
General class of metamaterial transformation slabs

Ilaria Gallina,1 Giuseppe Castaldi,1 Vincenzo Galdi,1 Andrea Alù,2 and Nader Engheta3

1Waves Group, Department of Engineering, University of Sannio, I-82100 Benevento, Italy
2Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, USA

3Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
�Received 19 November 2009; revised manuscript received 8 February 2010; published 25 March 2010�

In this paper, we apply transformation-based optics to the derivation of a general class of transparent
metamaterial slabs. By means of analytical and numerical full-wave studies, we explore their image-
displacement/formation capabilities, and establish intriguing connections with configurations already known in
the literature. Starting from these revisitations, we develop a number of nontrivial extensions, and illustrate
their possible applications to the design of perfect radomes, anticloaking devices, and focusing devices based
on double-positive �possibly nonmagnetic� media. These designs show that such anomalous features may be
achieved without necessarily relying on negative-index or strongly resonant metamaterials, suggesting more
practical venues for the realization of these devices.
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I. INTRODUCTION

First envisaged in the 1960s within the framework of
electromagnetic �EM� wave propagation in curved space-
time or curved-coordinate systems �see, e.g., Refs. 1 and 2�,
“transformation optics” �TO� �Refs. 3–7� �also referred to as
“transformation EM”� has only recently become a techno-
logically viable approach to EM-field manipulation, thanks
to the formidable advances in the synthesis of “metamateri-
als” with precisely controllable anisotropy and spatial-
inhomogeneity properties �see, e.g., Ref. 8�.

In essence, TO relies on the formal invariance of Maxwell
equations under coordinate transformations, which enables
the design of the desired field behavior in a curved-
coordinate fictitious space, and its subsequent translation in a
flat-metric physical space filled up by a suitable �anisotropic,
spatially inhomogeneous� “transformation medium,” which
embeds the coordinate-transformation effects. As a sparse
sample of the available application examples, besides the
celebrated invisibility “cloaking” �see, e.g., Refs. 8 and 9�,
we recall here those pertaining to super/hyperlensing,10–12

field concentrators13 and rotators,14 conformal sources,15

beam shifters and splitters,16,17 retroreflectors,18,19 as well as
the broad framework of “illusion optics”20 �see also Ref. 21,
and references therein, for a collection of recent applica-
tions�.

In this paper, we focus on a general class of TO-inspired
metamaterial slabs �henceforth, simply referred to as “trans-
formation slabs”�. Propagation of EM waves in slab-type
configurations is a subject of longstanding interest, which
has recently received renewed attention in view of the new
perspectives and degrees of freedom endowed by metamate-
rials. In particular, low-refractive-index slabs have been ex-
plored in connection with ultrarefraction phenomena, with
potential applications to directive emission,22 enhanced
transmission through subwavelength apertures,23 and phase-
pattern tailoring.24 Double-negative �DNG� slabs have at-
tracted a great deal of attention, especially in connection
with superlensing25 and phase-compensation26 effects. Su-
perlensing effects have also been predicted in metamaterial

slabs featuring extreme effective parameters,27–29 whereas
anomalous tunneling and transparency phenomena have been
studied in connection with single-negative �SNG� bilayers
made of epsilon-negative �ENG� and mu-negative �MNG�
media.30 Some of the above effects, attributable to anoma-
lous interactions occurring in DNG/double-positive �DPS� or
ENG/MNG paired configurations, have also been interpreted
within the broader context of “complementary” media.31

Within this framework, TO has been shown to provide
insightful alternative interpretations and to enable for non-
trivial extensions �see, e.g., Refs. 10 and 32–34 for a sparse
sampling�. For instance, lensing configurations have been in-
terpreted in terms of coordinate folding,10 and have been
extended so as to deal with the presence of passive or
active objects.34 More in general, there has been considerable
recent interest in the study of transparency/reflection
conditions35–37 in scenarios involving transformation media.

Against this background, in this paper, we introduce and
explore a general class of two-dimensional �2D� coordinate
transformations capable of yielding transparent metamaterial
slabs potentially useful for image displacement and recon-
struction.

