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Monte Carlo simulation of the semimetal-insulator phase transition in monolayer graphene
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A 2+ 1-dimensional fermion field theory is proposed as a model for the low-energy electronic excitations in
monolayer graphene. The model consists of Ny=2 four-component Dirac fermions moving in the plane and
interacting via a contact interaction between charge densities. For strong couplings there is a continuous
transition to a Mott insulating phase. We present results of an extensive numerical study of the model’s critical
region, including the order parameter, its associated susceptibility, and the quasiparticle propagator. The data
enable an extraction of the critical exponents at the transition (including the dynamical critical exponent) which
are hypothesized to be universal features of a quantum critical point. The relation of our model with others in
the literature is discussed along with the implications for physical graphene following from our value of the

critical coupling.
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I. INTRODUCTION

There has been much recent interest in the remarkable
electronic properties of graphene! (see also a recent, compre-
hensive review in Ref. 2). It appears that they arise from the
low-energy spectrum of excitations being equivalent to that
of a two-dimensional gas of relativistic fermions, with the
case of undoped (i.e., neutral) graphene corresponding to
zero net particle number. In brief, for a carbon monolayer
with one mobile electron per atom, a simple tight-binding
model predicts a linear dispersion relation centered on zeroes
located at the six corners of the first Brillouin zone. It is
possible to rewrite the Hamiltonian for single-particle exci-
tations in Dirac form with N,=2 flavors of four-component
spinor ¢, the counting of degrees of freedom coming from 2
C atoms per unit cell X2 zeroes per zone X2 physical spin
components per electron. Electron propagation within the
monolayer is thus relativistic, albeit with speed vy~ c/300.

The charge carriers in graphene can be either electrons
(“particles™) or holes (“antiparticles”) and are characterized
by a very high value of mobility u=0/ne (where o is elec-
trical conductivity and n the carrier density), more than twice
that of the highest mobility conventional semiconductor, and
several orders of magnitude greater than a typical metal at
room temperature. This gives graphene the potential to be of
great technological significance in the construction of fast
electronic devices. The naive tight-binding model suggests,
and experiments with graphene based on a SiO, substrate
confirm, that graphene remains a conductor (technically a
semimetal) for all values of the gate voltage, i.e., even when
the carrier density formally vanishes because there is no gap
in the energy spectrum E(k) at the Dirac points. The presence
of a small gap would, however, be extremely valuable for
electronics applications because it would increase the effec-
tive on-off current flow ratio needed for device stability.’

More sophisticated theoretical approaches to graphene
must take interelectron interactions into account. In this pa-
per we build upon an approach which treats the low-energy
fermion excitations using a 2+ 1-dimensional relativistic
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quantum field theory.*~® The interaction between electrons is
assumed to be due to a Coulomb potential, which in undoped
(i.e., neutral) graphene is unscreened due to the vanishing
density of states at E=0. Because vy<<c this Coulomb inter-
action can be treated as “instantaneous,” meaning that the
field theory is necessarily nonlocal. The strength of the Cou-
lomb interaction is variable since it depends on the dielectric
constant & of the underlying substrate. It can be parametrized
by an effective fine-structure constant
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so that the problem is strongly interacting. The possibility
then opens up of the disruption of the free-field ground state
by an excitonic condensate, i.e., one formed from tightly
bound electron-hole pairs with the effect of opening up a gap
A>0 at the Dirac point and making the ground state of
undoped graphene a Mott insulator.

The analogous phenomenon in particle physics is de-
scribed using different language: we say that the global chi-
ral symmetry of the model, which prevents generation of a
fermion mass through quantum corrections to all orders in
perturbation theory, is spontaneously broken by the forma-
tion of a chiral condensate. Dynamical mass generation is
therefore inherently nonperturbative and must be addressed
either by self-consistent analytic methods or, as in this paper,
by numerical simulation of a lattice-regularized version of
the field theory. To date there have been two distinct ap-
proaches taken. In a series of papers, Drut and Lihde” have
simulated a formulation of the graphene field theory based
on lattice gauge theory in which electrostatic degrees of free-
dom are formulated on a 3+ 1-dimensional lattice while the
electron fields are restricted to a 2+ 1-dimensional slice. By
contrast, our formulation'© is entirely 2+ 1 dimensional and
is in essence a noncovariant form of the Thirring model.
Both numerical calculations support the hypothesis proposed
in Ref. 6 that the semimetal and insulator phases are sepa-
rated by a line of second-order phase transitions in the
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(a,Ny) plane, starting at a point (%,N.) and running in the
direction of decreasing « and decreasing Ny. A very similar
situation pertains in the 2+ 1d Thirring model.'>'? In Ref. 10
we studied chiral symmetry breaking with variable Ny in the
strong-coupling limit and estimated N =4.8(2). Each point
on the line with integer Ny<<N/. defines a quantum critical
point (QCP) whose properties are characterized by a set of
N-dependent critical exponents [in Ref. 6 the identification
of the QCP was restricted to the case («,Ny,)].

