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We present a full potential linearized method to solve the one-body problem, for example in the local density
approximation. A mixed basis of augmented plane waves and generalized muffin-tin orbitals �MTOs� are used
for the eigenfunctions. Since MTOs efficiently describe low-energy and localized states, the mixed basis is
dramatically more efficient than the linearized augmented plane wave method for a given tolerance. GaAs,
MnAs, SrTiO3, Cu, and the O2 dimer are used as illustrations.

DOI: 10.1103/PhysRevB.81.125117 PACS number�s�: 71.15.Ap, 71.15.Nc, 71.15.Qe

Linear augmented-wave, full potential �FP� methods1–3

are generally accepted to be the most accurate way to solve
the effective single-particle Schrödinger equation �SE� en-
countered, for example, in the local density approximation.
For their basis sets, methods such as the linearized aug-
mented plane wave �LAPW� and the closely related projector
augmented wave �PAW� method, and the method of linear
muffin-tin orbitals �LMTOs�, begin with a collection of en-
velope functions, which we denote here generally as �Fi�,
and augment them in �muffin-tin� spheres centered around
each nucleus with numerical wave functions, subject to
matching at �or near� the sphere boundary.

Plane waves �PWs� are used for envelope functions in the
LAPW and PAW methods. Owing to their facility to con-
verge to the basis to any desired precision, they are usually
the preferred choice. Atom-centered Hankel envelopes
�which result in the LMTO method� are also widely used.
LMTO is typically more efficient than LAPW because many
orbitals �notably d states in transition metals and the 2s and
2p states in second-row atoms� are well localized and atomi-
clike. Thus we need to superpose many PWs to represent
them well, while such states can be efficiently represented by
the LMTO method, owing to its localized, real-space enve-
lope functions. On the other hand, the LMTO method is
thought to be less robust because there is no natural path to
converging the basis to completeness. In this paper we
present a scheme which integrates atom-centered and PW
envelope functions, realizing in one approach advantages of
the hitherto independent basis sets. We call this method the
“plane-wave+muffin-tin orbital,” or PMT method.

The two kinds of envelope functions can be fused in a
natural way through a variant of the LMTO method devel-
oped recently.4 This method differs from the usual one, first
because efficient augmentation scheme makes it possible to
choose many kinds of envelope functions in a simple, unified
framework, as we briefly describe below. Moreover, the
method of Ref. 4 adopts a different kind of atom-centered
envelope function HRL, namely the convolution of a Gauss-

ian g�r�= ���rs�−3e−r2/rs
2
, with a Hankel function H: viz H

=g�H. �R occurring in a subscript denotes where a function
is centered, e.g., HRL�r�=HL�r−R�. L= lm refers to the or-
bital quantum numbers, e.g., s , p ,d functions.� In contradis-

tinction to HRL which diverges as 1 /rl+1 for r→0, HRL is
everywhere smooth: in particular HRL�rl as r→0, and
HRL→HRL as r→�.

Thus, the HRL are smooth while avoiding a well-known
deficiency of Gaussian orbitals, namely, too-rapid asymptotic
decay. “Smoothness” turns out to be very important for
efficient evaluation of the Hamiltonian matrix elements, a
key property the HRL lack. Yet perhaps the most important,
the HRL are a very efficient basis because they are
better tailored to a molecular or crystal potential. The HL
solve the SE for a flat potential V�r�=const, since
�−�2−��HL�� ,r�=0, where in real systems the spherical
part of V�r� decreases when approaching a nucleus. Because
the HRL satisfies �−�2−�−4�

GL�rs;r�
HL�rs,�;r� �HL�rs ,� ;r�=0,

where GL�r�= ���rs�−3��2 /rs�2le�rs
2/4−r2/rs

2
rlYL�r̂�, they can

better adapt their shape to the true potential by tuning rs.
Our augmentation procedure of Ref. 4 is a widely used

standard procedure. It can be applied to our smooth envelope
functions Fi�r�, which is a PW or a smoothed Hankel func-
tion HRL, in the same manner. The method augments Fi in a
MT sphere of radius sR at point R, by “augmenting” its
one-center expansion, Fi�r��	LFRL

i �r�, with a linear combi-

nation of numerical solutions of the SE, 	LF̃RL
i �r�. In the

linear theory, a radial solution �Rl��Rl ,r� of the SE and its
energy derivative, �̇Rl��RL ,r�, are calculated for a given Rl,

and F̃RL
i is constructed out of the linear combination that

matches value and slope of FRL
i at sR. Thus the basis function

reads

F̃i�r� = Fi�r� + 	
RL

F̃RL
i �r� − FRL

i �r� . �1�

Ref. 4 calculates matrix elements of a 
F̃i�Ô�F̃j� of an opera-

tor Ô through the following:


F̃i�Ô�F̃j� = d3rFi��r�ÔFj�r�

+ 	
R


r�sR

d3r�F̃RL
i� ÔF̃RL�

j − FRL
i� ÔFRL�

j � . �2�
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The interstitial integral �first term� is evaluated through all
space; then the local parts are projected out.5 Equation �2� is
distinct from conventional augmentation: integrals are not
evaluated by straightforward substitution of Eq. �1� which

would entail cross terms, e.g., �r�sR
d3rF̃RL

i� ÔFRL�
j . It is simi-

lar to a construction first developed by Soler and Williams.2,6

It works well because the local term F̃RL
i� ÔF̃RL�

j −FRL
i� ÔFRL�

j

vanishes in both value and slope as r→sR; the information in
this region is carried entirely by the unaugmented part

Fi��r�ÔFj�r�. The local part turns on smoothly and becomes
non-negligible only for r significantly smaller than sR. Since
high L partial waves contribute predominantly in the region
r→sR, this scheme has a very rapid L convergence �typically
2� lmax�4�.4 It is this fact that makes augmentation so effi-
cient and explains why pseudopotentials can be truncated to
very low l cutoff while conventional augmented-wave meth-
ods require 6� lmax�8 for a comparable precision.

Finally, we outline a prescription for the one-center ex-
pansion. Instead of using standard functions, e.g., Bessel
functions for PWs or HRL, the method of Ref. 4 adopts poly-
nomials PkL�r�, viz

F̃i�r� = Fi�r� + 	
RkL

CRkL
�i� �P̃RkL�r� − PRkL�r�� . �3�

PkL are related to the generalized Laguerre polynomials,

PkL�r� =
�− 2�kk!�2l + 1�!!

�2k + 2l + 1�!!
Lk

l+1/2� r2

rs
2� rl

rs
l YL�r̂� , �4�

and P̃kL are linear combinations of �� and �̇� that match
value and slope of PkL at sR. Owing to the orthogonality
relation


0

�

dze−uul+1/2Lk
l+1/2�u�Lk�

l+1/2�u� =
	�k + l + 3

2�
2k!


kk�, �5�

any given function f�r� for 0�r�� can be expanded as

f�r� =
2k!

	�k + l + 3
2�	k

ckL�rs�Lk
l+1/2�r2/rs

2� . �6�

Here the coefficients ckL�rs� are determined from Eq. �5�.
With this expansion applied to radial functions for each L
channel, we can have a following expansion for any function
F�r� as

F�r� = 	
L

fL�r�rlYL�r̂� . �7�

See Ref. 8 �especially Sec. XII� for explicit expressions for
PWs, smoothed Hankels HL and many other useful proper-
ties of an interesting class of functions, of which the HL are
members. Efficient augmentation for any shaped F�r� de-
pends only on whether analytic expressions for Eq. �7� can
be obtained. Adapting the method of Ref. 4 to different �Fi�
entails little more than coding expressions for CRkL

�i� specific
to them. PWs, Gaussians, HRL, and any number of envelope
functions can be expanded with equal ease in the single,
unified framework of Ref 4. Expressions for total energy,
forces, assembling output density, etc., remain unchanged.

Our method has three distinct kinds of orbitals: APWs,
smoothed LMTOs, and local orbitals. With a standard linear
method, an eigenfunction will approximate the exact wave
function for partial wave Rl by the linear combination

�Rl��RL ,r�+ �̇Rl��RL ,r���−�RL�, i.e., a solution to the SE ex-
act �for the spherical part of the potential� to linear order in
�Rl�� ,r� around the linearization energy �RL. A great triumph
of the linear method is that �l tends to be a smooth function
of energy, so the Taylor series is rapidly convergent. Still,
there are cases where the Taylor series is not sufficient for
certain l partial waves, e.g., the Ga d channel. �This is par-
ticularly true in the GW context7,9�. In this method, a local
orbital can be added, which consists of a radial solution
�Rl

z �r� to the SE at a different energy. For deep states, a
smooth Hankel is attached which extends �Rl

z �r� into the in-
terstitial while matching value, slope, and laplacian at sR.
This kind of local orbital is very close to an eigenstate of any
deep state without requiring other basis functions. The local
orbitals we use are described in more detail in Ref. 7.

In Fig. 1 we present convergence studies for three repre-
sentative crystals �GaAs, ferromagnetic MnAs, SrTiO3� and
the O2 dimer. We selected four groups of localized basis sets,
which consist of some materials-specific combination of
smoothed LMTO’s and local orbitals. We classify them into:
�1� the “null’ basis �consisting of some local orbitals but no
LMTOs�, �2� a “hyperminimal” basis �consisting of enough
LMTOs to describe the valence band but little else�, �3� a
“small” basis �a standard minimum-basis LMTO calculation
when accuracy is not important�, and �4� a “large” basis—a
typical LMTO basis for standard calculations. Table I pre-
sents their orbital characters for each material.

