
General theory of Zitterbewegung

Gyula Dávid
Department of Atomic Physics, Eötvös University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary

József Cserti
Department of Physics of Complex Systems, Eötvös University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary

�Received 25 January 2010; revised manuscript received 9 March 2010; published 31 March 2010�

We derive a general and simple expression for the time dependence of the position operator of a multiband
Hamiltonian with arbitrary matrix elements depending only on the momentum of the quasiparticle. Our result
shows that in such systems the Zitterbewegung-type term related to a trembling motion of the quasiparticle,
always appears in the position operator. Moreover, the Zitterbewegung is, in general, a multifrequency oscil-
latory motion of the quasiparticle. We derive a few alternative expressions for the amplitude of the oscillatory
motion including that related to the Berry connection matrix. We present several examples to demonstrate how
general and versatile our result is.
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Schrödinger in his original paper has predicted a “trem-
bling” or in other words a rapid oscillatory motion of the
center of the free wave packet for relativistic electron.1 How-
ever, the Zitterbewegung is not strictly a relativistic effect2–6

but can be observed in spintronic systems as well.7 This
work has initiated many other works8–32 with an aim to dem-
onstrate the appearance of the Zitterbewegung not only for
relativistic Dirac electrons. In these works a common feature
is that the oscillatory motion of the free particles can be
described only by one frequency.

In our previous work we showed that for a wide class of
Hamiltonians related to, for example, spintronic systems and
graphene, the Zitterbewegung can be treated in a unified
way.33 Here the basic idea was that the Hamiltonian of sev-
eral systems can be mapped to that modeling the precession
of a virtual spin in an effective magnetic field. The coupled
equations for this virtual spin precession and the orbital mo-
tion of the quasiparticle can easily be solved. Thus, the
Zitterbewegung is arising because the virtual spin and the
orbital motion for the quasiparticle are coupled. Our work
suggests as natural question whether the phenomenon of the
Zitterbewegung also arises for an even more general Hamil-
tonian.

In the present work we extend the Zitterbewegung phe-
nomena to a broader class of quantum Hamiltonians for free
�quasi-� particles. In particularly, we derive a general and
simple expression for the time dependence of the position
operator x�t� for a multiband Hamiltonian given by

H =�
H11�p� H12�p� . . . H1n�p�
H21�p� H22�p� . . . H2n�p�

] ] � ]

Hn1�p� Hn2�p� . . . Hnn�p�
� , �1�

where each matrix element is a differentiable function of the
momentum p of the particle itself and n�2 is the number of
degrees of freedom of the system. From our general expres-
sion for the position operator x�t� we shall show that �i� the
Zitterbewegung always appears for systems given by Hamil-
tonian �1�, �ii� for n�2 the Zitterbewegung is in fact a mul-
ticomponent oscillatory motion of the free quasiparticle, �iii�

for n=2 we recover the results obtained earlier in the above-
mentioned references.

To find the time dependence of the position operator x�t�
of the quasiparticle in Heisenberg picture one needs to cal-
culate

x�t� = e�i/��Htx�0�e−�i/��Ht, �2�

where x�0� is the position operator at t=0, i.e., it equals to
the position operator in Schrödinger picture. Because the
momentum operator p is a constant of motion we now work
in the subspace of the Hilbert space for which the momen-
tum p is fixed. Calculating the right-hand side of Eq. �2� the
crucial step is to decompose Hamiltonian �1� into a sum of
projection operators: H=�aEaQa, where Ea is the ath eigen-
value of the Hamilton operator at a given momentum p, and
Qa are projection operators satisfying the following relations:
QaQb=�abQa and �aQa= In, where In is the n�n unit matrix.
The position operator at time t=0 in Schrödinger picture and
in momentum representation is x�0�= i� �

�p . Consider the op-
erator U=e−�i/��Ht which is only a function of the momentum
operator p. Then Eq. �2� can be rewritten as

x�t� = U−1x�0�U

= U−1�x�0�,U� + U−1Ux�0�

= x�0� + i�U−1�U

�p
, �3�

where we have made use the relation �x�0� ,F�p��= i� �F�p�
�p .

Decomposition of Hamiltonian �1� into a sum of projection
operators makes possible to write that e��i/��Ht

=�ae��i/��EatQa. Now, substituting these operators into Eq.
�3� and using the orthogonality relations QaQb=�abQa it
yields the time dependence of the position operator,

x�t� = x�0� + �
a

Zaa + t�
a

VaQa + �
a

�
b�a

ei�abtZab,

�4a�

where
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Va�p� =
�Ea�p�

�p
, Zab�p� = i�Qa

�Qb

�p
, �4b�

and �ab=
Ea−Eb

� are the so-called beating frequencies. Here we
call Va as partial velocities and Zab as Zitterbewegung am-
plitudes. This is our central result in this work.