In the current paper we present an extensive numerical
study of the semimetal-insulator phase transition for the case
N;=2 which is of direct physical interest; only preliminary
results were available in Ref. 10. The graphene model we
study will be presented in detail, both as a continuum field
theory and as a lattice model, in the following section but it
is appropriate to preface that with some remarks. Because
our approach is based on a local quantum field theory in 2
+1d, it is unable to capture the long-range 1/r nature of the
unscreened Coulomb potential assumed in Refs. 4-6. We
have argued in Ref. 10 that this is unimportant in the strong-
coupling limit &« — % where electron-hole pair polarization
effects dominate the long-range physics; however for finite «
our model is in principle different both from the continuum
approaches*~% and the lattice gauge theory approach of Refs.
7-9. We do not exclude the possibility, however, that the
universal behavior at the QCP remains the same, even for
Ny<Nre.

There are two main benefits of our approach. First, the
simplicity of our model and the fact that it is formulated
directly on a 2+1d space-time lattice mean that we have
been able to perform accurate simulations on a range of sys-
tem sizes LfXL,, yielding control over finite-size artifacts
and hence access to the model’s critical properties. Second,
the fact that our model is not a gauge theory permits a defi-
nition of the quasiparticle correlation function without any
need for gauge fixing, which is known to be a major source
of statistical noise in similar model systems, e.g., Ref. 13.
We are able here to present the numerical study of the qua-
siparticle propagator, which both explicitly demonstrates gap
generation as the coupling strength g2 is increased beyond gf
and broadens the scope of the critical analysis; we are able to
present an estimate for the dynamical critical exponent z
which governs the different scaling of the correlation length
in spacelike and timelike directions.

The remainder of the paper is organized as follows. In
Sec. II we lay out the model to be studied in both continuum
and lattice formulations, and discuss its relation with other
models studied in the literature and its applicability to
graphene. Our numerical results are presented in Sec. III:
Sec. IIT A focuses on the chiral order parameter and its as-
sociated susceptibility, and fits data to a renormalization-
group inspired critical equation of state yielding estimates
for the critical coupling and exponents & and S; Sec. III B
presents an analysis of the quasiparticle propagator and
shows how both the gap A and the renormalized Fermi ve-
locity vyp may be extracted; finally Sec. III C presents a fit to
a similarly motivated equation of state for A(m,g?) which
along with the assumption of hyperscaling permits an esti-
mate of the dynamical critical exponent z. We summarize our
findings for the critical parameters in Sec. IV and also at-
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tempt to relate our value for gz to estimates of «,. in the
literature.

II. FORMULATION AND INTERPRETATION OF THE
MODEL

Our starting point is a model of relativistic Dirac fermions
moving in 2+1 dimensions and interacting via an instanta-

neous Coulomb interaction. In Euclidean metric the action
- 46
is

Ny
Si= 2 | deod® (P, Yodotha + vt ¥+ Vi + iVl voth,)
a=1

1
*50 f dxod’x(9;V)?, (2)

where e is the electron charge, vy the Fermi velocity, V the
electrostatic potential, and the 4 X4 Dirac matrices satisfy
V4> 74=28,,, ©=0,1,2. For monolayer graphene the cor-
rect number of fermion flavors Ny=2. The momentum-space
propagator for the V-field D;, which couples conserved

charge densities iy, at differing spacetime points, is given
by

2lpl Ny P |
==L , 3)

Dy(p) = { 2 TR (0?2
where the first term in brackets on the right-hand side is the
classical Coulomb interaction and the second is the leading
quantum correction in the large-N; limit, describing screen-
ing due to particle-hole virtual pairs. Note that p?= p(z)
+v12p| j5|%. The relative importance of quantum versus classical
effects may be parametrized by the ratio N of the two terms
in the static limit py— 0; in SI units

Ny 14N,

- 16egphvp B

, (4)

where € >1 is the dielectric constant of the underlying sub-
strate.

For sufficiently large interaction strength the description
in terms of massless relativistic excitations may be disrupted
by condensation of bound fermion-hole pairs in the ground

state, signaled by an order parameter (i) # 0, with the re-
sult that a gap appears in the fermion spectrum. Physically
this corresponds to a transition from a conductor to an insu-
lator; in the language of particle physics the same phenom-
enon, resulting in a dynamical generation of a particle mass,
is known as chiral symmetry breaking. As this transition oc-
curs at zero temperature, the model predicts a finite sequence
of QCPs whose properties at the critical interaction strength
N.(Ny) are sensitive to the value of Nf:6 the sequence will
terminate for N, (not necessarily integer) defined by
)\(N fc)=oc.

