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Bulk manifestation of the spin Hall effect
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We show that an inhomogeneous spin-orbit-coupled system supports bulk manifestations of the spin Hall
effect, and we develop a theory of this phenomenon in the framework of the spin diffusion equation formalism.
In the presence of a spin-density wave with wave vector perpendicular to an applied electric field, an anoma-
lous charge-density wave, characterized by a 7/2-phase shift and a nonmonotonic time-varying amplitude, is
induced away from the sample boundaries. The optimal conditions for observing the effect are determined.
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Electron-spin transport in semiconductors has recently
evolved into a subject of intense research as key element of
the rapidly developing field of spintronics.'? One of the main
challenges is to generate spin polarization and to transport
spin in nonmagnetic materials using electric fields by taking
advantage of the coupling between spin and orbital degrees
of freedom.>* Of particular importance in this respect are a
family of anomalous transverse transport phenomena, such
as the spin Hall effect,>® which has recently received tremen-
dous attention. The most common experimental manifesta-
tion of the effect is the appearance of spin accumulation near
the edges of the sample’ if an electric current is driven
through a system with either intrinsic or extrinsic (i.e.,
impurity-induced) spin-orbit coupling.'® Hence, the magni-
tude of the effect can depend strongly on the specific bound-
ary conditions.!'~!* The role of the edge is to create a strong
inhomogeneity where the experimentally observable spin
density can accumulate. However, it is possible to create
large length scale inhomogeneities in a controlled way, for
example by generating a modulated charge or spin distribu-
tion or a spatially varying spin-orbit coupling. By analogy
with the canonical edge spin Hall effect, the externally gen-
erated charge or spin densities would effectively create mul-
tiple boundaries in the bulk, thus producing a bulk manifes-
tation of the direct or inverse spin Hall effect and allowing
for a controlled study of this phenomenon. '3

An effective way of producing bulk manifestations of the
spin Hall effect, suggested by the recent work of Koralek et
al.,'® is to use the transient spin grating (TSG) technique!’~""
to generate and monitor time-dependent spin and charge pro-
files. Within the TSG method, a sinusoidal spin-polarization
wave is generated by two interfering noncollinear laser
beams with orthogonal linear polarization. This induces a
modulation in the index of refraction, which can be mea-
sured at subsequent times by the diffraction of a probe pulse.
In the presence of an external electric field oriented perpen-
dicular to the spin-polarization wave vector, a charge density
with the same wave vector is expected to develop (see Fig.
1). Alternatively, in a spin-orbit interacting system a charge
density wave is expected to induce spin modulation under
the action of an external electric field.

In this Rapid Communication, we develop a theory of the
bulk spin Hall effect in the diffusion limit, in the presence of
Rashba* and (linear and cubic) Dresselhaus’ spin-orbit inter-
actions. We focus on the time evolution of a charge density
profile induced by an optically generated spin-polarization
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wave and its dependence on the spin-orbit couplings and on
the spin-grating wave vector. In particular, we determine the
optimal parameters for observing the spin Hall effect with
spin gratings. These optimal parameters result from a bal-
ance between two competing requirements: (1) to create
slowly decaying spin-polarization waves and (2) to have a
strong spin-charge coupling. The first requirement is related
to the more general challenge in the field of spintronics of
identifying mechanisms allowing for long spin-relaxation
times. In the presence of disorder, spin-orbit interactions lead
to spin relaxation through the Dyakonov-Perel mechanism.?”
Recently, it was shown that an enhanced spin life time can be
realized by tuning the spin-orbit coupling so that the Rashba
and the linear Dresselhaus couplings become equal.!#1621-23
In this regime, SU(2) spin symmetry is restored, allowing for
a long lifetime helical spin density mode?' termed the “per-
sistent spin helix,?*” provided that the cubic Dresselhaus
contribution be minimized.”* However, in the persistent spin
helix regime the coupling between the spin and the charge
channels vanishes and the spin Hall effect cannot be ob-
served. Hence, the second requirement: the existence of a
strong spin-charge coupling.