First, we show that the proposed class of transformation
slabs includes as particular cases several conventional con-
figurations already known in the literature. Next, we focus on
a series of nontrivial extensions, with possible applications to
radome, cloaking/anticloaking, and focusing scenarios,
which naturally emerge from the proposed approach. Our
results provide further confirmation of the broad breadth of
TO and its intriguing potentials as a general unifying ap-
proach to metamaterial functionalization. Our interest is es-
pecially focused in proposing designs that may not require
negative constitutive parameters, but that exploit the inherent
anisotropy of the transformation slabs to achieve anomalous
wave interaction within the DPS regime of operation. This
may be particularly attractive to simplify the realization of
these devices and to possibly relax some bandwidth limita-
tions typical of SNG and DNG metamaterials.

Accordingly, the rest of the paper is laid out as follows. In
Sec. II, we outline the problem geometry and its formulation.
In Sec. III, we illustrate the general analytical solution and
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some details about the computational tools utilized. In Sec.
IV, we focus on particular reductions corresponding to con-
figurations already known in the literature. In Sec. V, starting
from these configurations, we present a number of nontrivial
extensions, with applications to perfect radomes, cloaking/
anticloaking, and focusing scenarios. Finally, in Sec. VI, we
provide some brief conclusions together with hints for future
research.

II. PROBLEM GEOMETRY AND FORMULATION

Referring to the geometry in Fig. 1, we consider a 2D
coordinate transformation between a fictitious �vacuum�
space �x� ,y� ,z�� and the slab region �x��d �embedded in
vacuum� in the actual physical space �x ,y ,z�,

x� = au�x� ,

y� =
y

u̇�x�
+ v�x� ,

z� = z , �1�

where a is a real scaling parameter and u�x� and v�x� are
arbitrary continuous real functions. In Eq. �1� and hence-
forth, an overdot denotes differentiation with respect to the
argument. We assume that the derivative u̇�x� is continuous
and nonvanishing within the slab region, so that the coordi-
nate transformation in Eq. �1� is likewise continuous. More-
over, for reasons that will become clearer hereafter, we also
assume that

u̇��d� = 1, �2�

so that, apart from a possible �irrelevant� rigid translation,
the planar interfaces x�=d1,2� �au��d� of the �virtual�

vacuum slab in the auxiliary space are imaged as the planar
interfaces x= �d of the transformed slab region in the actual
physical space �see Fig. 1�. Within the TO framework,3–7 the
EM field effects induced by the curved metrics in Eq. �1� can
be equivalently obtained in a flat, Cartesian space by filling
up the transformed slab region �x��d with an anisotropic,
spatially inhomogeneous transformation medium described
by the relative permittivity and permeability tensors

�= �x,y� = �
=

�x,y� = det�J=�x,y��J=−1�x,y��J=−1�x,y��T, �3�

where the superscript T denotes matrix transposition, and

J=�x,y� =
��x�,y�,z��

��x,y,z�
= �

au̇�x� 0 0

v̇�x� −
ü�x�y
u̇2�x�

1

u̇�x�
0

0 0 1
� �4�

is the Jacobian matrix. It can be shown �see Appendix A for
details� that the constitutive tensors in Eq. �4� are real and
symmetric, and hence they admit real eigenvalues, and they
can be diagonalized by an orthogonal matrix. In particular, it
is expedient to represent these tensors in their diagonalized
forms ��̃

=
and �̃

=
, respectively� in the principal reference sys-

tem �� ,� ,z� constituted by their �orthogonal� eigenvectors,
viz.,

�̃
=
�x,y� = �̃

=
�x,y� = ����x,y� 0 0

0 ���x,y� 0

0 0 a
� , �5�

where ��,� denote the transverse eigenvalues. It can be
shown �see Appendix A for details� that

sgn���,��x,y�� = sgn�a� , �6�

and hence, depending on the sign of the scaling parameter a,
the constitutive tensors are either both positive defined �a
	0� or both negative defined �a
0�. Accordingly, the re-
sulting transformation medium is either DPS �a	0� or DNG
�a
0�. Moreover, it readily follows from Eq. �5� that, for
the particular choice a=1, the resulting transformation me-
dium is effectively nonmagnetic ��̃z=1� for transverse-
magnetic �TM� polarization �i.e., z-directed magnetic field�
and nonelectric ��̃z=1� for transverse-electric polarization
�i.e., z-directed electric field�.