This situation has motivated us to explore a related but
distinct model for graphene, with action'® (in units where
Vp= l)
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This model resembles the 2+ 1d Thirring model,'"!? a four-
fermi model known to exhibit a sequence of N-dependent
QCPs as the coupling strength g2 is varied. The relation with
Eq. (2) is clarified by inspection of the V propagator,

=2 -1
- Ld } (6)

(P )1/2
Since the quantum correction is identical, models (2) and (5)
should yield the same physics in the large-\ limit, which can
be reached as either Ny— o or g2,e2—>00. Indeed, in Ref. 10
we used this property to predict the critical number of flavors
Ny, = 4 8(2) above which model (2) remains a semimetal for
all g% Thus graphene with N;=2 is predicted to be a Mott
insulator for sufficiently strong interelectron coupling. For
finite Ny models (2) and (5) are distinct, although we may
still hope they describe similar physics for A not too small.

Let us discuss this point a little further. The principal dif-
ference between Egs. (3) and (6) occurs at large distances,
i.e., lim,_., D;(r) 72, indicating that the long-range Cou-
lomb interaction is not screened, whereas D, is finite ranged,
being cutoff for r=0(g?). It is important to understand
whether the modification D+~ D, changes the physics in any
essential way, e.g., by defining a model in a different univer-
sality class. We will be unable to answer this question defini-
tively with the simulation results presented here but note that
in the model approach of Ref. 5 which predicts dynamical
symmetry breaking, the relevant momentum range respon-
sible for gap generation is |j5|> A/vp, implying that it is the
short-ranged behavior of D which governs the properties of
the QCP. In addition, we note that unlike the instantaneous
approximation used in that work D, correctly incorporates
the p, behavior of the vacuum polarization function.

In this paper we will use numerical simulations of a lattice
model based on a discretised version of Eq. (5) to study the
semimetal-insulator transition for the physical value Ny=2.
The lattice model is formulated in terms of single-component
Grassmann fields y,) defined on the sites x of a three-
dimensional cubic lattice by the action

D,(p) = {

Slatt - E Xx

X

—(1+

“[(1+6 o\2g V) Xerp

—iV,

8,0\ 282 1+ m> Xoxy (1)

The sign factors 7,, = (—1)**"*%-1 ensure that in the long-
wavelength limit the first (anti-Hermitian) term in S, de-
scribes the Euclidean propagation of N,=2 flavors of relativ-
istic fermion described by four-component spinors.!* The
bare fermion mass m provides a IR regulator for modes
which would otherwise be massless in the limit of weak in-
teractions. The hopping terms in Sy, involve the auxiliary
boson field V, which is formally defined on the timelike links
connecting sites x with x+0. For further details of the rela-
tion between the actions [Egs. (5) and (7)] we refer the
reader to Refs. 10 and 11 [in particular, for Ny=2 the action,
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Eq. (7), can be recast in a “noncompact” form yielding iden-
tical physics, whose relation to Eq. (5) is more manifest].
Because we restrict our consideration to an integer number
of fermion flavors in this paper we were able to perform the
simulation using a well-established numerical method called
the hybrid Monte Carlo (HMC) algorithm, which generates
equilibrated ensembles of field configurations {V} with no
systematic bias.'!!3

Since our initial paper,'” results from simulation of an
alternative lattice approach to the graphene model (2) have
appeared.” This formulation is based on lattice gauge
theory in which the degrees of freedom corresponding to the
electrostatic potential V are formulated on a 3+1d lattice
while the electron degrees of freedom are confined to a 2
+1d “braneworld.” This in principle gives a more faithful
rendering of the physics encapsulated in Egs. (2) and (3).
The principal result is a prediction for the critical coupling
corresponding to the semimetal-insulator transition; for Ny
=2 the value

APE=1.70(2) (8)

was obtained. This result is intriguing because it lies between
the values A =1.25 expected for graphene on an SiO, sub-
strate, which experiments have shown to be a conductor, and
N=3.4 [cf. Eq. (4)] for freely suspended graphene, which is
accordingly predicted to be an insulator. The necessity to
store and evolve variables on an extra dimension is clearly a
computational burden the action [Eq. (7)] evades; however
for current purposes the main advantage we claim for our
approach is that it permits a straightforward means to mea-
sure the quasiparticle propagator, as presented below in Sec.
III B, without the need for gauge fixing.

