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We analyze coherent spin phenomena in triple quantum dots in triangular configuration under crossed dc and
ac magnetic fields. In particular, we discuss the interplay between Aharonov-Bohm current oscillations, coher-
ent electron trapping and spin blockade under two-electron-spin-resonance configurations. We demonstrate an
unexpected antiresonant behavior in the current, allowing for both removal and restoration of maximally
entangled spin-blockaded states by tuning the ac field frequency. Our theoretical predictions indicate how to
manipulate spin qubits in a triangular quantum dot array.
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I. INTRODUCTION

Electronic transport through mesoscopic systems can be-
come correlated not only by charge interaction but also by
the spin degree of freedom. A dramatic combination of both
can be found in systems where strong Coulomb interaction
limits the population to a small number of electrons �Cou-
lomb blockade� and where Pauli exclusion principle avoids
certain internal transitions—spin blockade �SB�. This was
first observed as a rectification effect in the current through a
double quantum dot �DQD�.1

Recent experiments have taken advantage of SB to
achieve qubit operations in a double dot by electric gate
control2 or by electron-spin resonance �ESR�.3 It consists of
inducing transitions between the electron’s spin-up and spin-
down states, which are split by the Zeeman energy coming
from a dc magnetic field, Bdc. Different mechanisms have
been considered: crossed dc and ac magnetic fields �Bac�,
where the ac frequency is resonant with the Zeeman
splitting,4,5 effective Bac induced by ac electric fields in the
presence of spin-orbit interaction,6 slanting Zeeman fields,7

or hyperfine interaction.8

Lately, a next step toward quantum dot arrays has been
reached: tunnel spectroscopy measurements with triple quan-
tum dots �TQDs�, both in series9 and in triangular
configurations,10 have been achieved. Theoretical works in
these systems11,12 analyze their eigenstates and stability dia-
gram, as well as the effect of a magnetic field penetrating the
structure. TQDs with strongly correlated electrons have also
been investigated in the Kondo regime13 and have been pro-
posed as spin entanglers.14 Additionally, these systems show
a more peculiar property which is intrinsic to three-level sys-
tems, namely, coherent population trapping, which is a well-
known effect in quantum optics and which was observed in
three-level atoms excited by two resonant laser fields.15

There, the electronic wave function evolves toward an eigen-
state superposition, a so-called dark state, which is decou-
pled from the laser fields and therefore it manifests as an
antiresonance in the emission spectrum. An analogy in trans-
port has been made when coherent superpositions avoid
transport by interference between tunneling events. These
dark states can be achieved by driving three-level double
dots with bichromatic ac electric fields16 or by the interfer-

ence of tunneling processes in TQDs.17,18 It was shown19

how coherent trapping can be lifted in closed-loop TQDs by
means of the Aharonov-Bohm �A-B� effect.20

Here, we will discuss the electron-spin dynamics and
transport for the case where a triangular TQD contains up to
two extra electrons, as shown in Fig. 1. In contrast to the
single electron case, spin correlations can influence transport
due to SB.21 We will show that at certain Bac frequencies and
sample configurations, the magnetic field brings the elec-
tronic wave function into a superposition of parallel spins
states, unexpectedly bringing the system back to SB.

II. MODEL

We consider a system consisting of three dots which are
coupled through tunnel barriers, and dots 1 and 3 are also
connected to source and drain contacts respectively. The

FIG. 1. �Color online� Coherent processes in a triangular TQD,
with one electron confined in the dot connected to the drain.
�1=�2��3, where �i is the Zeeman splitting in dot i. Transport
through the system depends on the magnetic flux � penetrating the
system and on the frequency � of the time-dependent magnetic
field Bac. The shaded areas �blue and red� indicate the existence of
a dark state.
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Hamiltonian of the system is Ĥ�t�= ĤTQD+ Ĥ�+ ĤT+ Ĥleads

+ ĤB�t�. ĤTQD=�i��iĉi�
† ĉi�+�iUin̂in̂i+�i,j,i�jVijn̂in̂j describes

the uncoupled TQD, Ĥ�=−�ij���ijĉi�
† ĉj�+H.c.�, the coherent

tunneling between the dots, ĤT=�l�L,Rk���ld̂lk�
† ĉl�+H.c.�

describes the coupling of the dots to the leads, and Ĥleads

=�lk��lkd̂lk�
† d̂lk� the leads themselves. �i is the energy of an

electron located in dot i, Ui is the intradot and Vij =V the
interdot Coulomb repulsion. If not stated otherwise, we set
��ij � =�.

