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Stationary, dynamical, and spectral electronic properties of a correlated random ladder model
with coexisting extended and localized states
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We study some stationary, dynamical, and spectral properties of a tight-binding Hamiltonian model for
noninteracting electrons in a random two-channels ladder with correlated disorder that presents superposed
bands of localized and extended states. We compute the participation number, Kubo-Greenwood conductance,
Lyapunov exponent, the spread of an initially localized wave packet, as well as the level-spacing statistics in
the band of coexisting localized and extended states. All stationary quantities show a metallic character at the
coexistence energy band, such as a finite conductance and vanishing Lyapunov exponent. The wave packet
exhibits a ballistic spread due to the Bloch-type nature of the extended states. On the other hand, the level-
spacing statistics is characterized by a new distribution function which accounts for the superposition of
uniformly distributed Bloch-type states and Poissonian-distributed localized states.

DOI: 10.1103/PhysRevB.81.125104

I. INTRODUCTION

The nature of electronic states in random systems is a
central issue governing the electronic transport in condensed-
matter physics. There are several quantities used to charac-
terize electronic eigenstates in disordered systems, including
stationary, dynamical, and spectral features. Among these,
the level-spacing statistics has revealed itself as a very pow-
erful tool.! It has been widely employed as an independent
method based on the random matrix theory that is able to
identify the presence of a disorder-induced metal-insulator
transition.> It is well known that in the metallic regime of
disordered systems with time-reversal symmetry and no spin
dependence, the level-spacing distribution P(s) is well de-
scribed by the Gaussian orthogonal ensemble of random ma-
trix theory, assuming the form P(s)=(m/2)s exp[—(/4)s*].
Here, s denotes the energy-level spacing in units of the mean
level spacing and P(s) gives the distribution of normalized
gaps in the spectrum in the limit of infinite system sizes. In
the insulating regime, the level-spacing distribution follows a
Poisson law P(s)=exp(—s). Usually, metallic (extended) and
insulator (localized) eigenstates are not mixed within the en-
ergy band. Localized states have energies close to the band
tails and are separated from the extended ones by mobility
edges.” The disorder-induced metal-insulator transition takes
place when the Fermi level crosses the mobility edge. At the
metal-insulator transition, the level-spacing distribution has
been shown to follow yet another behavior which is attrib-
uted to the existence of a critical ensemble.>”

The scaling theory for the Anderson localization predicts
that a metal-insulator transition can only take place above
two dimensions.® According to general scaling arguments, all
states shall be exponentially localized by any degree of dis-
order in one-dimensional (1D) systems, a scaling prediction
widely supported numerically.” However, it has been re-
ported along the last two decades that the presence of
short-range®'* or long-range correlations'>~'8 in the disorder
distribution, as well as long-range couplings'®~?? can induce
the appearance of truly delocalized states in low-dimensional
Anderson models. In particular, such correlation-induced de-
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localization has been explored in several studies of the elec-
tronic transport along DNA-based chains motivated by re-
cent claims of long-range correlations in the base-pairs
sequence.”>?® Based on a simple ladder model of a double-
strand DNA, it has been shown that correlations and asym-
metry on the sequence affect the electron localization.?*?8
Numerical calculation in double-strand DNA sequences have
also identified a substantial increase in the one-electron lo-
calization length associated with the underlying correlations
between the two nucleotide chains.?®*° Two-channel random
ladders have thus been considered as an interesting class of
model systems on which correlations can strongly influence
the electronic transport. Very recently, Sil et al.3! showed
that a quasiperiodic two-chain ladder presents metal/
insulator transitions at multiple values of the Fermi energy.
Further, the same group demonstrated analytically that a
two-channel random ladder model can display a band of
Bloch-type extended states when the on-site potentials and
the hopping amplitudes display a particular correlation.? Re-
markably, this band of extended states coexists with expo-
nentially localized states, a new scenario that can lead to
unusual transport properties.