Finally, recalling the developments in Ref. 36, we note
that the condition in Eq. �2� �i.e., the fact that at the
transformed-region boundaries x= �d the coordinate map-
ping in Eq. �1� reduces to a rigid translation� ensures the
reflectionless of the transformation slab.

In what follows, without loss of generality, we study the
EM response of the above defined transformation slab ex-
cited by a time harmonic �exp�−i�t��, TM-polarized, arbi-
trary aperture field distribution located at a source plane x
=xs
−d,

Hz�x = xs,y� = f�y� . �7�

(a)

'x1d ′− 2d ′

1ε µ= =

(b)

xd− d

( ) ( ), ,x y x yε µ=

yy′

�

�

FIG. 1. Problem geometry. The fictitious �vacuum� space
�x� ,y� ,z�� is imaged via Eq. �1� �with Eq. �2�� into the slab region
�x��d �embedded in vacuum� in the actual physical space �x ,y ,z�
with the planar interfaces x�=d1,2� �au��d� imaged �apart from
possible irrelevant rigid translations� as the planar interfaces x
= �d. The curved-metrics-induced EM-field effects are equiva-
lently obtained in a flat, Cartesian space by filling up the trans-
formed slab region �x��d with the transformation medium in Eq.
�3�.
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III. GENERALITIES ON ANALYTICAL DERIVATIONS
AND NUMERICAL SIMULATIONS

A. General solution

It can be shown �see Appendix B for details� that, for an
observer located at xo	d �i.e., beyond the transformation
slab�, the EM response of the system can be viewed as ef-
fectively generated by an equivalent aperture field distribu-
tion

Hz�x = xi,y� = f�y − y0� �8�

corresponding to a �virtual or real� image at the plane

x = xi � xs + 2d − a�u�d� − u�− d�� , �9�

which exactly reproduces the source-plane aperture field dis-
tribution in Eq. �7�, apart from a possible rigid translation of

y0 = v�− d� − v�d� �10�

along the y axis. Note that the image-plane position and the
y displacement do not depend on the actual form of the map-
ping functions u�x� and v�x� in Eq. �1�, but rather on their
values at the slab interfaces x= �d, thereby leaving ample
design freedom. Clearly, for xi
d, a virtual image is formed,
corresponding to a perceived displacement of the source. In
particular, for xi=xs and y0=0 �i.e., zero displacement�, the
transformation slab behaves like a vacuum slab of same
thickness, thereby acting as a perfect radome. Conversely,
for xi	d, a real image is formed, and the slab ideally be-
haves like a perfect lens.

B. Simulation tools and parameters

Our analytical derivations below are supported by full-
wave numerical studies based on a finite-element solution of
the EM problem for Gaussian-beam or plane-wave illumina-
tions. Our simulations rely on the use of the commercial
software COMSOL MULTIPHYSICS,38 based on the finite-
element method �FEM�, in view of its ability to deal with
arbitrary anisotropic and spatially inhomogeneous transfor-
mation media. In all simulations below, slight material losses
�loss tangent=10−3� are assumed, and the slabs are truncated
along the y axis to an aperture of 2L. The resulting compu-
tational domains are adaptively discretized via nonuniform
meshing �with element size which can be locally as small as
	4�10−40, with 0 denoting the vacuum wavelength� and
terminated by perfectly matched layers, resulting into a total
number of unknowns 	106.