The interpretation of the different terms in Eq. �4� is as
follows. The first term is the initial position of the quasipar-
ticle. In contrast to the usual dynamics �for systems with one
degree of freedom�, the second and the fourth term are en-
tirely new. The second term is a displacement of the position
operator independent of time. The third term describes the
motion of the quasiparticle with constant velocity which is,
in general, not equal to any of the partial velocities Va. Fi-
nally, the Zitterbewegung stems from the last, oscillatory
term which describes the oscillatory motion of the quasipar-
ticle. The phenomenon of Zitterbewegung is similar to the
beating effect with different frequencies in the classical wave
mechanics. The Zitterbewegung is a direct consequence of
the coupling of different energy eigenstates for systems with
more than one degree of freedom. These terms in x�t� are
inherent of the Zitterbewegung and are expressed via the
projection operator Qa related to the given Hamiltonian.

Equation �4� is the most general form for describing the
phenomenon of the Zitterbewegung. Our result shows ex-
plicitly that the oscillatory motion �the last term in Eq. �4a��
is a superposition of individual oscillatory motions with fre-
quencies corresponding to all possible differences of the en-
ergy eigenvalues of Hamiltonian �1�. Thus in the most gen-
eral case the Zitterbewegung describes a multifrequency
oscillatory motion of the quasiparticle. This multifrequency
behavior of the Zitterbewegung has first been shown by Win-
kler et al. in Ref. 19 for two specific systems, namely, for the
Kane model and Landau-Rashba Hamiltonian. However, the
most clear manifestation of this multifrequency behavior of
the Zitterbewegung for the general Hamiltonian �1� can be
seen only in our main result �4�. In general, the Zitter-
bewegung cannot be described by only one frequency �this is
the case only for systems with two different eigenenergies�
but all of the differences between the different energy eigen-
values corresponding to the beating frequencies appear in the
time dependence of the position operator.

Sometimes in the explicit calculation of the position op-
erator x�t� it is more useful to use a different form for the
Zitterbewegung amplitudes Zab given by Eq. �4�. Taking the
derivative of the Hamilton operator H=�cEcQc and the or-
thogonality relation QcQb=�cbQb with respect to the momen-
tum p one can easily show that �for details see Ref. 34�

Zab = i�

Qa
�H

�p
Qb

Eb − Ea
, �5�

valid for a�b. Thus in the calculation of the Zitterbewegung
amplitudes instead of knowing the derivative of the projec-
tion operators with respect to the momentum one needs to
take only the derivative of the Hamiltonian. Another form of
the position operator x�t� is given in Ref. 34.

We now consider several examples to demonstrate how
versatile our result is to study different systems known in the
literature �for more details see Ref. 34�. Regarding the Zitter-
bewegung most of the systems studied in the literature are
described by a Hamiltonian with only two different
eigenvalues.1–33 In such systems either the Hamiltonian itself
is a 2�2 matrix or the dimension of the Hilbert space is
more than 2 but the eigenvalues are degenerate and the
Hamiltonian has only two different eigenvalues. Thus for
such systems it is useful to derive an alternative form for the
time dependence of the position operator given by Eq. �4�.
Now the Hamiltonian in terms of projectors reads
H=E+Q++E−Q−, where Q� are the projection operators sat-
isfying the usual relations mentioned above and E� are the
two eigenvalues of H. Introducing the operator T=Q+−Q− it
is obvious that T2= I. Note that in the mathematical literature
the operators satisfying this relation are called involutary op-
erator related to the mirror image in geometry. The
Hamiltonian can be rewritten as H=�I+ ��� /2�T, where
�= �E++E−� /2 and �= �E+−E−� /�. Moreover, it is clear that
Q�= �I�T� /2. Then using Eq. �4� one can easily show that

x�t� = x�0� + Wt + Z�t� , �6a�

where

W =
��

�p
I +

1

2

���

�p
T , �6b�

Z�t� =
�

2
sin��t�

�T

�p
+

i�

2
�1 − cos��t��T

�T

�p
. �6c�

From this result it is clear that in the oscillatory part of x�t�
there is only one frequency component.

Equation �5� can easily be applied to the original
Schrödinger’s Zitterbewegung and we find the same results
as that by Schrödinger.34 Another example is the Luttinger
Hamiltonian35,36 given by

H =
1

2m
�		1 +

5

2
	2
p2 − 2	2�pS�2� , �7�

where p= �px , py , pz� is the vector of the momentum opera-
tors, S= �Sx ,Sy ,Sz� represents the spin operator with spin 3/2,
m and 	1,2 are parameters of the model. Using Eq. �5� the
position operator for Luttinger Hamiltonian can easily be
derived �for more details see Ref. 34�,

x�t� = x�0� + �	1 +
5

2
	2

m
I4 −

2	2

m

�pS�2

p2 p t + sin��t�

��p�pS�2

p4 −
S�pS� + �pS�S

2p2 � + �1 − cos��t��

�
�p � S��pS�2 + 2�pS��p � S��pS� + �pS�2�p � S�

4p4 ,

�8�

where �=E+−E−= �2	2 /m�p2. Note that this result agrees
with that obtained by Winkler et al. in Ref. 19, and by Schli-
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emann in a private communication using a direct calculation
of the right-hand side of Eq. �2�.

