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It is known that fluctuations in the electrostatic potential allow for metallic conduction �nonzero conductivity
in the limit of an infinite system� if the carriers form a single species of massless two-dimensional Dirac

fermions. A nonzero uniform mass M̄ opens up an excitation gap, localizing all states at the Dirac point of

charge neutrality. Here we investigate numerically whether fluctuations �M �M̄ �0 in the mass can have a
similar effect as potential fluctuations, allowing for metallic conduction at the Dirac point. Our negative
conclusion confirms earlier expectations but does not support the recently predicted metallic phase in a
random-gap model of graphene.
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Two-dimensional Anderson localization in the Dirac
equation shows a much richer phase diagram than in the
Schrödinger equation.1 The discovery of graphene2 has pro-
vided a laboratory for the exploration of this phase diagram
and renewed the interest in the transport properties of Dirac
fermions.3 One of the discoveries resulting from these recent
investigations4–6 was that electrostatic potential fluctuations
V�r� induce a logarithmic growth of the conductivity �
� ln L with increasing system size L. In contrast, in the
Schrödinger equation all states are localized by sufficiently
strong potential fluctuations7 and the conductivity decays ex-
ponentially with L.

Localized states appear in graphene if the carriers acquire
a mass M�r�, for example due to the presence of a sublattice
symmetry-breaking substrate8,9 or due to adsorption of
atomic hydrogen.10,11 Anderson localization due to the com-
bination of �long-range� spatial fluctuations in M�r� and V�r�
appears in the same way as in the quantum Hall effect �QHE�
�Refs. 1 and 12�: all states are localized except on a phase

boundary13 of zero average mass M̄ =0, where � takes on a
scale invariant value of the order of the conductance quan-
tum G0=4e2 /h �the factor of 4 accounts for the twofold spin
and valley degeneracies in graphene�.

An altogether different phase diagram may result if only
the mass fluctuates, at constant electrostatic potential tuned
to the charge neutrality point �Dirac point, at energy E=0�.
The universality class is now different from the QHE be-
cause of the particle-hole symmetry �xH

��x=−H of the
single-valley Dirac Hamiltonian

HDirac = v�px�x + py�y� + v2M�r��z. �1�

The Pauli matrices �i act on the spinor ��A ,�B�, containing
the wave-function amplitudes on the A and B sublattices of
graphene. The term proportional to �z represents a staggered
sublattice potential, equal to v2M �−v2M� on sublattice A
�B�. Anderson localization in the presence of particle-hole
symmetry has been studied extensively14–18 in the context of
superconductivity, where the Dirac spectrum appears from

the superconducting order parameter rather than from the
band structure. The �numerical� models used in those studies
contain randomly distributed vortices in the order parameter
and are therefore not appropriate models for graphene.

It is the purpose of this work to identify, by numerical
simulation, what is the phase diagram of the Dirac Hamil-

tonian with a random mass M�r�=M̄ +�M�r�—in the ab-
sence of any other source of disorder. This study was moti-
vated by recent analytical work by Ziegler in the context of
graphene,19 which predicted a transition into a metallic phase
upon increasing the disorder strength �M at constant average

mass M̄ �0. Such a metal-insulator transition was known in
the context of superconductivity,15 but it was understood that
this requires vortex disorder.20–22 In order to resolve this con-
troversy, we perform a numerical scaling analysis of the con-
ductivity and find no metallic phase as we increase �M.

We calculate the conductivity � for a two-dimensional
strip geometry between electron reservoirs �at x=0 and
x=L, see inset in Fig. 2�, with periodic boundary conditions
in the transverse direction �at y=0 and y=W�. The Fermi
level is tuned to the Dirac point in the strip while it lies
infinitely far above the Dirac point in the reservoirs. For zero
mass M and large aspect ratio W /L the conductivity has the
scale-independent value23,24 �0=G0 /�. We generate a ran-
dom mass with Gaussian correlator

��M�r��M�r��� =
��/v�2K0

2��2 e−�r − r��2/2�2
, �2�

characterized by a correlation length � and a dimensionless
strength

K0 = �v/��2� dr��M�0��M�r�� . �3�

A contour plot for a single realization of the disorder is
shown in Fig. 1.

The N	N transmission matrix t through the strip is cal-
culated from HDirac by application of the numerical method
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of Ref. 4 to a random mass rather than to a random scalar
potential. We obtain t from the transfer matrix T, which re-
lates ���x=L��=T���x=0�� and is given by

T = �
n=1

NL

e1/2�xQ�Tne1/2�xQ, Q = − i�z
�

�y
−

v
�

M̄�y . �4�

Scattering from the fluctuating mass �M�r� in the slice
�n−1��x
x
n�x, of incremental length �x=L /NL, is
approximated by the transfer matrix

�Tn =

1 −
1

2
�Mn�y��y

1 +
1

2
�Mn�y��y

, �5a�

�Mn�y� =
v
�
�

�n−1��x

n�x

dx�M�r� . �5b�

Approximation �4� becomes exact in the limit NL→�. More-
over, for any NL it satisfies the requirements of particle-hole
symmetry ��xT��x=T� as well as current conservation
��xT†�x=T−1�.