Before finishing we wish to compare our model with an-
other approach to electron transport on a honeycomb lattice,
namely, the Hubbard model. This model leads to the same
kinetic term in the long-wavelength limit as that of Eq. (2)
but now with a repulsive on-site interaction between elec-
trons of opposite spin, the last restriction being due to the
exclusion principle. On a square lattice the Hubbard model is
predicted to have an antiferromagnetic insulating ground
state for any interaction strength U, however small. On the
honeycomb, the distinct nature of the low-energy excitation
spectrum results in a transition between antiferromagnetic
and paramagnetic phases at a nonzero U, which appears to
coincide with a semimetal-insulator transition akin to that
discussed here.!® In our model, however, the Coulomb inter-
action between charge carriers is spin independent and acts
over arbitrary separations so is not constrained by the exclu-
sion principle; the correlations between spins discussed in
Ref. 16 are therefore absent. Note that a model including
both Hubbard and Coulomb interactions was studied in Ref.
17.

Let us finish this section by discussing the behavior we
expect of model (7) and how it might relate to physical
graphene. In the limit m — 0 the model has a global chiral
symmetry x,—>exp iae,X,; Xs—> eXp iae,X,, Where the sign
factor g,=(—1)**1*2 distinguishes odd and even sublat-
tices: the model studied in Refs. 7-9 has the identical sym-
metry. For N, flavors the pattern of symmetry breaking ex-
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FIG. 1. (Color online) (xx) vs g~2 for m=0.01 calculated on (a) Lf X 48 lattices and (b) 242 X L, lattices, showing finite-size effects.

pected for the continuum models (2) and (5) is U(2Ny)
— U(Ny) ® U(Ny), whereas away from the continuum limit
the pattern for Eq. (7) is U(%f) ® U(%f)—> U(%). By analogy
with the Thirring model,'! we expect that for large values
of the coupling g> the symmetry will be dynamically
broken as signaled by a nonvanishing condensate (yx)
=V19In Z/9m+0 but that the symmetry will be restored
in a continuous phase transition at some critical coupling ggz.
This transition between the two phases defines a UV-stable
fixed point of the renormalization group and the fixed-point
theory is thus uniquely specified by a set of critical
exponents—one of the main goals of the paper, presented in
Sec. I A, is to determine both the critical g.* and the set of
exponents by numerical means. The fixed-point theory
should describe the low-energy excitations of physical
graphene in the continuum limit, reached either from the
insulating phase as g7> /" 822, {xx)— 0 or from the conduct-
ing phase as g‘z\gzz, m—0. As we shall see below, it may
be possible to relate the value of g(-_z to A as defined via Eq.
(4). The applicability of the model to graphene, however,
rests on the hypothesis that the low-energy excitations and
their interactions in graphene share its symmetries, and that
the physical parameters are such that graphene lies within the
basin of attraction of the fixed point. Ultimately this must be
settled by experiment.

III. NUMERICAL RESULTS

Preliminary simulations with N,=2 presented in Ref. 10
showed evidence for a crossover from strong- to weak-
coupling behavior at g=>~0.6. Accordingly, we have under-
taken a refined campaign of simulation on system sizes Lf
X L, with L, ranging from 16 to 48 and L, ranging from 48 to
84; the bare mass m was varied between 0.0025 and 0.025.
Because the action [Eq. (7)] does not treat space and (Eu-
clidean) time directions equivalently, it is useful to explore
the consequences of independently varying L, and L,: how-
ever, the most detailed coverage of the g‘2 axis was obtained
on 242X 48.

A. Equation of state

In the vicinity of a second-order phase transition the order
parameter over a range of couplings g~ and small source

values m can be described by an equation of state of the form

m = (o)’ Fe(xx)™"P) = Axx)” + BOon) + 0 (o)™ 'P),
©)

where g;2 is the critical coupling, = g2~ g;2, F is a univer-
sal scaling function, & the critical exponent describing the
order parameter’s response at criticality to a small applied
source m, (B the exponent governing the scaling of the order
parameter for m=0 as t—O0_, and p=J—-1/B. Order-
parameter data taken in the thermodynamic limit can be fit-
ted to Eq. (9) to extract gzz, 8, and p. In practice we need to
make assumptions about the width of the “scaling window”
in g72 and m where the subleading corrections in Eq. (9) can
be safely ignored and we also need to carefully monitor the
effects of working with finite L, and L,.