We also consider a nontrivial example for the Zitter-
bewegung not known in the literature, namely, the Zitter-
bewegung for bilayer graphene. The Hamiltonian for bilayer
graphene in the four by four representation is given in Refs.
37 and 38. Including the trigonal warping38–40 the position
operator x�t� is more cumbersome but its structure and the
steps of the derivation are similar to the case when the trigo-
nal warping is omitted. Therefore, we now neglect the trigo-
nal warping. The position operator x�t� can be derived using
Eq. �4� but to obtain the Zitterbewegung amplitudes it is
more effective to use Eq. �5�. The results is quite lengthy
thus here we only refer to Ref. 34 for more details. This is a
nontrivial example for the Zitterbewegung. Since the Hamil-
tonian for bilayer graphene has four different eigenvalues,
we have six values of the energy differences. However out of
these six values there are only four different ones. Therefore,
the number of beating frequencies is only four. In this ex-
ample it is clear that the oscillatory motion of the electron is
a superposition of individual oscillatory motions with four
different frequencies.

Recently, for specific systems the connection between the
Zitterbewegung and the Berry phase has been noticed and
investigated by Vaishnav and Clark,23 and Englman and
Vértesi.28 We now show that the oscillatory terms, i.e., the
Zitterbewegung amplitudes in the position operator have a
close relation to the Berry connection matrix appearing in the
expression of the well-known Berry phase41 even for a gen-
eral Hamiltonian �1�. To this end we present another form for
position operator in terms of the eigenvectors of the
Hamiltonian.

The projection operator can be expressed via the
eigenvectors �ua,s�p�� of the Hamiltonian operator:
Qa�p�=�s�ua,s�p���ua,s�p��, where s denotes the different
eigenvectors in a subspace with the same energy eigenvalue
Ea. Then Eq. �4� can be rewritten as

x�t� = x�0� + t�
k

Vk�uk�p���uk�p��

+ �
k,l

�ei�klt − 1�Akl�p��uk�p���ul�p�� , �9a�

where

Akl�p� = i��uk�p��
�

�p
�ul�p�� . �9b�

Here Akl is the so-called Berry connection matrix. The index
k labels the eigenvectors of the Hamiltonian with taking into
account their multiplicity.

For systems with precessing spin in an effective magnetic
field it turns out that to study the Zitterbewegung Eq. �9� is
more appropriate than Eq. �4�. This is demonstrated in Ref.
34 where we find the same result for the position operator as
that we derived before using a different approach.33

So far we concentrate on the structure of the Zitter-
bewegung for general Hamiltonian �1�. However, the obser-

vation of the Zitterbewegung experimentally is more difficult
problem. It is well known that the spatial size of the trem-
bling motion of the relativistic electron predicted by
Schrödinger is of the order of Compton wavelength and its
frequency is far beyond the present experimental
possibilities.1 The experimental observation of the Zitter-
bewegung in the nonrelativistic quantum regime such as in
semiconductors with spin-orbit couplings7 is much more
promising. For example, Vaishnav and Clark,23 and Merkl et
al.31 have proposed an experiment for observing Zitter-
bewegung using ultracold atoms, while Rusin and Zawadzki
have proposed an experiment for observing Zitterbewegung
probed by femtosecond laser pulses in graphene.32 Very re-
cently, Gerritsma et al.42 have performed a quantum simula-
tion of the Dirac equation using a single trapped ion and
observed the Zitterbewegung.

One of the difficulty of observing the Zitterbewegung is
the lack of time resolved probes. The initial state, in general,
is a superposition of different momentum eigenstates:
�
0�=�d3p�kck�p��uk�p��. Therefore, the expectation value
is x�t�= �
0�x�t��
0�=�d3p�k,lck

��p�cl�p��uk�p��x�t��ul�p��
which involves the integration over the momentum p. Since
in Eq. �4� the beating frequencies �kl�p� depend on the mo-
mentum p the integration over the momentum p in x�t� may
result in a strong suppression of the Zitterbewegung in time.
This problem can be circumvented if at least one beating
frequency is independent of the momentum p of the quasi-
particle. This is the case, for example, for bilayer graphene
as shown by the authors of the present paper.34 One
beating frequency is constant and in the detectable regime
�=	1 /��0.6 fs−1, where 	1�0.4 eV is the strongest inter-
layer coupling between two carbon atoms that are on the top
of each other.37–40 The amplitudes of the trembling motion
will be investigated in the near future. Our main aim in this
Rapid Communication is to establish a general theory for the
Zitterbewegung. On the other hand our general theory can be
a good starting point to search for systems that are realistic
for experimental observation of the Zitterbewegung.

We presented a general theory for Zitterbewegung and
derived a general and simple expression for the position op-
erator x�t� in Heisenberg picture and in momentum represen-
tation, and for a given system it can easily be calculated. In
contrast to systems studied in the literature1–5,7–16,19–33 the
Zitterbewegung is a universal phenomenon and it always ap-
pears in the quantum dynamics of a system of quasiparticle
with more than one degree of freedom. Our main result �4�
shows that the Zitterbewegung, in general, is a multifre-
quency beating effect in Heisenberg picture and has a close
relation to the Berry connection. We believe that our work
presented here provides a better understanding and experi-
mental guide for the Zitterbewegung studied intensively in
the literature.
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