Here, we explore in detail the effects of the coexistence of
localized and extended states in the correlated random ladder
model. We will show that stationary and dynamical proper-
ties are dominated by the extended states with the system
presenting unusual features, such as a finite conductivity and
a ballistic spread of the electronic wave packet. We further
analyze the spectral statistics near the band center, where the
superposition of localized and delocalized bands give rises to
a new level-spacing distribution.

II. MODEL AND FORMALISM

Here, we study the two-channel ladder model within the
first neighbors tight-binding approximation. Considering a
single orbital per site, the Hamiltonian can be written as,

H= 2 8nc;cn + ZE cjncn+l + 12 C:chn, (1)
n

n n

where,
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Cn1
Ch= ( ) (2)
cn,2
with ¢,; and cl,i being the usual fermionic creation and an-
nihilation operators acting at site n of chain i=1,2. Also

€, = (Sn,l Yn >’ (3)

Yn 8n,2

where ¢, ; is the on-site energy at the nth site in chain j. v,
corresponds to the interchain hopping parameter between the
pair of sites at position n. Further, the coupling along each
chain will be considered as site independent and can be put

in the form
t 0
t= 4
(O t) @)

with 7 being the intrachain hopping parameter between near-
est neighbors.

In the above model, disorder is only present in the on-site
potentials and in the interchain coupling. In Ref. 32 it was
analytically demonstrated that when the ratios ¢,,/¢, ; and
Ya! €n1 follow constant proportions along the chain, i.e.,
€,2/e,1=¢ and y,/e, =1, there is a similarity transforma-
tion that decouples the Hamiltonian eigenstates. The Hamil-
tonian can be written as the one of two uncoupled chains
with effective on-site potentials being given by s:’i=)\is
with

n,i»

1+e¢ 1-¢)\?
N\ = 5 +\/( 5 )+yz (5)
.\
>\2=1;8—\/(128) + (6)

In general, both normal modes correspond to effective chains
with random on-site potentials coupled through a nonrandom
first neighbors hopping. Therefore, all eigenmodes are usu-
ally exponentially localized. However, for the particular case
of y2=s, one results with A,=0. Thus, one of the effective
chains becomes disorder free with all on-site potentials being
8;220. Under this condition, all eigenmodes corresponding
to this chain are Bloch type with energies ranging from
—2t<E<+2¢. On the other hand, all eigenmodes of the first
set of normal modes remain exponentially localized. This
situation represents a new scenario among the models of dis-
ordered electronic systems.3> The mobility edges at the ener-
gies E= *t actually separates exponentially localized states
located near the band tails from the energy range around the
band center on which Bloch type and exponentially localized
states coexist.

II1. STATIONARY, DYNAMICAL, AND SPECTRAL
PROPERTIES

In what follows, we will analyze how such coexistence of
localized and extended states influence the main physical
quantities used to investigate disordered electron systems.
We will consider all energies to be given in units of the
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FIG. 1. DOS of the correlated ladder model evidencing the con-
tribution of localized and extended states. At the band tails (|E|
>2) only localized states are present. For |E| <2 continuous bands
of localized and Bloch-type states coexist with a similar DOS at the
band center. Data were obtained from 107 distinct disorder configu-
rations on ladders with N=10" sites.

intrachain hopping amplitude r=1. The on-site energies of
the first chain will be taken from a uniform random distribu-
tion in the interval [-0.5,0.5]. Without any loss of generality,
we will restrict the following study to the case of e=9?=1.
The main results we are going to discuss are quite indepen-
dent of the actual value of e. With the above setting ¢,
=g, ,=", while being randomly distributed along the ladder.
Initially, we numerically diagonalized the full Hamiltonian
on a double-chain ladder up to N=12 000 sites. In order to
avoid spurious effects from a special disorder configuration,
we averaged all quantities over distinct disorder configura-
tions.