IV. SPECIAL CASES ALREADY KNOWN IN
THE LITERATURE

In order to illustrate the general character of the proposed
class, we begin showing that it includes as special cases sev-
eral configurations already known in the literature. Perhaps
the most trivial reduction is obtained by assuming u�x�=x
and v�x�=0 which yields

�= = �
=

= �a−1 0 0

0 a 0

0 0 a
� , �11�

which closely resembles the class of nonreflecting birefrin-
gent metamaterials considered in Ref. 39 �in connection with
perfect lensing for vectorial fields�, and also widely used in
the design of perfectly matched layers for finite-difference
time-domain numerical schemes �see, e.g., Ref. 40�. In this
case, Eqs. �9� and �10� trivially reduce to

xi = xs + 2d�1 − a�, y0 = 0, �12�

corresponding to an orthogonal �with respect to the slab�
image displacement, which vanishes only for a=1 �i.e., when
the material trivially reduces to vacuum�, and yields Pendry’s
perfect lens22 for a=−1.

Another interesting reduction is obtained by assuming

a = 1, u�x� = x, v�x� = �x , �13�

which yields

�= = �
=

= �1 − � 0

− � 1 + �2 0

0 0 1
� . �14�

It is interesting to note that the above medium �spatially
homogeneous, DPS, and nonmagnetic for the assumed TM
polarization� is amenable to the tilted uniaxial class consid-
ered in Ref. 41. Indeed, letting

� = 
�R −
1

�R
�sin �R cos �R �15�

and enforcing the condition for omnidirectional total trans-
mission in Eq. �30� of Ref. 41 �assuming �L=1�,

�R sin2 �R +
1

�R
cos2 �R = 1, �16�

the diagonalized constitutive tensors �cf. Eq. �5�� in the prin-
cipal reference system �rotated of an angle �R with respect of
the x axis� become

�̃
=

= �̃
=

= ��R 0 0

0 �R
−1 0

0 0 1
� , �17�

and hence completely equivalent �at least for the assumed
TM polarization� to that considered in Eq. �1� of Ref. 41
�taking into account the different reference system utilized�.
Under these assumptions, Eqs. �9� and �10� reduce to

xi = xs, y0 = − 2�d , �18�

corresponding to a lateral shift which can be tailored in sign
and amplitude by tweaking the slab thickness and constitu-
tive parameters �cf. Eq. �15��. Note that, depending on the
incident field and on the constitutive parameters, the above
shift can be induced by positive or negative refraction �see
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Ref. 41 for details�. As an example, Fig. 2 shows a typical
FEM-computed response for a normally incident collimated
Gaussian beam, which illustrates the lateral shift induced for
�	0. It is worth pointing out that the coordinate transfor-
mation in Eq. �13� was also proposed in Ref. 17 for the very
purpose of beam shifting without, however, establishing the
connection with the tilted uniaxial media in Eq. �17� and Ref.
41.

As a final example of well-known configurations included
as special cases in our proposed class, we consider the real-
image case xi	d in Eq. �9�. In this case, assuming u�d�
	u�−d� and recalling that xs
−d, it readily follows from
Eq. �9� that a
0, and thus the slab is DNG. Accordingly,
this case belongs to the broad class of DPS-DNG comple-
mentary media considered in Ref. 31, and its further gener-
alizations �see, e.g., Ref. 34�.

V. EXAMPLES OF NONTRIVIAL EXTENSIONS

A. DPS nonmagnetic radomes

As a first example of nontrivial extensions of the above
illustrated configurations, we consider a general class of
transparent slabs characterized by

a = 1, u�x� = x, v�d� = v�− d� , �19�

for which the image displacement is zero, viz.,

xi = xs, y0 = 0. �20�

Such slabs exhibit the same EM response of a slab of
vacuum of same thickness, and can therefore be viewed as

DPS nonmagnetic “perfect radomes.” The possibly simplest
conceivable realization can be obtained by choosing

v�x� = ��x� , �21�

which, by comparison with Eq. �13�, is readily realized to
correspond to the juxtaposition of two beam shifters �as in
Fig. 2� producing opposite lateral shifts. Figure 3 clearly
illustrates the shift-compensation effect that yields the same
transmitted field that a vacuum slab of same size would pro-
duce. Note that, at the interface x=0 separating the two half
slabs, a negative �total� refraction takes place. Interestingly, a
similar “twin-crystal” configuration �involving half spaces
instead of slabs� was also studied in Ref. 42 in connection
with total amphoteric refraction. Again, a similar configura-
tion was proposed in Ref. 17, in a beam-shifting framework,
without establishing the connection with the twin-crystal
case. Our extension above indicates that twin-crystal slabs
are potentially interesting candidates for radome applica-
tions, in view of their relatively simple constitutive proper-
ties �which involve only piecewise anisotropic, homoge-
neous media, with everywhere finite parameters�.

