied a two-dimensional version of

Eq. �2� to the simulated flow pattern, fitting it with a linear-
ized ansatz

�u0�

r0�
 = �u0

�

r0
�  + �Muu Mur

Mru Mrr
�u0 − u0

�

r0 − r0
�  �7�

in a neighborhood of �8% around this point in which the
matrix entries Mij as well as the exact fixed-point values
�u0

� ,r0
�� are treated as fit parameters.

For determining the b regime 0�1 /b�1 we used a one-
dimensional lattice with L=N=8192 sites while a smaller

lattice with L=N=1024 was taken to explore the computa-
tionally much more expensive regime 0�1 /b�1. Both
types of simulations were performed at a fixed cutoff 

=� /4 in the respective underlying one-dimensional Brillouin
zones. In terms of the parametrization k= 2�

L m, m=−L /2
+1, . . . ,L /2, this corresponds to the upper limit �m�� l with a
cutoff parameter l=1024 and 128, respectively. The allowed
k values inside a momentum shell 
 /b� �k��
 are then
parametrized by m values in the range lminª l /b� �m�� l.
The allowed b values are thus given by b= l / lmin, where 0
� lmin� l.

As shown in Fig. 1 representatively for �=0.75, for all
considered values of � we observe a pronounced anomaly in
the location of the FP values u0

� ,r0
� as functions of lmin �cf.

Fig. 1�. Tentatively denoting the corresponding “critical” val-
ues of lmin and b that simultaneously maximize both u0

� and
−r0

� by l� and b�= l / l�, respectively, l� is observed to be in-
deed quite close to but markedly smaller than l−1, which
trivially would be the first possible lmin value below l. Adopt-
ing the point of view of Ref. 12, one would be tempted to
interpret the opening of such a finite gap between l and l� as
a finite-size effect. Indeed, l� is observed to systematically
shift to even smaller values for decreasing � �cf. Table I�,
which would fit with this interpretation, as finite-size effects
should of course develop stronger with increasing interaction
range. However, a closer investigation for smaller system
sizes reveals that, on the contrary, a critical value b��1
ceases to exist for small system sizes while beyond a certain
limiting system size, which is found to depend on �, b�

asymptotically tends to a limiting value with growing L, as
can be deduced from the simulation data shown in Fig. 2. In
summary, the existence of a gap between the critical value b�
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FIG. 1. b-dependent location of fixed points �u0
� ,r0

�� at �=0.75.
Insets: locations of u0

� and r0
� as functions of lmin.

TABLE I. l� and b�= l / l� as determined from our simulations for
system size L=8192 and cutoff parameter l=1024.

� l� b�

0.65 997 1.02708

0.75 1010 1.01386

0.85 1015 1.00887
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and 1 is clearly not a finite-size effect.
From the fitted matrix elements Mij it is straightforward

to compute the only relevant eigenvalue ��=by� �1 and the
least irrelevant eigenvalue ��=b−��1, and thus the expo-
nents y� and �. The resulting behavior of the obtained values
of these exponents, which is summarized in Table II and Fig.
3, is also quite interesting. For all values of � they are found
to strongly depend on the chosen value of lmin, with pro-
nounced anomalies around the respective values of l�. In
detail, y�=y��lmin� shows a minimum near b� and the value of
y�

�
ªy��l�� is observed to be located somewhat near the lower

bounds but still in good agreement with the results of Ref. 7.
On the other hand, the exponent �=��lmin� has a sharp
anomaly in the vicinity of l�, rising from an almost constant
value to a value markedly above the corresponding O��� pre-
diction. Interestingly, in doing so it is observed to pass
through the values ��

ª��l��, which is again in good agree-
ment with the corresponding results of Ref. 7 for the expo-
nent �. We also observe strong variations in the components
of the two eigenvectors of the 2�2-matrix Mij�u0

��l� ,r0
��l��

accompanying the exponents y��l� and ��l� as functions of l
around l�.

For the opposite limit of large b�1 we report that within
the system sizes and parameter regions accessible to our
present simulations we were unable to observe a similar be-
havior. Indeed, contrary to our prior expectations, which
were based on the calculations of Ref. 15, the value of y� was
even found to monotonically increase beyond the O��� result
with decreasing 1 /b�1, with no definite sign of any onset of
an opposite trend. Likewise, we found no anomalies in the
corresponding fixed-point values u0

� and r0
�. However, this

does not necessarily imply a contradiction to the results of
Ref. 15, as these were derived for case of a short-ranged
standard Landau-Ginzburg model and confined to second-
order perturbation theory. In contrast, the approximation
made in our present simulations, namely, the projection to
the �u0 ,r0� plane, is of a related but nevertheless somewhat
different nature.
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FIG. 2. L dependence of b� for system sizes L=2560 �filled
circle�, 4096 �open square�, 6144 �filled diamond�, and 8192 �open
triangle� at �=0.75. A fit with the heuristic function 1 /b��L�
=1 /b����+c /L, which is indicated by the dotted line, gives excel-
lent agreement and thus indicates a saturation of 1 /b��L� at a lim-
iting value 1 /b�����0.9843, clearly demonstrating that b����
=1.01587 is larger than 1 in the thermodynamic limit. Insets: loca-
tions of u0

� and r0
� as functions of 1 /b for the same system sizes at

�=0.75. For sizes L=1024 and smaller no extrema of u0
� and r0

� as
functions of b can be found owing to the comparatively large spac-
ing 2� /L of the underlying discrete Brillouin zone.

TABLE II. Comparison of numerical values for exponents y� ,� as obtained from analytical first- and
second-order � expansion calculations and the simulations of Ref. 7 to the values obtained from the present
simulations at the critical b-value b�.