Particularly when the MTO and APW basis sets are both
sizable, the PMT basis suffers from strong linear depen-
dency. This is because that some MTO basis functions can be
almost completely constructed as linear combinations of
APWs; this means that when many MTOs and APWs are
simultaneously included, the basis becomes overcomplete
and linear dependency unacceptably large. For normally ac-
ceptable tolerances in convergence, this is not usually an
issue. However for highly converged basis sets, it is neces-
sary to remove the linear dependence. This can be largely
accomplished by diagonalizing the overlap matrix, and re-
ducing the Hilbert space to the subspace spanned by eigen-
functions whose overlap eigenvalues exceed a minimum tol-
erance �typically 10−6�. An extreme case is Cu: combining
the large basis �Table I� with APWs up to an energy cutoff
EMAX

APW =400 eV �Fig. 2�, the rank of the secular matrix was
reduced from 272 to 237.11 When the basis becomes very
large, even the subspace projection occasionally has slight
problems with stability. Little change is seen, for example, in
the last and second-last small basis points for MnAs because
of this. Note that the diagonalization of overlap matrix
should be not necessary for practical usage to treat large
systems because MTOs are sufficiently linearly indepen-
dently when we use not so many APWs, or we can remove
some MTOs �e.g., MTO for Sr 5s� in advance so that we do
not need to remove some basis by diagonalization of the
overlap.
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Figure 1 shows the deviation �E in total energy relative
to the fully converged result as a function of the secular
matrix dimension at 	, Nb

	.10 For the most part, fewer total
functions are required to achieve a given accuracy when
more LMTOs are used. On the other hand, the difficulty
LMTO basis sets suffer in controlling convergence to arbi-

trarily high precision is also apparent. These pictures neatly
highlight the respective advantages of both LAPW and
LMTO methods; they also show clearly that a union of the
two combines the respective advantages. The reduction in
basis dimension by augmenting LAPWs with at least some
LMTO set is dramatic. The four cases of Fig. 1 show that the
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FIG. 1. �Color online� Deviation �E from fully converged total energy/atom, in mRy vs total number of basis functions Nb
	 at 	. Data are

drawn on a log �E−log 1 /Nb
	 scale. Each curve corresponds to a fixed MTO+local orbital basis �see Table I�. The basis is enlarged by

increasing the PW energy cutoff EMAX
APW. Data is shown for three periodic crystals and the O2 dimer. Dashed-dot lines with circles are the

closest to a pure LAPW basis �null in Table I�; solid lines with diamonds correspond to the hyperminimal LMTO basis in Table I; dashed
lines with squares employ a minimal LMTO set �small in Table I�; finally, solid lines with circles contain the most LMTO’s �large in Table
I�, corresponding to a standard LMTO calculation. The rightmost points in the minimal and large basis set cases correspond to all-LMTO
basis sets. GaAs panel inset: 	1-X3 transition between the conduction band minimum and second conduction band at X. �The large basis is
not shown because it is converged to �0.01 eV without APWs.�

TABLE I. The null, “hyperminimal,” small, and large LMTO+Local orbital �LO� basis sets for GaAs,
MnAs, SrTiO3, the O2 dimer, and Cu. Column “Float” signifies MTO’s centered in interstitial regions.
Column N indicates the total number of orbitals excluding APWs. The large basis set in the GaAs case is one
used in Ref. 7.

Basis LMTO LO N

Ga As Float Ga As

Null 3d 4s 6

Hyper sp sp 3d 4s 14

Small spd spd 3d 4s 24

Large spdfg ,spd spdfg ,spd spdspd 3d 4s 92

Mn As Mn As

Null 0

Hyper sd sp 20

Small spd spd 36

Large spdf ,spd spdf ,spd 100

Sr Ti O Sr Ti O

Null 3p 3p 6

Hyper sp 3p 3p 18

Small spd spd spd 3p 3p 51

Large spdsp ,sp spd ,spd spdsp 3p 3p 81

O O

Null 2s 2

Hyper sp 20

Large spdf ,spd 3s 52

Cu Cu

Null 5s, 5p, 4d 9

Large spdfg ,spd 5s, 5p, 4d 43
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“optimal” partitioning between MTOs and LAPWs depends
somewhat on the case. We can make the following observa-
tions:

�i� when moderate accuracy is sought ��3 mRy /atom�, a
standard LMTO basis can converge the total energy with
vastly fewer orbitals than a standard LAPW basis, the ratio
of orbitals for a fixed precision being on the order of 5.
Compare the null case to the other cases in Fig. 1.

�ii� It can be difficult to converge a standard LMTO basis
to high accuracy, e.g., �1 mRy /atom; see in particular the
rightmost point on the dashed-line-with-squares and solid-
line-with-circles curves in SrTiO3 and O2, Fig. 1.