Note that Eq. �19� constrains only the boundary values of
the function v�x�, and thus different choices are possible, in
principle. For instance, choosing

v�x� = �x2 �22�

yields an inhomogeneous transformation medium, whose
constitutive parameters are shown in Fig. 4. It can be ob-
served that this medium still resembles the twin-crystal
structure above, but with a spatial tapering in the constitutive
parameters and in the optical-axis direction. The correspond-
ing response is shown in Fig. 5, from which a phenomenon
resembling the beam-shift compensation in Fig. 3 is still vis-
ible.
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FIG. 2. �Color online� An example known in the literature, but
using the technique presented here. Geometry as in Fig. 1, with d
=0 �but truncated along the y axis to an aperture of 140�, and
transformation slab in Eq. �13� with �=2 �i.e., �R=60° in Eq. �15��,
assuming a loss tangent of 10−3. FEM-computed magnetic field
map pertaining to a normally incident collimated Gaussian beam
�with waist of size �20, located at xs=−40, i.e., 30 away from
the slab interface�, displaying the lateral beam shift.

x/λ0

y/
λ 0

-4 -2 0 2 4
-8

-6

-4

-2

0

2

4

6

8

-1

-0.5

0

0.5

1

x/λ0

y/
λ 0

-4 -2 0 2 4
-8

-6

-4

-2

0

2

4

6

8

-1

-0.5

0

0.5

1

FIG. 3. �Color online� As in Fig. 2, but for the perfect-radome
�twin-crystal� configuration in Eq. �21�, illustrating the beam-shift
compensation.
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An alternative perfect-radome condition that does not rely
on �global or local� crystal twinning is given by

a = 1, u�d� − u�− d� = 2d, v�x� = 0 �23�

with emphasis placed on the function u�x�, instead of v�x�.
For instance, the class of functions satisfying the conditions

u̇�x� = u0 + u1
 x

d
�n

+ u2
 x

d
�2n

�24�

with n even, and

u0 + u1 + u2 = 1,

u1 = − 2u2
1 + n

1 + 2n
�25�

provides a possible solution. It can be shown that, unlike the
previous cases, the corresponding constitutive parameters
tend to assume extreme values for �y�→�. However, in view
of the unavoidable slab truncation, this does not constitute a
serious practical limitation. Figure 6 illustrate typical consti-
tutive parameters for this configuration, from which the dif-
ferent structure �as compared to the twin-crystal-like cases�
as well as the tendency toward extreme values are clearly
visible. From the corresponding EM response, shown in Fig.
7, it can be observed that the beam profile is not subject to
any lateral shift inside the slab.

Another interesting class is obtained by choosing a=1,
v�x�=0, and
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FIG. 4. �Color online� Constitutive-parameter maps �transverse
components� for the perfect-radome configuration in Eq. �22� �with
�=1�, shown in the principal reference system. As a reference, the
principal axes directions � and � are shown as short segments, in �a�
and �b�, respectively.
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FIG. 5. �Color online� As in Fig. 2, but for the perfect-radome
configuration in Eq. �22� �cf. the constitutive parameters in Fig. 4�.
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FIG. 6. �Color online� As in Fig. 4, but for the configuration in
Eqs. �24� and �25� �with n=2 and u2=1�.
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FIG. 7. �Color online� As in Fig. 2, but for the perfect-radome
configuration in Eqs. �24� and �25� �cf. the constitutive parameters
in Fig. 6�.
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u�x� = � 
 1