�

y� �

O��� O��2� Ref. 7 y�
� O��� O��2� Ref. 7 ��

0.65 0.55 0.505113 0.503�10� 0.5021�48� 0.3 0.270075 0.20�4� 0.2032�66�
0.75 0.583333 0.47653 0.469�15� 0.475�2� 0.5 0.428798 0.24�5� 0.206�1�
0.85 0.616667 0.434522 0.413�14� 0.400�2� 0.7 0.578571 0.26�5� 0.402�1�
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FIG. 3. lmin dependence of exponents y� and � �full lines� as
obtained from our simulations compared to results from O��� �dot-
ted lies�, O��2� �dashed lines�, and simulation results of Ref. 7 �gray
areas including error bars as published in Ref. 7�.
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III. DISCUSSION

From the point of view of the abstract RG theory, the
observed b-dependent anomalies described above may be re-
garded as extremely unusual, to say the least. On one hand,
they are in conflict with one of the key properties of the
renormalization group, namely, the semigroup property

R�· ,b1� � R�· ,b2� = R�· ,b1 · b2� = R�· ,b2� � R�· ,b1� , �8�

which implies that the fixed point K��b� of a RG transforma-
tion R�· ,b� should actually be b independent. Moreover, in
contrast to what follows from this relation, the observed
strong anomalies in the components of the eigenvectors of
Mij�K��b�� around b� imply that Mij�K��b1�� and
Mij�K��b2�� �and thus the operations RFMC�· ,b1� and
RFMC�· ,b2�� do not commute. Equally disturbing, as is obvi-
ous from Fig. 1, the above b-dependent fixed points show a
kind of “hysteresis loop,” contradicting our expectation that
they should correspond to critical systems and consequently
their locations should collapse onto a single critical line.

To understand this seemingly paradoxical behavior, let us
go back to the very definition of the mapping
�u0 ,r0��RFMC��u0 ,r0� ,b� through steps �4� and �6�. In fact,
integrating out fluctuations between scales 
 and 
 /b1, it is
well known that one not only reproduces �4 type of cou-
plings but in principle may generate all other possible cou-
pling types compatible with the given symmetry �i.e., sixth-
and higher-order polynomial terms and higher-order disper-
sion terms� with certain nonzero prefactors �cf. Ref. 4�. Our
original justification for ignoring these terms was that in the
sense of the RG they correspond to projections of irrelevant
directions in K. Indeed, fitting the resulting potential to a
fourth-order polynomial actually amounts to projecting out
these additional terms. With the coarse graining thus com-
pleted, we could move on to rescale the resulting coefficients
�ũ0 , r̃0� according to Eq. �6� to obtain �u0� ,r0��. However, for
the sake of the argument, let us postpone this step and in-
stead perform a second coarse-graining step
�ũ0 , r̃0�� �ũ0

˜ , r̃0
˜� by now integrating out all modes between


 /b1 and 
 / �b1 ·b2� for parameters �ũ0 , r̃0�. Due to the in-
termediate discard of all generated higher irrelevant cou-
plings as described, it is then perfectly clear that the result of
this procedure is not equivalent to integrating out all modes
between 
 and 
 / �b1 ·b2� in a single step, where then irrel-
evant terms generated on the way from 
 / �b1 ·b2� to 
 are
automatically fully taken into account. It is this simple fact
which is the reason for the violation of the semigroup prop-
erty �Eq. �8��.

The inevitable conclusion is that the operation RFMC�· ,b�
does not resemble a meaningful RG transformation for arbi-
trary b due to the unavoidable implicit influence of higher

irrelevant couplings. It goes without saying that this fact also
explains all other “paradoxical” observations we encountered
for transformations at b�b�. Nevertheless, for varying b our
results strongly suggest that around b=b� the influence of
irrelevant terms seems to be minimized, as the location
�u0

��b� ,r0
��b�� of the fixed point shows a stationary behavior

around b� and the exponents y��b� and ��b�� are found to
approach their true values at b=b�. In other words, our simu-
lations indicate that only the transformation RFMC�· ,b��
qualifies as a true RG transformation. Thus we propose to
define

R��u0,r0�,�b��n� ª �RFMC��u0,r0�,b���n, n � N �9�

for all integer powers of b�, regarding RFMC��u0 ,r0� ,b�� as
our “basic” RG transformation. Moreover, since in our simu-
lations b� was observed to be close to 1 for the considered
parameters, it is possible to even extend R��u0 ,r0� ,b�
ªR��u0 ,r0� , �b��ln b/ln b�

� to arbitrary b�1 by interpolation.
In a forthcoming paper we intend to explore the exciting
possibility of extrapolating the transformation to the limiting
case b→1 and thus to study infinitesimal RG transforma-
tions by numerically calculating the Gell-Mann-Low func-
tions �u�u0 ,r0� and �r�u0 ,r0�.11

In conclusion, our present investigation reveals that our
original simulations of Wilson’s method,1 which had allowed
to obtain a qualitative picture of the momentum RG flow in
the �u0 ,r0� plane but had merely produced numerical results
for the values of the critical exponents of order O���, is
found to numerically represent a fairly accurate but still ef-
ficient algorithm for computing critical exponents once it is
combined with an analysis of the b dependence of the dis-
cussed type. In fact, for the model investigated our results
indicate that Wilson’s scheme is “optimized” for a b-value b�

quite close to 1, which is highly welcome, as it implies that
only a small fraction of all modes s̃�k� enter in calculating
the basic RG transformation RFMC�· ,b��, which makes for a
computationally cheap algorithm at large system sizes.

Of course, to which extent our observations remain valid
for other models and dimensions remains yet to be tested. To
complete the picture, we intend to investigate the case d
�1 and possible applications to short-ranged models. The
critical behavior of tethered or hexatic elastic membranes
constitutes another highly interesting test ground for our
approach.17
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