�iii� When high accuracy is required, a certain number of
MTOs can dramatically improve convergence. Once a cer-
tain number of LMTOs is included �the number and kind
depending on the material�, it often makes little difference
whether more LMTOs or LAPWs are added. This is true to
the extent that curves overlap in Fig. 1. In the absence of any
advantage gained by using LMTOs, LAPWs are preferred
since they are easier to define and construct.

Perhaps the most surprising and dramatic results are those
for O2. Even the spdf-spd atom-centered basis is rather
poorly converged in the total energy. Standard localized basis
sets used in the quantum chemical community do better, as
do LMTO basis sets with more than two radial functions per
l.12 On the other hand, the ‘null’ APW+2s�LO� basis re-
quires a large number of APWs to converge �E to acceptable
tolerances.

It would be interesting to compare these results using op-
timally chosen real-space basis sets. Near-optimal real-space
basis sets have been constructed within the framework of

“shape-approximate” �i.e., superposition of spherical�
potentials.13 Such basis sets permit a marked reduction in the
size of the secular matrix compared to functions used here,
for a fixed accuracy. However, �near� optimal basis sets have
never been designed for a full potential method, so such a
comparison is not possible today. In any case, it seems to be
generally true that the fusion of a local basis with an APW
basis dramatically reduces the required size of the secular
matrix relative to the LAPW method and offers a systematic
path to arbitrarily high accuracy starting from the LMTO
method.

Derivative properties of the total energy, e.g., lattice con-
stant a, magnetic moment M, the bulk modulus B, and other
shear moduli, are less sensitive to details of the basis than the
total energy itself. a and B are already rather well converged
in each material using small MTO sets of Table I. Ref. 14
tabulates well converged LAPW results for the cohesive en-
ergy Ecoh, a and B in GaAs: Ecoh=0.587 Ry, a=10.62 a.u.,
B=74 GPa. Our results are similar: Ecoh=0.575 Ry, a
=10.61 a.u., B=75 GPa. We do not believe that the small
difference in Ecoh can be attributed to incomplete basis con-
vergence in either case, but to other factors.10 Our results for
Cu �a=6.65 a.u., B=187 GPa� are also very similar to an
LAPW calculation15 �a=6.65 a.u., B=192 GPa�.

The LAPW basis is especially well suited for high-energy
states. Reliable description of such states is important for
some optical properties; they can be important when comput-
ing the RPA total energy.16 The LMTO method describes
lower unoccupied states very well but its accuracy degrades
with increasing energy. An instructive example is Cu �Fig.
2�, because the 4d partial waves are important above 25 eV:
states near 	 27 and 39 eV are largely of 4d character. At
higher energies, the 5s partial wave is important; see particu-
larly the state at �55 eV near 	. In a strictly linear method
these states are wrongly placed, by �5 eV. Accordingly our
basis contains 5s, 5p, and 4d LOs. We consider two cases: a
null basis of APW+LOs, and a large basis augmented by
LMTOs �Table I�. The top panels of Fig. 2 compare the large,
APW-free basis �EMAX

APW =0� to a highly converged basis. Dif-
ferences begin to become apparent to the eye above 50 eV.
The bottom panels quantify the RMS deviation in the bands
�computed relative to a well converged basis� for both the
‘null’ and the large basis. These panels show that the fused
MTO and APW basis converges wrt EMAX

APW dramatically
faster than APWs alone �the advantage disappears for small
RMS deviations in high-lying bands�. Another revealing ex-
ample because it is slow to converge, is the transition be-
tween the conduction band minimum at 	 and the second
conduction band at X in GaAs. Convergence is shown in the
inset of the top left panel of Fig. 1. Addition of a small
LMTO basis dramatically reduces the required number of
APWs basis for a given convergence.

To summarize, we show how a fused basis of APWs and
MTOs based on smoothed Hankel functions combines ad-
vantages of the LAPW and MTO basis sets, in a single very
accurate and efficient scheme.

This work was supported by ONR Contract No. N00014-
7-1-0479 and NSF Grant No. QMHP-0802216.
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FIG. 2. �Color online� Energy bands for Cu, in eV. Fermi level
at zero. Top left: large LMTO basis of Table I, without APWs. Red
depicts 4d orbital character, significant between 25 and 50 eV;
green depicts 5sp orbital character. The state near 55 eV at 	 is
mostly Cu 5s. Top right: converged ‘large’ basis with APWs. Bot-
tom figures show RMS deviation �eV� relative to fully converged
�Ref. 10� bands as a function of the PW cutoff energy EMAX

APW, in the
following energy windows: �left� −10�Ek�30 eV; �middle� −10
�Ek�50 eV; �right� −10�Ek�100 eV. Light lines: null basis of
Table I; dark lines: large basis.
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