d + �
�

�����x + ��2 − �2 + �2���d + ��2 − �2 + �2�, x � 0,

�26�

where ��0 is an offset parameter, while � is a small param-
eter that is eventually let tend to zero. Note that for �=0 �and
�→0� the transformation trivially reduces to the identity,
while for �	0 �and �→0� the mapping in Eq. �26� vanishes
at the x=0 plane; in this latter case, it can be shown that the
constitutive parameters tend to exhibit extreme values at the
x=0 plane as well as for �y�→�. Unlike the transformation
slabs obeying to Eq. �19� or Eq. �23�, which ideally behave
as vacuum slabs of same thickness, the above configuration,
while still being ideally nonreflecting, induces a nonzero im-
age displacement along the x axis �cf. Eq. �9��

xi − xs = 2d − 
 2

d + �
���d + ��2 − �2� . �27�

Figure 8 shows representative constitutive parameter maps,
from which the anticipated singular behavior at the x=0

plane as well as for �y�→�, can be observed. The corre-
sponding Gaussian-beam response, shown in Fig. 9, illus-
trates �by comparison with Figs. 3, 5, and 7� the image dis-
placement with the slight imperfect transmission and
reflection effects attributable to the structure and material
parameter truncations.

B. DPS cloak/anticloak

The last example of radome class is particularly interest-
ing because the underlying transformations in Eq. �26� �in-
tended for each of the half slabs� are directly related to that
used in Ref. 13 for designing an invisibility cloak with
square shape. The above results therefore seem to provide
the building block for an “anticloaking” device, like those
proposed in Refs. 43 and 44, in connection with cylindrical
geometries. Such a device would be capable of allowing field
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FIG. 8. �Color online� As in Fig. 4, but for the configuration in
Eq. �26� �with �=d and �=d /100�.
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FIG. 9. �Color online� As in Fig. 2, but for the configuration in
Eq. �26� �cf. the constitutive parameters in Fig. 8�.
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FIG. 10. �Color online� �a� Square cloak/anticloak geometry �cf. Eqs. �28� and �29��. ��b� and �c�� FEM-computed magnetic field maps
pertaining to oblique �15°� plane-wave excitation in the presence and absence, respectively, of the anticloak shell �parameters: x1=0.810,
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penetration inside the cloak shell. However, unlike the de-
signs proposed in Refs. 43 and 44 �based on DNG or SNG
media, possibly exhibiting extreme-value parameters�, it
would involve only DPS media, thereby removing the most
significant technological limitations that prevent their practi-
cal realization and that would cause significant bandwidth
restrictions and loss mechanism.

As an illustrative example, we consider the configuration
in Fig. 10�a�, where four modified �trapezoidal-shaped, trans-
lated, and possibly rotated� versions of the transformation
slab in Eq. �26� are juxtaposed so as to form a square shell.
Referring to the rightmost trapezoidal slab �the other three
being simply obtained via translation and/or rotation�, the
underlying coordinate transformation entails v�x�=0 and

u�x� = −
1

x1

��x2 − x2
2 − �2

2��x1
2 − x2

2 − �2
2� , x1 � x � x2, �y� � x ,

1

x3

��x2 − x2
2 + �3

2��x3
2 − x2

2 + �3
2� , x2 � x � x3, �y� � x ,� �28�

a = −
x1

2

x1
2 − x2

2 − �2
2 , x1 � x � x2, �y� � x ,

x3
2

x3
2 − x2

2 + �3
2 , x2 � x � x3, �y� � x� �29�

with �2,3 denoting vanishingly small parameters. At variance
with the original transformation slab in Eq. �26�, note the
two different values of a in Eq. �29�, both positive �thereby
indicating that the media are still DPS�, but �1 �thereby
indicating that the media exhibit magnetic properties, as re-
quired in perfect cloaking/anticloaking transformations�. In
spite of the different coordinate transformation and
notation45 that we utilize, the outer square shell in Fig. 10�a�
shares the same spirit as the square cloak in Ref. 13; in both
configurations, in the ideal limit ��3→0 in our case�, a point
�coordinate-system origin� in the fictitious space is mapped
into a square �of side length 2x2 in Fig. 10�a�� in the physical
space, thereby creating a square “hole” effectively inacces-
sible by the EM fields �see, e.g., Fig. 1 in Ref. 13�.