We consider a two-dimensional electron gas in a II-V
type semiconductor quantum well grown along the [001]
axis (set as the z axis). In the presence of Rashba,* as well as
linear and cubic Dresselhaus® spin-orbit interactions, the
Hamiltonian describing the conduction-band electrons is

(initial spin—density profile) (induced charge—density profile)

FIG. 1. (Color online) Charge-density profile induced by the
relaxation of a spin-density wave in the presence of a uniform elec-
tric field. The initial spin density corresponds to a sinusoidal wave
with wave vector q of the out-of-plane S, component, as symbol-
ized by the blue (spin up) and red (spin-down) arrows. The in-plane
electric field is oriented perpendicular to q. Notice the g shift of the
induced charge-density profile relative to the spin-density wave.
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=f—m+h<p> .6, (1)

where m is the effective mass, 6-=(d,d,) are Pauli matrices,
and h(p)=(h,,h,) is the momentum-dependent effective
“magnetic” field describing the spin-orbit interaction. The
Rashba linear and cubic Dresselhaus contributions to the
spin-orbit  coupling are  hf(p)=av(-p,.p,), h”!(p)

=Bwppe—py), and hP3(p)=—4B(p.p}.—p,p3). respec-
tively. Here vy and pp are the Fermi velocity and momen-
tum, respectively, and the coupling constants «, B, and s
measure the strength of the spin-orbit interaction relative to
the Fermi energy. In the presence of disorder, the coupled
spin and charge dynamics can be described by a generalized
diffusion equation, which in the absence of an external elec-
tric field has the form?*+2

(0= DV)pi= (T = P, 4+ €T V)p,  (2)

where py is the charge density and p; 5 3= p,, . are spin den-
sities. The parameters I'V describe the Dyakanov-Perel spin
relaxation,? D= TU%/ 2 is the diffusion constant, with 7 as the
mean scattering time, P/*=—P/* characterize the precession
of the spin polarization and C¥ describe the coupling be-
tween the spin and charge degrees of freedom. In momentum
space, the diffusion equation becomes [é‘ij—f[,-j(w,k)]pj=0,
where l_A[,-j have coefficients given by I'/, PU and C%.>* The
formal solution of the diffusion equation is p;(r,?)
=[dr'Dy(r,x’",1t)p,(r" ,0), where p,(r,0) is the initial spin-
charge distribution and D=[1-TI]"" is the Green’s function
of the diffusion equation or the diffuson.

The generalization of the spin-charge diffusion formalism
developed in Ref. 24 for the case of a uniform electric field
amounts to the formal substitution

V — V+uE/2D, (3)

where E is a uniform electric field and w is the mobility of
the two-dimensional electron gas. Note that, neglecting the
spin-charge coupling, this substitution generates the standard
drift-diffusion equation for the charge channel, while the de-
scription of the spin sector is in agreement with a semiclas-
sical kinetic theory of electron-spin transport derived using
the Keldysh Green’s function formalism.?®?’ Substitution (3)
is valid as long as nonlinear contributions of order O(E?) are
small and assuming that the effects of the electron-electron
Coulomb interaction can be neglected. Without loss of gen-
erality, we focus on the geometry corresponding to Fig. 1 and
consider a system with an initial out of plane spin-density
wave, p.(r,0)=ng cos(gr,), oriented along the [110] direc-
tion (e,) and a weak constant electric field, E=FEe_, oriented

along [110](e_). In momentum space, substitution (3) be-
comes k—k—iuE/D and the inverse of the diffuson is
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(4)

where E =uEL,/2D is a dimensionless measure of the elec-
tric field strength and s=—iw(g)+¢*+ 1. All lengths are mea-
sured in units of spin-relaxation length, L,=1/2pzA and
times in units of spin-relaxation time, 7,=27/g*A, where A
=[?+(B,-B3)*+33]"> and g=2v;pp7 is a dimensionless
conductance. The spin-spin coupling parameters,”* 7.
=Yr* ¥p, With yz=2a/A and yp=2(B,-B3)/A, are inde-
pendent of the overall strength of the spin-orbit interaction
[=(?+B5+B5)"? and lie within a disk of radius 2. The
spin-charge coupling parameters,>* .=\, *\,, with \,
=[(3Bs-B)(?-Bi+B)-BiB/A  and  N=ala®- B
+6,8§)/A, are quadratic in the spin-orbit interaction strength.