The Hamiltonian for the magnetic field, ĤB�t�, has two
components: a time-independent dc component along the z
axis that breaks the spin degeneracy by a Zeeman splitting
�i=giBzi, and a circularly polarized ac component in the
xy-plane that rotates the z-component of the electron spin
when its frequency fulfills the resonance condition ��i=�i.

It reads as ĤB�t�=�i=1
3 ��iŜzi+Bac�cos��t�Ŝxi+sin��t�Ŝyi��,

being Si=
1
2����ĉi�

† ����ĉi�� the spin operator of the −ith dot.
As shown in Ref. 5, the ac magnetic field has no effect on SB
unless the Zeeman splitting is inhomogeneous in the sample.
Here we will consider the simplest configuration that allows
to analyze the relevant mechanisms: �1=�2��3. The ex-
perimental feasibility7,22 justifies the choice of the present
configuration.

The dynamics of the system is given by the time evolution
of the reduced density matrix whose equations of motion
read as, within the Born-Markov approximation,

	̇ln�t� = − i�l��ĤTQD + Ĥ� + ĤB�t�,	��n�

+ �
k�n

�
nk	kk − 
kn	nn��ln − �ln	ln�1 − �ln� . �1�

The commutator accounts for the coherent dynamics in the
TQD, 
ln are the transition rates from state �n� to state �l�
induced by the coupling to the leads and decoherence ap-
pears by �ln= 1

2�k�
kl+
kn�.
We consider a configuration where the dot coupled to the

drain is permanently occupied by one electron �see Fig. 1�,
and only up to two electrons can be in the system. Double
occupancy is only allowed in the drain dot. This is the case
when the chemical potentials in the leads satisfy
�3+V
�R
�3+U3 and �L
�1+2V. For resonant tunnel-
ing, �1=�2 and �1,2+V=�3+U3. Out of the full TQD
basis with up to two electrons, there are then 11one- and
two-electron states that dominate the dynamics: �0,0 ,��,
��1����= �� ,0 ,���, ��2����= �0,� ,��� and �S3�= �0,0 , ↑↓�,
with � ,��= 	↑ ,↓
. Transport is biased from left to right and
only state �S3� contributes to tunneling through to the drain,
acting as a bottleneck for the current: I�t�=�n
nS3

	S3S3
�t�.

Though being confined, the electron in dot 3 is essential to
induce spin-correlated transport. A Bdc perpendicular to the
plane of the triangular dot structure �Fig. 1� encloses a mag-
netic flux � such that electron tunneling acquires an addi-
tional phase �=2�� /�0, with �0=h /e being the flux quan-
tum. We accumulate the phase between dot 1 and dot 2,
�12=�e−i�.

III. UNDRIVEN CASE (Bac=0)

It is well known19 for a TQD with up to one extra elec-
tron, that due to interference, the current oscillates with �
�A-B oscillations� and periodically drops to zero with a
periodicity of �0 /2. For the understanding of the
two-electron-spin dynamics, it is crucial to look at the eigen-
states of this system, which change depending on the flux �.
For � /�0= n

2

�����
− � =

1
�2

���2���� − ��1����� �,�� = 	↑ ,↓
 �2�

����
+ � =

1
�2

���2��� + ��1���� � = 	↑ ,↓
 �3�

are eigenstates of the closed system. States �2� avoid tunnel-

ing to �S3�: �����
− �Ĥ��S3�=0, which is why they are also called

dark states �see Fig. 1�. Occupation of �S3� thus decays by
the coupling to the drain �Fig. 2�b�� and current is blocked.
The states in Eq. �2� resemble the dark states found in the
single electron case.17 A significant difference is that for two
electrons the spin degree of freedom plays a role: Pauli ex-
clusion principle introduces spin correlation such that dark
states �����

− � with �=�� are avoided. The electrons are rather
being trapped in combinations of dark states �����

− � with
���� and spin-blockaded states ����

+ �. Thus, SB competes
with coherent population trapping in the blocking of the cur-
rent, and the relative occupation of �����

− � ������, and ����
+ �

depends on the initial condition. If however �=�0 /4, the
A-B phase removes the dark state and only eigenstates with
parallel spins are decoupled from �S3�,
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FIG. 2. �Color online� �a� 	ii for � /�0=0.25, Bac=0. I is
blocked due to SB, once the parallel spin states �dashed and dotted
red lines� are occupied. �b� 	ii for � /�0=0.5, Bac=0. Due to SB,
there is a finite occupation of parallel spin states ��l��� �dashed and
dotted red lines�, while electrons with antiparallel spin form dark
states as in �2� �solid and dashed-dotted blue lines�, all of them
contributing to quench the current. �c� I-�: for Bac=0, I=0 due to
SB �dashed blue line�; Bac�0: for ��ac=�1,2, SB is removed and
the current shows A-B-like oscillations �solid purple line�. Rabi
frequency: ��=2�. �=0.0026, 
=0.01 in meV, �3=0.77�1,
�1=�2.
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����
� � =

1
�2

���2��� � ı̇��1���� � = 	↑ ,↓
 . �4�

Coherent trapping is hence lifted, however, transport is still
cancelled by SB �Figs. 1 and 2�a��. One can appreciate that
without Bac, the system is always blocked for transport —the
stationary current is insensitive to A-B effect due to SB.

IV. DRIVEN CASE (BacÅ0)

In order to remove SB, we apply a time-dependent Bac.
Figure 2�c� shows the I-� characteristics of the TQD excited
by Bac, where for every value of �, the magnetic field fre-
quency fulfills the resonance condition ��=�1,2. For
� /�0�n /2, dark states are avoided by A-B effect, and Bac
enables transitions of the form ��l���→ ��l����→ �S3� that
produce a finite current.

It can be shown that Bac does not affect the destructive
tunneling interference of the superpositions �Eq. �2��. Then,
if � /�0=n /2 the system evolves toward a state which is
only composed of dark states performing spin rotations:
�����

− �↔ ����
− �, as shown schematically in Fig. 1. Since the

dark states are decoupled from transport, the oscillations can
only be affected by decoherence due to spin scattering pro-
cesses, which are not considered here. Hence, a Bac induces
current through the system only when assisted by the A-B
lifting of dark states; i.e., for � /�0�n /2 �Fig. 2�c��.

Remarkably, not imposing the resonance condition
��=�i, one can find a novel kind of SB induced by Bac,
quenching the current even in the presence of A-B effect.
This is the main result of our work. As can be seen in
Fig. 3�a�, the current shows a resonant behavior as the

frequency of Bac approaches the ESR condition �i.e.,
����1, �3�. Surprisingly though, an antiresonance appears
for ��0= ��1+�3� /2, i.e., when the two electrons are equally
far from the ESR condition. Note that the two peaks around
the antiresonance are not Lorentzian-like and cannot be iden-
tified as two different resonance peaks centered at the condi-
tions ��=�1=�2 and ��=�3, but as a collective effect due
to the simultaneous rotation of the two-electron spins �2ESR�
�cf. Fig. 1�.

We want to stress that the appearance of the antireso-
nance does not depend on the field intensity Bac or tunnel
couplings �ij �see Figs. 3�a� and 3�b��: it occurs for different
�ij as well as for linear TQD configurations �setting �13=0�
and DQDs in series5 �setting �12=�23=0� �see Fig. 3�b��. The
width of the antiresonance scales with the Rabi frequency of
the coherent processes involved:23 spin rotation ��Bac� and
interdot tunneling ���ij� �Figs. 3�a� and 3�b�, respectively�; it
also depends on the tunneling rate through the contact barri-
ers, which induce decoherence �see Fig. 3�c��.