Figure 10�b� shows the response for oblique plane-wave
incidence in the presence of the outer �cloak� shell only, from
which one observes how the impinging radiation is rerouted

with little exterior scattering and interior penetration �attrib-
uted to the inevitable parameter truncations�. Conversely, as
shown in Fig. 10�c�, the addition of the inner �anticloak�
shell renders field penetration possible, with the restoration
of a modal field inside the inner square region, in a fashion
that closely resembles the interactions attainable via a SNG
or DNG anticloak.44 The corresponding material parameters
are not shown explicitly, but their qualitative behaviors may
be gathered from the infinite-slab configuration in Fig. 8. In
particular, in the ideal limit �2,3→0, a singular behavior is
expected at the interface separating the cloak and anticloak
shells.

The above illustrated mechanisms also offer a suggestive
idea for partial �i.e., angle-selective� cloaking. For instance,
Fig. 11 shows the response of the cloak/anticloak square con-
figuration above when two trapezoidal anticloak elements are
removed. It can be observed that, when the illumination di-
rection is orthogonal to the sides that are missing the anti-
cloak elements �Fig. 11�a��, the cloaking mechanism pre-
vails, and there is still little field penetration. Conversely,
strong field penetration is obtained when the illumination
direction is orthogonal to the sides corresponding to the two
remaining anticloak elements �Fig. 11�b��.

C. DPS focusing devices

It was shown in Sec. IV that the class of transformation
slabs under analysis includes as special cases the perfect
lenses based on DNG media. However, from Eq. �9�, it may
appear that a perfect real image �i.e., xi	d� can also be
formed by a DPS transformation slab �i.e., a	0�, provided
that u�d�
u�−d�. Note that such condition, coupled with the
reflectionless condition in Eq. �2�, implies that the derivative
u̇�x� must vanish somewhere inside the slab, thereby yielding
extreme-value constitutive parameters and extreme aniso-
tropy. It should be pointed out that under this extreme con-
dition, the previous analytical derivations �based on the con-
tinuity of the coordinate transformation� break down, and so
the seemingly implied “perfect” imaging and phase compen-
sation are not strictly attainable. Nevertheless, one can still
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FIG. 11. �Color online� As in Figs. 10�b� and 10�c�, but with the
two horizontal anticloak elements removed, and plane-wave inci-
dence direction �a� orthogonal and �b� parallel to the corresponding
sides.
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obtain some interesting focusing effects, which bear a resem-
blance with those observed in Refs. 27–29 in connection
with anisotropic media exhibiting extreme-value parameters
along specific directions.

As an example, assuming xi=−xs	d, it can easily be veri-
fied that a transformation featuring a=1, v�x�=0, and

u�x� = x
1 – 3
xi � �

2d
� +

xi � �

2d3 x3,

x � xp ��2d3

3xi

3xi

2d
− 1�, �30�

with � denoting a vanishingly small parameter, would satisfy
the above conditions. Figure 12 shows some representative
constitutive parameter maps, from which the singular behav-
ior at the planes x= �xp �where the derivative of u�x� in Eq.
�30� vanishes� is evident. The corresponding EM response
for a subwavelength-waisted Gaussian-beam excitation,
shown in Fig. 13, illustrates the achievable focusing effects.

D. Possible further twists: SNG media via complex
mapping

From Eq. �6�, it is clear that the transformation media in
Eq. �3� can only be DPS or DNG but not SNG. Interestingly,
SNG media can be obtained via a complex-coordinate modi-
fication of the transformation in Eq. �1�, viz.,

x� = iau�x� ,

y� = i
y

u̇�x�
+ iv�x� ,

z� = z . �31�

In this case, via straightforward extension of the results in
Appendix A, it can be shown that the constitutive tensors in
the principal reference system assume the form

�̃
=
�x,y� = �̃

=
�x,y� = ����x,y� 0 0

0 ���x,y� 0

0 0 − a
� , �32�

while Eq. �6� remains still valid. Accordingly, the resulting
medium is SNG. Note that the framework utilized in Sec.
III A cannot be directly applied to the study of configurations
involving paired ENG/MNG transformation media, since the
coordinate mapping needs to be continuous. However, more
or less straightforward extensions may cover these cases
too.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we have studied a general class of TO-based
transparent metamaterial slabs. Via analytical derivations and
numerical full-wave simulations, we have explored the im-
age displacement and reconstruction capabilities of such
slabs, highlighting the wide breadth of phenomenologies in-
volved. Moreover, starting from those special cases corre-
sponding to configurations already known in the literature,
we have developed some nontrivial extensions, and illus-
trated their potential applications to the design of radomes,
cloaking and anticloaking devices, and focusing devices
based only on DPS anisotropic media.