The induced charge density py(r,7) is determined by the
matrix element Dy;==7 (A,(q)e™(9" of the diffuson. Here
iw/(q) are the relaxation modes obtained from the equation

det[1-1I1(w,q)]=0 and A,(q) are momentum-dependent am-

plitudes. To order O(E?) the relaxation times are independent
of the electric field, while the amplitudes have a linear de-

pendence, A,(q)=i(uE/vy)qA(q), with A,(q) being an even
function of momentum and ¢g=q-e,. Note that, if one ini-
tially generates a charge density profile, the external electric
field induces a spin wave with a spatial and time dependence

determined by ﬁ30=—ﬁ03. Hence the present analysis applies
to both the direct and the inverse spin Hall effect. Explicitly,
an initial out-of-plane spin density wave p.(r,0)
=n, cos(gr,) induces a time-dependent charge-density wave

3
: ’U‘E " —iw(q?
p(r,1) = ng sm(qm)v—E qgA(g)e ), (5)
£ =0

Note that the induced charge-density wave (CDW) is phase
shifted by 7r/2 relative to the initial spin-density wave (see
Fig. 1) and has a time-dependent amplitude ny(uE/vp)A(1),

where A(t)=Ef=0qg,(q)e"'“’1(qz)‘. The general behavior of the
induced CDW amplitude A(r) is shown in Fig. 2. At 1=0 the
amplitude of the CDW vanishes, as the system is initially
uniform, while at long times A(r) decays exponentially with
a characteristic lifetime 1/[iw)(g)] given by the lowest-
frequency relaxation mode. At intermediate times of order 7,
the CDW amplitude has one maximum and/or one minimum.
The largest absolute value defines the peak amplitude A,,,,.
The strength of the Rashba and Dresselhaus spin-orbit inter-
action in GaAs quantum wells can be adjusted by varying the
doping asymmetry or the width of the quantum wells. Values
in the range of a@=0.5X107-1.5%X10" and B,=1
X 1073-3X 1073 with 8;=0.3X 1073 (Ref. 16) can be ex-
perimentally achieved, thus most of region in the vicinity of
the boundary of the radius 2 disk in the (yg,yp) parameter
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FIG. 2. (Color online) Time dependence of the induced charge-
density wave amplitude A(r) for various values of the dimensionless
spin-orbit coupling parameters (yg,¥p), for an overall spin-orbit
coupling strength I'=0.001. The wave vector qlle, has a fixed
value, ¢=0.6/L,. The amplitude of the induced wave varies non-
monotonically and is characterized by a peak value A,,,, and an
exponential decay at large times.

space can be probed. Scaling «, B, and B; equally will not
change the spin-spin couplings 7y or vy, but it will change
the spin-charge couplings A, and A_ which are quadratic in
the overall spin-orbit coupling strength I'. The amplitudes

A /(q) depend linearly on N\, and A_ with higher-order correc-
tions of order )\1. Thus for experimentally realizable two-
dimensional spin-orbit interacting electron systems charac-
terized by I"<< 1, the higher-order corrections due to the spin-
charge couplings are negligible and the amplitude A(¢) is
approximately linear in the spin-charge couplings. Since the
factor of ¢ in A(r) gives a contribution of 1/I", as the wave
vector is measured in units of 1/L,, we conclude that the
amplitude A(z) of the induced charge-density wave depends
linearly on the overall spin-orbit interaction strength I'. This
proportionality relation holds as long as we express the
wave-vector in units of 1/L,. Furthermore, we find that the
induced CDW amplitude A(z) is independent of the dimen-
sionless conductance g, provided time is measured in units of
1/ 7,. Consequently, the bulk manifestation of the spin Hall
effect proposed here, can be enhanced by reducing the carrier
density of system, which will increase the ratio between the
strength of the spin-orbit interaction and the Fermi energy.
Next, we study the dependence of the induced charge-
density wave amplitude on the ratio between various compo-
nents of the spin-orbit interaction for a fixed value of the
overall spin-orbit coupling strength I'. Figure 3 shows the
maximum amplitude of the charge-density wave, A,,,,, for
the experimentally relevant spin-orbit coupling strength I’
=0.001 and wave vector g=0.7/L,. The peak amplitude van-
ishes for pure Dresselhaus spin-orbit coupling, y;z=0, pure
Rashba coupling_, (yp=0, yg==*=2), and at the symmetry
points (yp=*\2, yg=*2) which support the persistent
spin helix modes (see Fig. 3). This is consistent with previ-
ous results showing that, at least in uniform and stationary
conditions, the spin Hall conductivity in systems with pure
Rashba or pure linear Dresselhaus spin-orbit interaction
vanishes.?8=3! Our analysis reveals the absence of any mani-
festation of the spin Hall effect for these types of spin-orbit
interactions in nonuniform systems and under time-
dependent conditions. The absolute maximum of the peak
amplitude, A,,,,=7.8X 1074, is realized for (yp,yg)=
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FIG. 3. (Color online) Dependence of the absolute value of the
peak amplitude A,,,, on the spin-orbit parameters (yp,yg) for a
fixed value of the overall spin-orbit interaction strength, I'=0.001,
and ¢=0.7/L,. A,,,, vanishes for pure Dresselhaus spin-orbit cou-
pling, yz=0 (the segment between the horizontal pair of white
dots), pure Rashba coupling, (yp=0, yg==2) (vertical pair of
white dots), and at the symmetry points (yp==12, vp=*\2)
(green dots). The maximum of the peak amplitude corresponds to
(vp,vr)=(-1.08,-1.25) (inside the lower left quarter of the param-
eter space, A,,,,=7.8 X 107%), while three other local maxima are
located at (yp,7yg)=(=1,1.24) (upper left quarter, A, ,=-5.5
X 107%), (0.80, 1.06) (upper right, A,,,,=3.2X107%), and (0.76,
—0.98) (lower right, A,,,,=—2.8 X 107™#). All these maxima involve
large relative contributions of the cubic Dresselhaus coupling,
B3/I'=0.5-0.68.