First let’s discuss finite-volume effects. Since model (7)
has an anisotropic action, we cannot a priori exclude the
possibility of correlation lengths in spatial and temporal di-
rections diverging with distinct exponents v, and v,.'® In pre-
vious work we have attempted to incorporate this possibility
via a correction to the equation of state fit but the compli-
cated nature of the finite-volume scaling model made these
fits of questionable value given the range of simulation vol-
umes available to us. Here we take a more pragmatic ap-
proach and compare order-parameter data for two different
bare masses at fixed L, and varying L, in Fig. 1(a) and vice
versa in Fig. 1(b). The plots reveal the very different nature
of the finite-size effects in each case: (yyx) rises as L, is
increased, corresponding to the zero-temperature limit, but
falls as the thermodynamic limit L,— % is approached.
Moreover, in both cases the effects are greater in the sym-
metric phase, i.e., at larger values of g~2. We will proceed by
using the observation that in the restricted range 0.525
=g2=0.65 the data for m=0.005 (0.525=g72=0.70 for
m=0.01) on 242 X 48 are free from finite-size effects almost
within statistical error.

Table T shows sample fits to Eq. (9) to O(¢) for order-
parameter data taken on a 242 X 48 lattice and shows how the
fit quality improves as data far from criticality are succes-
sively excluded. We also tried excluding low-mass points as
these are most susceptible to finite-volume effects. It is com-
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TABLE 1. Various fits to the equation of state [Eq. (9)] for data taken on 24% X 48.

Fit No. ) p x>/ dof
0.525=¢72=0.90 (all m) 69 0.608(2) 2.66(2) 1.252(4) 6.9
0.55=g2=0.80 (all m) 55 0.607(2) 2.68(3) 1.261(9) 4.0
0.525=¢72=0.65 (m=0.005) 43 0.609(2) 2.66(3) 1.245(11) 2.7
0.525=¢72=0.675 (m=0.0075)
0.525=¢72=0.70 (m=0.01)
0.5255g—250.70 (m=0.0075) 37 0.600(3) 2.80(5) 1.285(14) 2.3

forting that the fitted values of the critical parameters are
quite stable as the scaling window is so varied. Our preferred
fit is the third row of Table I, which includes as much data as
possible consistent with preserving acceptable fit quality:

¢2=0.609(2); 6=2.66(3); p=1245(11)=

B=0.71(2). (10)

The fitted equation of state is plotted in Fig. 2.

We also experimented with fits with an extra free param-
eter modeling an O(#?) correction to Eq. (9); these fits indi-
cated a slightly larger value of g;2 but despite the extra free
parameter did not yield appreciably better x* values. More-
over, the resulting equation of state clearly failed to be physi-
cally reasonable in the symmetric phase: since 6— 2 <0 from
Eq. (10), the O(#?) term rapidly becomes numerically domi-
nant here. In support of this, Fig. 3 plots order-parameter
data taken on 242 X 48 using axes chosen, using the critical
parameters [Eq. (10)], to effect data collapse onto the scaling
function F which is seen to be linear to very good approxi-
mation.

Finally we examine another probe of the critical point, the
ratio of transverse to longitudinal susceptibilities x,/yx;
=g In(xx)/dIn m3" There are two spin-0 particle-hole
channels with opposite intrinsic parities, which by analogy
with mesons in particle physics we refer to as o (parity +)
and 7 (parity —). In the m — 0 limit, in the conducting phase
the two states are related by a U(1) global chiral symmetry
and are degenerate; in the insulating phase, by contrast, the

0.25 ‘ ‘
F o m=0.0025| -
5 o m=0.005
02~ s m=0.0075| ]|
| e m=0.010 | |
o m=0.015
0.15+ + m=0.020 |
_ * m=0.025
<XX> b
0.1+
0.05—
04

FIG. 2. (Color online) Fit to Eq. (9) to order-parameter data
taken on 242X 48. The function in the m— 0 limit is also shown.

symmetry is spontaneously broken and the 7r channel there-
fore contains a massless pole by Goldstone’s theorem. Since
Xe! X; 1s simply the ratio of the integrated o propagator to the
integrated 7 propagator, we expect it to tend to unity as
m— 0 in the conducting phase and to zero in the insulating
phase. Exactly at criticality, however, the ratio is m indepen-
dent and takes the value 1/8." Figure 4 plots x¢/x, vs m
evaluated on a 242 X 48 lattice, including contributions from
diagrams with both connected and disconnected fermion
lines as detailed in Ref. 11. The data taken at g~
=0.60,0.625 are approximately m independent, especially
for larger m, and bracket the value of &~ I obtained from the
equation of state fit, strengthening our confidence in the val-
ues of the critical parameters in Eq. (10).

B. Quasiparticle dispersion

One of the main motivations for the choice of model (7) is
that since it has no manifest gauge symmetry, there is no
requirement to fix a gauge in order to define or measure a
correlation function such as the fermion propagator. This has
enabled us to perform the first numerical simulation of the
quasiparticle excitation spectrum in graphene.