Figure 1 shows the density of states (DOS) for the local-
ized and delocalized states separately. These have been clas-
sified by the spacial extension of each eigenmode. One can
observe that the DOS corresponding to the extended state
(continuous line) is indeed numerically identical to the DOS
of a completely ordered chain. On the other hand, the DOS
of the localized states (dotted line) corresponds to that of an
uncorrelated disordered chain. This corroborates the previous
discussion concerning the fact that this particular parameter
setting leads to a decoupling of the ladder eigenmodes in
Bloch-type and localized states, as well as to their coexist-
ence in the energy range —2 <E <+2. Notice that localized
and extended states have a similar DOS at the center of the
band.

In order to characterize the spacial extension of each
eigenfunction, we measured their participation ratio. It is de-
fined, within the tight-binding approximation, as*

1
N2 2 ’ ()

N2 2> lay I

n=1 i=1

Pk/N:

where af-‘ -1s the amplitude of the kth wave function at the site

(n,i). The participation ratio is roughly size independent for
extended state, reaching a value of 2/3 for Bloch states. On
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FIG. 2. (a) Averaged participation ratio P/N as a function of
energy obtained from the exact diagonalization of the correlated
ladder model for distinct ladder sizes N. In the coexistence region,
the participation ratio is size independent showing the predomi-
nance of the extended states scaling behavior. (b) P/N for the coun-
terpart ladder model with nonrandom interlayer hopping. As the
ladder size increases, P/N decreases within the entire energy band,
indicating that all sates are localized in this case. Distinct disorder
configurations were considered up to a total of 1.5X 10° states for
each ladder size.

the other hand, it decays as 1/N for exponentially localized
states. In what follows, we will report the averaged partici-
pation ratio, P/N, of the states with eigenenergies located
within a small energy window around a given energy E. One
expects it to decay as 1/N at the band tails where only lo-
calized states are present. In the coexistence region, the scal-
ing behavior shall be asymptotically dominated by the ex-
tended states.

In Fig. 2(a), we depict the averaged participation ratio as
a function of energy for the present fully correlated random
ladder model, as obtained from the exact diagonalization of
ladders with distinct sizes. It clearly shows the mobility
edges at E==*2. In the band tails, the participation ratio
decays as 1/N, as predicted due to the localized nature of the
eigenstates in this energy range. In the coexistence region,
the participation ratio is indeed size independent showing the
predominance of the extended states scaling behavior. Near
the band center, it assumes a value which is roughly equal to
1/3. This is consistent with the fact that localized and Bloch-
type states have a similar DOS at the band center with the
average P/N being given by the direct average between its
value for Bloch-type (P/N=2/3) and for localized (P/N
=0) states. At the mobility edges the averaged P/N reaches
2/3 due to the diverging DOS of the extended Bloch-type
states. To explicitly show that both correlations (between the
on-site couplings and between one of the on-site couplings
and the intrachain hopping amplitude) are needed to obtain a
band of extended states, we also considered a model with the
same correlation between the on-site couplings, but with a
nonrandom intrachain hopping (y,=1). In Fig. 2(b), the P/N
for this counterpart ladder model with nonrandom hoppings
is shown. As the size of the system increases, P/N decreases
within the entire energy band, indicating that all states are
localized in this case.

In addition to the characterization of the spacial extension
of the electronic states gotten from the exact diagonalization
of the Hamiltonian, we also report the system’s conductance.
The conductance, for noninteracting electrons, and within the
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FIG. 3. Conductance for the fully correlated ladder model (sym-
bols) and the counterpart ladder model with uncorrelated on-site
potentials (dashed line). The finite conductance within the coexist-
ence band of the fully correlated model reflects its metallic charac-
ter. The small conductance of the ladder model with nonrandom
hoppings is a finite-size effect that vanishes in the thermodynamic
limit. Data were obtained from 5 X 10 distinct disorder configura-
tions on ladders with 10* sites.

linear-response theory at zero temperature, is given by the
Kubo-Greenwood formula,*

2
G(E) =" 2 (alnH - Hulp)PE - E) SE- )., (8)
a,b

where n is the position operator along the ladder and |a) and
|b) are stationary eigenstates. The above expression relates
the nature of the one-electron eigenstates with the electrical
conductance. If around the energy E there are delocalized
states, the conductance has a finite value. However, if only
localized states are present, the conductance goes to zero in
the thermodynamic limit. In Fig. 3, we report the energy
dependence of the conductance for the fully correlated ran-
dom ladder model and its counterpart with nonrandom hop-
pings. The mobility edges separate the regime of vanishing
conductance from the regime of finite conductance in the
model with coexisting localized and delocalized states. The
small conductance in the model with nonrandom hoppings is
a finite-size effect. It continuously vanishes as the system
size is increased.