The quenching of the current can be understood
analytically by transforming the Hamiltonian into the
rotating frame. Applying the unitary operator

Û�t�=exp	−i�t�i=1
3 Ŝzi
, the magnetic field term reads:

ĤB� =�i=1
3 ���i−���Ŝzi+BacŜxi�. One can easily verify that, at

��0= ��1+�3� /2, the coherent superpositions

���� =
1
�2

���↓↓
� � − ��↑↑

� �� �5�

are eigenstates of the Hamiltonian Ĥ�= Ĥ�+ ĤB� . Since the
electrons in Eq. �5� have parallel spins, current is quenched
due to SB. Note that the electron spins in Eq. �5� are maxi-
mally entangled. We want to emphasize that SB can be
switched on and off by tuning the frequency of Bac, which is
usually introduced to lift it, or by changing the flux � at a
fixed frequency � �see Fig. 3�d��.

In TQDs, a necessary condition for Eq. �5� to be eigen-

states of Ĥ� and thus for the current blocking to occur, is the
equal coupling of dots 1 and 2 to Bdc, i.e., �1=�2���3�. If

�1��2 though, this symmetry is broken and ĤB� couples all
parallel to antiparallel spin states and thus to the transport
state �S3�. However, numerical results show that even in the
asymmetric case, a pronounced antiresonance due to SB still
appears in the current. By means of a perturbative analysis
for �1−�2�� it can be shown that the antiresonance occurs
at a frequency �1
 1

2 �
�1+�2

2 +�3� �see Fig. 4�. The electrons
drop into an eigenstate ���� which is similar to Eq. �5� but
includes a small contribution of antiparallel spin states which
produces a small leakage current. This leakage current in-
creases as �1−�2 becomes of the order of �.

V. BICHROMATIC Bac

Finally we will show that for �1=�2 SB can also be in-
duced by a bichromatic Bac, tuning its frequencies to
��1=�1,2 and ��2=�3, so every electron is kept in reso-
nance regardless of its location. Assuming that the inhomo-
geneity in the Zeeman splittings is high enough so one can
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FIG. 3. �Color online� 2ESR in a TQD by tuning �, for
� /�0=0.25, is manifested in the current as an antiresonance at
��0= ��1+�3� /2. �a� For different Bac and fixed �ij =�: The width
of the antiresonance depends on the Rabi frequencies associated
with � and Bac. �b� For different �ij and fixed Bac=� /2. The anti-
resonance appears for any configuration of the �ij. �c� For different

 and �ij =�. �d� I-� for fixed � while tuning Bdc, so both � and �i

are modified. A-B oscillations are suppressed by SB except when
the Zeeman splittings are close to resonance with �. At
� /�0=0.25, �=�0 and current vanishes. Parameters: �=0.005,

=
�=0.01.
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neglect the off-resonance terms, the Hamiltonian ĤB�t� can

be written as ĤB,2=�i=1
3 ��iŜzi+Bac�cos��it�Ŝxi+sin��it�Ŝyi��.

Again, by means of the unitary transformation Û�t�
=exp	−i�i�iŜzit
, the states �Eq. �5�� turn out to still be

eigenstates of the transformed ĤB,2� , even if the two spins are
now rotating in resonance. The bichromatic Bac washes out
all the states with antiparallel spins, driving the system into
SB in spite of the Zeeman inhomogeneity �see Fig. 5�.

VI. CONCLUSIONS

In summary, we have shown theoretically that TQD sys-
tems in triangular configuration under dc and ac magnetic
fields exhibit rich dynamics due to the interplay of different
coherent phenomena induced by the magnetic fields. For two
extra electrons in the system the interplay of Pauli exclusion
principle and coherent trapping is discussed in terms of the
magnetic flux piercing the TQD. We have shown that, in
contrast to the one-electron case, due to SB, electrons remain

trapped even for � /�0�n /2. We demonstrate that a generic
property of monochromatic and bichromatic magnetic fields
is to induce SB at certain frequencies in both DQDs and
TQDs. Furthermore, the coherent superposition induced by
the Bac constitutes a novel SB state and is decoupled from
the field. Its experimental realization will allow one to infer
properties of the system such as Zeeman inhomogeneities,
and to manipulate spin qubits in DQDs and TQDs. It opens
new perspectives for manipulating spin transport properties,
thereby providing possibilities for designing spintronic de-
vices.
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FIG. 5. �Color online� 	ii in a TQD excited by a bichromatic Bac,
where �1=�1,2 and �2=�3. In the stationary limit, parallel spin
states decouple from Bac and form coherent superpositions as in Eq.
�5� thereby blocking the current.
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