Our results confirm the power of TO as a systematic
approach to the design of application-oriented metamate-
rials with prescribed �e.g., DPS, nonmagnetic� constitutive
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FIG. 12. �Color online� As in Fig. 4, but for the DPS focusing
configuration in Eq. �30� �with xi=1.01d and �=d /10�.
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FIG. 13. �Color online� As in Fig. 2, but for the DPS focusing
configuration in Eq. �30� �cf. the constitutive parameters in Fig. 12�
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properties. It should be noted that no attempt was made at
this stage to optimize the parametric configurations, and em-
phasis was only placed on the illustration of the basic phe-
nomenologies. Parametric optimization, as well as deeper ex-
ploration of certain interactions �especially in connection
with the DPS anticloaking and focusing� are currently being

pursued. Also worth of interest is the extension to ENG/
MNG-paired configurations.

APPENDIX A: PERTAINING TO EQS. (5) and (6)

Substituting Eq. �4� into Eq. �3� yields

�=�x,y� = �
=

�x,y� = �
1

au̇2�x�
− u̇2�x�v̇�x� + yü�x�

au̇3�x�
0

− u̇2�x�v̇�x� + yü�x�
au̇3�x�

au̇2�x� +
1

a
�v̇�x� −

yü�x�
u̇2�x�

�2

0

0 0 a
� , �A1�

i.e., real and symmetric tensors, whose eigenvalues can be
computed from the characteristic equation

�� − a���2 + 1 − a��x,y�� = 0, �A2�

where

��x,y� =
1

a2u̇2�x�
+ u̇2�x� +

�− u̇2�x�v̇�x� + yü�x��2

a2u̇4�x�
.

�A3�

Noting that ��x ,y� in Eq. �A3� is a sum of squares, and
hence always positive, Eq. �6� follows immediately from Eq.
�A2� as a consequence of Descartes’ rule of signs.

APPENDIX B: PERTAINING TO EQS. (8)–(10)

A general expression of the magnetic field in the presence
of the transformation slab can be compactly written as a
spectral integral

Hz�x,y� =
1

2�
�

−�

�

f̂�ky�exp�i��kx,ky ;x,y��dky , �B1�

where kx=��2 /c0
2−ky

2, Im�kx��0 is the x-domain wave num-
ber �with c0 denoting the speed of light in vacuum�,

f̂�ky� = �
−�

�

f�x�exp�− ikyy�dy �B2�

is the plane-wave spectrum of the aperture field distribution
in Eq. �7�, and

��kx,ky ;x,y� = 
kx�x − xs� + kyy , x 
 − d ,

kx�au�x� − xs� + ky�v�x� +
y

u̇�x�� + �1�kx,ky� , �x� 
 d ,

kxx + kyy + �2�kx,ky� , x 	 d .
� �B3�

The phase function in Eq. �B3� is derived by solving the
straightforward problem in the virtual space �plane-wave
propagation in vacuum� and subsequently translating this so-
lution in the actual physical space via the continuous coordi-
nate transformation in Eq. �1�, accounting for the possible
phase displacements �1,2�kx ,ky� introduced by the reflection-
less slab interfaces. Enforcing the field continuity conditions
at these interfaces �x= �d� yields, after straightforward al-
gebra,

�1�kx,ky� = − kx�d + au�− d�� − kyv�− d� , �B4�

�2�kx,ky� = − kxxi − kyy0 �B5�

with xi and y0 defined in Eqs. �9� and �10�, respectively.
Equation �8� then follows straightforwardly, by substituting
Eq. �B4� �with Eq. �B5�� in Eq. �B1�.
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