The fermion excitation spectrum of the model is accessed
via analysis of the Euclidean timeslice propagator Cp,t)
defined by

CAp.) = 2 (x(0,0)X(%1))e 77, (11)

X even

where “even” refers to sites with spatial coordinate X obeying
(=1)1=(=1)"2=1 and the components of p take values

30 :

m=0.0025 s
m=0.005 :
m=0.0075 4
m=0.010

m=0.015 e
m=0.020

20~

= ¢ 0 ®e0O0 0O

_ 9
mi<yy>

t<)'gxi_1/ﬁ

FIG. 3. (Color online) Plot of m/{xx)° vs (g‘z—g:_z)()_()()"”ﬁ
using the critical parameters [Eq. (10)].
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FIG. 4. (Color online) Susceptibility ratio x,/ x; vs m for various
g 2 in the critical region. The fitted value of &' from Eq. (10) is
shown as a horizontal band.

2mn/L,, with n=0,1,...,L,/4. This restriction improves the
signal-to-noise ratio and originates in the observation that the
action [Eq. (7)] is invariant only under translations by an
even number of lattice spacings. The energy E(p) is then
extracted by a fit of the form

Cp,1) = Ble™ + D), (12)

where in this case only data with ¢ odd were used since this
yielded the best fits across the whole range of g2 (it can be
shown that lim,, ., C;=0 for even # in the conducting phase).

We measured E(p) for p=(p,,0) on 322X48 for g2
=0.55,0.6,0.7,0.8 and additionally on 483 for g‘2=0.8,0.9,
using m ranging from 0.005 to 0.03. The resulting disper-
sions for the latter two systems at m=0.005 are shown in Fig.
5. For small p and m the dispersion starts out linear to good
approximation and then flattens out to have zero slope at the
effective Brillouin-zone edge at p=7; this flattening is a dis-
cretization artifact with no physical significance. To proceed
we parametrize the dispersion relation using

08 :

0.6 %"';S” "g' =

L /;8/“// i
’f!‘
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’/3
/? 0 7208048
02| P 2 3 7
- ® 5°=0.9048
L 44/0/ 4
& i |

p

FIG. 5. (Color online) Dispersion relation E(p) as measured on
a 483 lattice with m=0.005.
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FIG. 6. (Color online) The fitted parameter M vs m for various
-2
g

E(p) = A sinh™!(Vsin® p + M?), (13)

where for A=1 and M =m the exact result for noninteracting
lattice fermions is recovered. Two sample fits are shown in
Fig. 5. For small M we can interpret E(0)=A=~AM as the
quasiparticle mass (or gap), and for small p in the limit M
—0 then dE/dp=A is the physical Fermi velocity vpz. Re-
sults for A and M as functions of m are shown in Figs. 6 and
7.

The results for M are broadly consistent with our identi-
fication of the critical coupling. For g72< g;2z0.6, Fig. 6
supports lim,,_o M # 0, signaling the generation of a gap via
spontaneous chiral symmetry breaking. For weaker cou-
plings the data can be plausibly extrapolated in the same
limit to M =0, signaling a chirally symmetric, conducting
phase. Note that throughout the critical region A>m, indi-
cating large mass renormalization due to strong interactions
even in the symmetric phase. In Sec. Il C below we will
present further results for M for a range of m in the critical
region.

Figure 7 shows that despite some noise in the data the
parameter A and hence the physical Fermi velocity vpg, is
both m and g~2 independent in the critical region, taking a
numerical value =0.7. We interpret this as being due to a
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FIG. 7. (Color online) The fitted parameter A vs m for various
-2
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FIG. 8. (Color online) (xx(m)) and M(m) at g7>=0.6 on 24>
X 48.

renormalization of the bare Fermi velocity vy=1 due to
quantum effects. This in principle needs be taken into ac-
count when we attempt to assign a physical value to the
critical coupling gZz in Sec. IV. This result is interesting be-
cause analytic calculations based on weak coupling and/or
large N; predict that vpg>vr? whereas a self-consistent
treatment based on a short-ranged interelectron interaction
finds vyp decreasing montonically to zero as the QCP is ap-
proached from weak coupling.?!

C. Dynamical critical exponent

In this section we take a closer look at correlations in the
critical system, both via a high statistics study (typically sev-
eral thousand HMC trajectories) at g‘2:0.6, close to the
critical value reported in Eq. (10), and a refined study of the
quasiparticle mass parameter M in the critical region. All
results are from simulations on 242X 48 lattices. Because
model (7) treats space and time differently, correlation
lengths defined in spatial and temporal directions can exhibit
different critical scaling, leading to two distinct exponents
defined via'®

Eocld ™ &l (14)

Our goal in this section is to constrain the value of the dy-
namical critical exponent z= v,/ v, relating spacelike to time-
like correlations.