(-1.08,-1.25). The corresponding original spin-orbit cou-
plings are (a,f;,B;)=(-7.4,0.3,6.7) X 107, Several other
local maxima (minima) can be identified throughout the pa-
rameter space (see Fig. 3). To enhance the peak amplitude of
the induced charge profile, one has to consider systems with
strong cubic Dresselhaus spin-orbit coupling. This condition
is opposite to that required for the realization of the persis-
tent spin helix mode.'®?* Note that the diagram in Fig. 3 has
no particular symmetry, as a result of the nontrivial depen-
dence of the spin-charge coupling parameters A . on the spin-
orbit couplings.

We consider now the case of a fixed cubic Dresselhaus
coupling in the range B3;=2X 107*—4 X 107*, which is ex-
perimentally relevant for GaAs quantum wells. The depen-
dence of the peak amplitude on the tunable parameters « and
B is shown in Fig. 4. We stress that both the absolute value
and the sign of the spin-orbit coupling constants are impor-
tant in determining the strength of the spin Hall effect. Fi-
nally, we note that the peak amplitude also depends on the
wave vector q. A,,,, vanishes in the limits ¢g—0 and g —
and is maximized in the range 0.5=¢gL,=0.7. Increasing the
spin-orbit interaction strength enhances the bulk spin Hall
effect provided it is observed at larger wave-vector values.

For completeness we note that, if the initial spin-density
waves have an arbitrary orientation of the g vector, a charge-
density wave is induced even in the absence of an external
electric field. However, this wave is in phase with the initial
spin wave. Adding an external electric field perpendicular to
the wave vector induces an additional charge-density compo-
nent characterized by a /2 phase shift, as described above,
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FIG. 4. (Color online) Dependence of the peak amplitude on the
linear Dresselhaus spin-orbit coupling for various values of the cu-
bic Dresselhaus and Rashba couplings. The arrows mark the values
of B; where the A,,,, changes from an absolute minimum of A(z) to
an absolute maximum (see also Fig. 2).

and causes the spin and charge profiles to drift along a direc-
tion parallel to the g-vector, i.e., perpendicular to the electric
field. The induced charge-density wave has the form

3

p(r,1) = ny>, e q(q)cos[q - r + (q X E).Q/(q)7]
=0

+(q X E).A/(q)sin[q - T+ (q X E),Q/(q)t]}, (6)

where a;(q) are the amplitudes of the in-phase charge com-
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ponent and w;(q) are the corresponding frequencies. The
electric field induces out-of-phase waves with amplitudes

gl(q) and generates oscillatory components of the relaxation

modes proportional to Q,(q).

In summary, we show that a nonhomogeneous spin-orbit
interacting system supports bulk manifestations of the spin
Hall effect. We extend the spin-charge diffusion equations to
the case of a constant electric field and use this tool to char-
acterize the charge density wave induced by an initial spin
density wave that relaxes in the presence of an external elec-
tric field perpendicular to the spin-polarization wave vector.
We find that the induced charge profile is characterized by
the same wave vector as the spin-density wave but has a
phase shift of *7/2. The amplitude of the induced charge-
density wave varies nonmonotonically in time and is charac-
terized by a peak value and an exponential decay at large
times. We show how to maximize the effect by tuning the
relative strengths of the spin-orbit interactions. Finally, we
mention that similar nonhomogeneous perturbations may
lead to bulk manifestations of the topological quantum spin
Hall effect’?>3? in spin-orbit interacting insulators.
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