Another standard quantity used to distinguish localized
and extended states is the Lyapunov exponent I', which is the
inverse of the localization length A. The Lyapunov exponent
is given by?

2 .
I'=-=-lim —In|G] y,(E)

1
- 27 9
A N*»wN ( )

where G-{.,N/Z is the Green’s-function operator between the
first and the last pairs of sites. It can be numerically obtained
through a decimation process. This aspect allows to compute
the Lyapunov exponent for very long system sizes. Here, we
used ladders with 12X 10° sites. Further details about the
computation of this parameter can be found in Refs. 35 and
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FIG. 4. Lyapunov exponent I' for the fully correlated ladder
model (continuous line) and the counterpart ladder model with non-
random hoppings (dashed line). In the model with nonrandom hop-
pings, the Lyapunov exponent is finite within the entire energy
band, reflecting the localized nature of all eigenstates. In the fully
correlated model, the presence of extended states is signaled by the
vanishing of I" in the coexistence band.

36. If there are extended states in the vicinity of a given
energy E, the Lyapunov exponent vanishes in the thermody-
namic limit. It assumes a finite value when all states are
localized in the vicinity of E, as well as outside the energy
band. The Lyapunov exponent is shown in Fig. 4 for both
fully correlated ladder model and the nonrandom hoppings
ladder model. Once again the mobility edges are clearly de-
picted in the fully correlated model with the Lyapunov ex-
ponent being vanishingly small within the band of coexisting
localized and delocalized states.

The localized/delocalized nature of one-electron eigen-
states also influences the electronic transport. In order to
study the one-electron wave-packet dynamics, we followed
the time evolution of an initially localized wave packet. The
time evolution of the wave function is obtained from the
action of the unitary time-evolution operator,

() = e[(0)), (10)

where |i(1)) is the electron state at time ¢ and |¢/(0)) is the
initial state. We solve Eq. (10) by expanding the time-
evolution operator up to the 30th order. The wave-packet
width o(z) is measured as the square root of the mean-square
deviation of the electron from its initial position. In Fig. 5(a)
we show the scaled wave-packet width o(¢)/N as a function
of the scaled time ¢/N for the fully correlated ladder model.
Data from distinct chain sizes collapses into a single curve.
The linear finite-size scaling of the asymptotic width indi-
cates that the wave packet propagates until reaching the
chain boundaries. The small oscillations during the conver-
gence to the ultimate stationary state is due to the multiple
reflections of the wave packet at the ladder boundaries and
the coherent interference between the incident and reflected
waves. Further, the initial linear behavior o(¢) ¢ indicates a
ballistic spread dominated by the unscattered Bloch-type
states. For the ladder model with nonrandom hoppings, the
data from distinct ladder sizes falls into a single curve with-
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FIG. 5. (a) Time evolution of the wave-packet width of an ini-
tially localized electron in the fully correlated model for different
ladder sizes. Data collapse into a single curve after a linear rescal-
ing of the wave-packet width and time, indicating that the wave
packet propagates ballistically until reaching the chain boundaries.
(b) The corresponding time evolution in the counterpart ladder
model with nonrandom hoppings. Data from distinct size falls into
a single curve with no rescaling, showing that the electron wave
packet spreads over a finite portion of the system.

out any rescaling. The size independence of the asymptotic
wave-packet width indicates that the electron wave function
spreads over a finite portion of the system.