Figure 8 shows data for both the order parameter (¥x) and
mass parameter M defined by Eq. (13) as a function of m on
a log-log plot. The linear nature of the plots supports a
power-law scaling,

(ox) = m''%; M o m"P, (15)

where 6 and S coincide with the definitions implicit in Eq.
(9) and the exponent v, is the one relevant for the extraction
of spectral properties via Eq. (12) from correlations in the
Euclidean time direction. Least-squares fits (excluding m
=0.025) yield 6§=2.85(1); 5%:0.38(2). The mismatch be-
tween this value for & and that of Eq. (10) extracted from the
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FIG. 9. (Color online) Fit to Eq. (16) for M(m) data taken on
242 X 48.

equation of state is ascribed to the actual value of gzz lying
slightly above 0.6, as suggested by Fig. 4.

Figure 9 shows results for the quasiparticle mass param-
eter M for a range of m and g2 values in the critical region.
We have fitted these data with a relation inspired by the
equation of state [Eq. (9)],

m=AtMPP""c + BM%', (16)

which with M o« & ! understood recovers Eq. (14) in the limit
m—0 and is consistent with Eq. (15) when #=0. A fit to 33
datapoints with g;* fixed by Eq. (10) yields

B _ 2.25(5); Pr

Y Yy

=1.16(6) (17)

with x? per degree of freedom of 1.0.

It is now time to discuss the possible anisotropy at g2
= ggz in more detail. As mentioned above, the ratio z=v,/ v,
defines the dynamical critical exponent, which is an impor-
tant characteristic of a QCP. In particular, the critical disper-
sion relation is modified to be of the form E o< p?, which has
important implications for the stability of quasiparticles; en-
ergy and momentum conservation make it impossible, in an
inelastic collision, for a quasiparticle to decay into constitu-
ents with smaller E and p if z<<1.°

The results in this section permit an estimate of z via the
following indirect argument. First, we use the exponent val-
ues from Eq. (17) and &, 8 from Eq. (10) to estimate

v,=0.80(3). (18)
Next, we use a modified hyperscaling relation'?

v+ (d-1)v,=B(6+1), (19)

where d=3 is the number of space-time dimensions to esti-
mate

v,=0.89(3), (20)

leading to
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2=0.90(5). (21)

This result is tantalizing since although it hints at z<<1 it
eliminates neither the value z=0.8 based on a leading-order
large-N; calculation in the strong-coupling limit® nor the gen-
eral result z=1 claimed for systems at a QCP with d<4
interacting via a Coulomb potential.??

IV. DISCUSSION

The main result of this paper is that by numerical means
we have identified a quantum critical point, corresponding to
a semimetal-insulator transition, for a model with N,=2 fla-
vors of Dirac fermion sharing many symmetries with a low-
energy effective theory of monolayer graphene. We have
been able to identify critical exponents characterizing the
transition, as summarized in Eq. (10); the most robust pre-
diction, emerging from a fit to the equation of state and sup-
ported by both a calculation of the susceptibility ratio x,/ x;
and a direct study of the scaling of the order parameter
against m at g~2=~ g7, is that the exponent 5=2.66(3). This
is significantly different from the value 6=5.5(3) obtained in
the strong-coupling limit at N;=N;.=4.8(2),'° demonstrating
that the universality class the model falls into is Ny depen-
dent. A similar picture has emerged from numerical simula-
tions of the 2+1d Thirring model,'""!> where it has been
shown that & increases with Ny. Drut and Lihde® have re-
ported the same trend from numerical simulations of their
model with N f=0,2,4. However, their most recent value for
O(Ny=2)=2.26(6) is significantly different from ours, so it
remains unclear whether the two models lie in the same uni-
versality class or whether the long-range interaction present
in the model of® but not here has a decisive effect.

We have also presented results for quasiparticle propaga-
tion, finding evidence for a gap developing spontaneously in
the spectrum for g2 < gc__2 as m— 0. In addition, analysis of
correlations at nonzero momentum has enabled us to roughly
calculate the renormalization of the Fermi velocity vy We
reiterate that in our model the fermion propagator is uniquely
defined and readily calculable; in the original model (2) the
presence of a local gauge symmetry makes analysis of qua-
siparticle propagation potentially problematic both theoreti-
cally and numerically.

We have also outlined a method to obtain the dynamical
critical exponent z, an important characteristic of any QCP,
using scaling and hyperscaling arguments. Unfortunately the
inevitable accumulation of errors in such an indirect ap-
proach precludes us at this stage from conclusively deciding
whether z <1 or not. This issue is of theoretical interest since
there are general arguments to claim z is exactly one for
Coulombic systems> (of course, strictly our model is not in
this class). In this respect a more direct attempt to extract z
via measurements of the quasiparticle dispersion E(p) on lat-
tices with a large spatial dimension giving enhanced momen-
tum resolution may prove interesting.