We thus obtain the conductance G=G0 Tr tt† and the con-
ductivity �=G	L /W. The number of transverse modes N
and longitudinal slices NL are truncated at a finite value,
which is increased until a sample specific convergence is
reached. For the data presented, this is typically achieved
when N=400–800 and NL=300–600, with the larger values
needed for larger values of K0. The sample width W
=400�–800� is chosen large enough that the conductivity is
independent of the ratio W /L. �Typically, W /L�3–5, with

the larger values needed for smaller values of M̄.� Averages
over a large number of disorder configurations �typically
1000� produce the results plotted in Figs. 2 and 3.

For M̄ =0 �Fig. 2� the conductivity stays close to the scale
invariant value �0 �dashed line�, no matter how large the

disorder strength, while for nonzero M̄ �Fig. 3� the conduc-
tivity decays with increasing L. For sufficiently large L /� we
expect single-parameter scaling, meaning that the data for

different K0 and M̄ should all fall on a single curve upon

rescaling L→ f�K0 ,M̄�L. �This amounts to a horizontal dis-
placement of data sets on a logarithmic horizontal scale.� The

length �loc=� / f�K0 ,M̄� can then be identified with the local-
ization length �up to a multiplicative constant�. As one can
see in the lower panel of Fig. 3, the data sets collapse rea-
sonably well onto a single curve upon rescaling. �The re-
maining deviations may well be due to finite-size effects.�

For weak disorder �K0
1� our results are similar to ear-
lier work on the superconducting random mass model.14 That

FIG. 1. �Color online� Contour plot of a random mass with
Gaussian correlator �2�, for K0=10. The zero-mass contours are
indicated in black.

FIG. 2. �Color online� Average conductivity � as a function of

length L �for fixed W=800��. The average mass is set at M̄ =0,
while the mass fluctuations are varied by varying K0. The dashed
line is at �0 /G0=1 /�. The inset shows the layout of the disordered
charge-neutral strip �dotted rectangle� between infinitely doped
electron reservoirs at a voltage difference V �gray rectangles�.

(b)

(a)

FIG. 3. �Color online� Same as Fig. 2 but now for a nonzero

average mass M̄ =5	10−3� /v� �solid curves, W=800�� and

M̄ =5	10−2� /v� �dashed curves, W=400��. The lower panel
shows the same data on a logarithmic horizontal scale, rescaled by

�loc=� / f�K0 ,M̄�.
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model however shows a metal-insulator transition at values
of K0=Kc of order unity16,18 �weakly dependent on M̄� such
that for larger disorder the conductivity increases logarithmi-
cally with system size3,15

� = �0 ln�L/��, for K0 
 Kc � 1. �6�

As argued by Read, Green, and Ludwig20,22 and by Bocquet
et al.,21 metallic conduction in a random mass landscape re-
quires resonant transmission through contours of zero mass
�the black contours in Fig. 1�. These contours support a
bound state at zero energy if and only if they enclose an odd
number of vortices. Without vortices, the phase shift accu-
mulated upon circulating once along a zero-mass contour
equals �—so there can be no bound state and hence no reso-
nant transmission. �The � phase shift is the Berry phase of
the rotating pseudospin � in HDirac, without any dynamical
phase shift because the energy is zero.� Our numerical find-
ing that there is no metallic conduction in the random mass
landscape without vortex disorder is therefore consistent
with these analytical considerations.

From the more recent analytical work by Ziegler19 we
would expect a transition into a phase with a scale invariant
conductivity

�c = �0	1 − �M̄/Mc�2
 , �7�

when Mc= �� /v��exp�−� /K0� becomes larger than M̄ with
increasing disorder strength K0. The corresponding critical

disorder strength Kc=� / ln�v� /�M̄��0.6–1.0 for the values

of M̄ in Fig. 3. The numerical findings of Fig. 3, with a
decaying conductivity for K0
10Kc, do not support this
prediction of a nonzero Mc. Note that the numerical data of

Fig. 2, with a scale invariant conductivity �c=�0 for M̄ =0,

does agree with Eq. �7�—it is the M̄ 
0 data that is in dis-
agreement.

In conclusion, we have presented numerical calculations
that demonstrate the absence of metallic conduction for the
Dirac Hamiltonian �1�, in a random mass landscape with
nonzero average and dimensionless variance K0�1. The de-
cay of the conductivity with system size L is slower for
larger disorder strengths, but no metal-insulator transition is
observed. A transition into a metallic phase �with �� lnL�
has been attributed to vortex disorder.20–22 Our numerical
results are consistent with this attribution since our model
contains no vortices and has no metallic phase even if
K0�1.
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