Finally, we investigate how the coexistence of localized
and extended states in the same energy range impacts the
level-spacing statistics. Exponentially localized states are
usually distributed in energy following a Poisson law P(s)
=exp(—s), where s is the level spacing measured in units of
the mean level spacing. Delocalized eigenfunctions repel
each other. In the presence of disorder, the level spacing of
extended states obeys the Wigner surmise, which takes the
form P(s)=(m/2)s exp[—(m/4)s*] in systems with time-
reversal symmetry and no spin coupling. At the Anderson
transition a new universal critical statistics intermediate be-
tween Wigner and Poisson has been suggested as a conse-
quence of the multifractality of critical wave functions.>”” On
the other hand, the level spacing of Bloch states is fully
determined by the density of states at a given energy range.

In Fig. 6 we show results of the level-spacing distribution
as obtained from the present two-channel model with corre-
lated disorder and coexisting localized and Bloch-type states
near the band center. To obtain the level-spacing distribution,
we used an energy window near the band center [-1,1]. A
spectral unfolding procedure was employed to keep the av-
erage level spacing equal to unity in each segment of the
energy window.* Here, we have used N=12 000 sites and
5000 distinct disorder realizations. The emerging level-
spacing distribution does not follow any of the standard
forms. It displays an almost linear decrease with increasing
level spacings, after which it develops a sharp increase as the
level spacing approaches twice the average spacing. There is
no level spacing larger than s=2. Actually, this distribution
results from the fact that localized and Bloch-type states
have roughly the same DOS in this energy range. After the
spectral unfolding, the Bloch-type states become uniformly
distributed in this energy range. On the other hand, the lo-
calized states are randomly distributed. Therefore, the spac-
ing between Bloch states is equal to the average spacing
between localized ones and twice the overall average level
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FIG. 6. The level-spacing distribution function for the states
near the center of the coexistence band (|E| < 1) of the fully corre-
lated ladder model. Data were obtained from direct diagonalization
of ladders with N=12 000 sites and averaged over 5000 distinct
disorder realizations. It displays an almost linear decrease followed
by a sharp peak as the level spacing approaches twice the average
spacing. This feature is related to the similar DOS of localized and
Bloch-type states near the band center. The inset shows the Poisso-
nian character of the level-spacing distribution for the counterpart
ladder model with nonrandom hoppings.

spacing. Within this picture, the maximum level spacing is
that between neighboring Bloch states and occurs when no
localized state falls between them. The inset of Fig. 6 shows
the level-spacing distribution of the counterpart ladder model
with nonrandom hoppings that exhibits a pure Poissonian
character.

IV. CONCLUSIONS

We investigated in detail some stationary, dynamical, and
spectral aspects of a two-channels Anderson model with cor-
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related disorder that depicts an energy band on which local-
ized and Bloch-type states coexist. Following an exact-
diagonalization procedure, we computed the participation
ratio and the Kubo-Greenwood conductance. Moreover, the
Lyapunov exponent was calculated using a Green’s-function
technique. All these stationary quantities clearly depict the
mobility edges separating the energy range of purely local-
ized states at the band tails from the energy range with co-
existing localized and Bloch-type states. In the coexisting
band, these quantities show signatures of the presence of
delocalized states, namely, the size independence of the par-
ticipation ratio, a finite conductance, and a vanishing
Lyapunov exponent. We also followed the time evolution of
an initially localized wave packet. The dynamics is also
dominated by the presence of Bloch-type states with a bal-
listic spread until the saturation of the wave-packet width
after the multiple reflections at the system’s boundaries. Fi-
nally, we showed that the level-spacing statistics is described
by a new distribution function due to the coexistence of lo-
calized and Bloch-type states. It results from the superposi-
tion of uniformly distributed Bloch state levels with the
Poissonian-distributed levels of localized state. The resulting
distribution exhibits a linear decay at small level spacings
followed by a sharp increase when approaching a maximum
level spacing which is roughly twice the average level spac-
ing. It would be interesting to have its analytical form de-
rived from general random matrix theory arguments. The
present results gives further support to recent findings show-
ing that quasi-1D random systems can display a true metallic
behavior in the presence of specific short-range correlated
disorder.3!-2
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