Another interesting direction for future simulations is
the impact of additional four-fermion interactions in the
effective model, arising from terms in the microscopic
Hamiltonian, such as that of the Hubbard model of Ref. 16.
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Renormalization-group studies in the literature have so far
not achieved consensus about whether such terms would be
relevant>* or not> at the graphene QCP.

Finally, while our model should be regarded as sharing
universal features of graphene in the neighborhood of some
putative fixed point and hence at best able to make predic-
tions of critical exponents and dimensionless ratios of low-
energy observables, it is difficult to resist the temptation to
attempt to convert our result gc__z(Nf=2)=0.609(2) for the
critical coupling into a physical prediction.

First, we must express our result in terms of the con-
tinuum model (5). In order to do this, we remind the reader
that the expression for the propagator [Eq. (6)] is derived
using a regularization which respects current conservation;
unfortunately the lattice regularization defined by Eq. (7) is
not of this type. The solution, as outlined in Ref. 11, is to
take the strong-coupling limit of the lattice model not at
g72=0 but at g2= gﬁrzn, which may be identified numerically
via the location of a peak in (¥x).'> The relation between the
V propagator on the lattice and in the continuum is then!!

Dy(p:g) =ZD5(p;gp) =Z L+&ﬂ B (22)
latt\P>8) = £L00\P58R) = 2g12e 8 (p?)12

with Z=(1—;7312_2—)‘1 >1 and g,%:Zgz. The extra factor of 2 in

the first term in square brackets results from a careful count-

ing of the staggered fermion degrees of freedom in Eq. (7).

For our graphene model Fig. 1 of Ref. 10 suggests 81_'2
=0.30(2), yielding a renormalized critical coupling g.,
=3.26. Now, in order to compare the quantum and classical
terms in Dy to define an effective value of N, a momentum
scale p is needed. Since the only length scale in the problem
is the lattice spacing, a natural (if somewhat arbitrary) choice
is po=0 and |p|=7; this means that the propagators D, and
D\, match at a distance of roughly one lattice spacing. The
matching condition A= g,ze'n'/ 4 yields \,=2.6.

Since D, decays faster than D; at large distances, this
estimate for A, is likely to be on the high side. We should
however note two factors neglected in this simplified ap-
proach. First, the renormalization factor Z=2.0 boosts the
interaction strength of the lattice model; taking proper ac-
count of this will have the effect of raising the predicted A...
Second, the Fermi velocity vy appearing in Eq. (2) and im-
plicitly in Eq. (5) is the bare one, whereas presumably it is
the renormalized vpz=0.7v; which has the experimental
value 10° ms™. Since \ in Eq. (4) is defined in terms of the
bare value, this correction has the effect of lowering the pre-
dicted A, although it will also correct the A values calculated
for physically realized cases such as graphene which is either
freely suspended or mounted on a substrate of known dielec-
tric constant. In our view the uncertainty over the phenom-
enologically relevant value of vy must ultimately be settled
by an ab initio microscopic calculation; moreover, should it
prove to be the case that z<<1, then the very notion of a
universal Fermi velocity becomes ill defined since limpﬂof
diverges.

Table II compares our estimate for the critical inter-
action strength with both that of the alternative simulation
of Drut and Lihde,”” with a value predicted using a
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TABLE II. Predictions for the critical interaction strength for
N¢=2 and for the critical number of flavors Ny in the strong-
coupling limit.

Reference a, e Nye
This work, Ref. 10 2.6 4.8(2)
7 and 9 1.11(6) 1.70(8) 4-6
25 2.03
4 and 5 2.33 3.66 2.55
26 1.13 1.77 3.6
27 1.16 1.82 35
28 1.62 2.54 2.8

renormalization-group treatment of radiatively induced four-
fermion contact interactions,?> and with one older and three
more recent estimates*>2%-2% based on self-consistent dia-
grammatic calculations using model (2). Note that is conven-
tional in the literature to quote the critical effective fine-
structure constant «.=4\./ 7Ny here we show both
parameters where appropriate. Also listed are estimates for
the critical number of flavors Ny, corresponding to the loca-
tion of the QCP in the strong-coupling limit. We argued in

PHYSICAL REVIEW B 81, 125105 (2010)

Ref. 10 that in this limit our model coincides with Eq. (2)
and hence that N;.=4.8(2) is a robust nonperturbative pre-
diction.

To give these numbers some meaning recall that \ is cal-
culated to be 1.25 for graphene on a SiO, substrate, where
experimentally it is known to be a conductor, and 3.4 in
vacuum. Acknowledging the difficulties in obtaining precise
numbers reviewed in the previous paragraphs, we may none-
theless observe that our simulations lend support to the
mounting body of theoretical evidence that freely suspended
graphene is an insulator.
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