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We propose a general extended coherent state approach to the qubit �or fermion� and multimode boson
coupling systems. The application to the spin-boson model with the discretization of a bosonic bath with
arbitrary continuous spectral density is described in detail, and very accurate solutions can be obtained. The
quantum phase transition in the nontrivial sub-Ohmic case can be located by the fidelity and the order-
parameter critical exponents for the bath exponents s�1 /2 can be correctly given by the fidelity susceptibility,
demonstrating the strength of the approach.
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The spin-boson model1,2 describes a qubit �two-level sys-
tem� interacting with an infinite collection of harmonic os-
cillators that models the environment acting as a dissipative
bosonic “bath.” There are currently considerable interests in
this quantum many-body system due to the rich physics of
quantum criticality and decoherence,3–5 applied to the emerg-
ing field of quantum computations, quantum devices,6 and
biology.7,8 The dissipative environment9 in the spin-boson
model is characterized by the spectral function J��� with
frequency behavior J�����s. The spin-boson model under-
goes a second-order quantum phase transitions �QPTs� from
delocalized to localized phase with a sub-Ohmic bath �0
�s�1� and a Kosterlitz-Thouless-type transition in the
Ohmic case �s=1�.

To provide reliable solutions for the spin-boson model, a
typical multimode system, is quite challenging. Although
several numerical methods applied to the sub-Ohmic
case10–17 can reproduce the phase diagram, only recent quan-
tum Monte Carlo �QMC� simulations15 and exact-
diagonalization studies16 are capable of correctly extracting
the critical exponents in the QPT. The critical behavior in the
previous standard numerical renormalization-group �NRG�
calculations10,11,17 is incompatible with a mean-field transi-
tion due to the failure of the quantum-to-classical mapping
with long-range interactions for s�

1
2 . More recently, the

early standard NRG results were improved by a modified
NRG algorithm,18 and the mean-field behavior for s�1 /2
was also reproduced.

In this Rapid Communication, we present a general accu-
rate approach to the qubit �or fermion� and multimode boson
coupling systems. As a important example, we focus on the
sub-Ohmic spin-boson model here. It can also be easily ex-
tended to the famous Holstein model19 and the multimode
Dicke model.20 The crucial procedure is to employ extended
coherent states to represent the bosonic states. The QPT in
the sub-Ohmic spin-boson model will be analyzed by means
of the quantum information tools, such as the ground state
fidelity and fidelity susceptibility.21–23 It is a great advantage
to use the fidelity to characterize the QPT since there should

be a dramatic change in the fidelity across the critical points.
Moreover, the nontrivial order-parameter critical exponents
can be obtained with scaling of the fidelity susceptibility.

The Hamiltonian of the spin-boson model is given by

H = −
�

2
�x +

�

2
�z + �

n

�nan
†an +

1

2
�z�

n

�n�an
† + an� , �1�

where �x and �z are Pauli matrices, � is the tunneling am-
plitude between two levels, �n and an

† are the frequency and
creation operator of the nth harmonic oscillator, and �n is the
coupling strength between the nth oscillator and the local
spin. The spin-boson coupling is characterized by the spec-
tral function,

J��� = ��
n

�n
2	��n − �� = 2�
�c

1−s�s, 0 � � � �c

�2�

with �c as a cut-off frequency. The dimensionless parameter

 denotes the strength of the dissipation. s=1 stands for an
Ohmic dissipation bath. The rich physics of the quantum
dissipation is second-order QPT from delocalization to local-
ization for 0�s�1, as a consequence of the competition
between the amplitude of tunneling of the spin and the effect
of the dissipative bath.

We here propose a solution of the spin-boson model by
exact diagonalization in the coherent-state space. To imple-
ment our approach, we first perform discretization of the
bath speciation function, according to the logarithmic dis-
cretization of the continuous spectral density J��� in the
NRG.10,11,17 The discrete Hamiltonian is therefore expressed
as

Hn = −
�

2
�x +

�

2
�z + �

n

�nan
+an +

�z

2��
�

n

�n�an
+ + an� ,

�3�

with
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�n = �n
−2�

−�n+1��c

−n�c
dxJ�x�x, �n

2 = �
−�n+1��c

−n�c
dxJ�x� . �4�

In order to ensure the convergence of the results, the disc-
tetiztion parameter is chosen =2.

The present basic scheme is similar to that in the single-
mode Dicke model24 and the two-site Holstein-Hubbard
model.25 For convenience, we assume that ��1� and ��2� are
the bosonic states corresponding to spin up and down. Intro-
ducing a displacement shift parameter gn=

�n

2�n
��

,17 we pro-
pose the following two coherent bosonic operators

An
+ = an

+ + gn, An = an + gn, �5�

Bn
+ = an

+ − gn, Bn = an − gn. �6�

The corresponding vacuum states �0�An
and �0�Bn

are just the
coherent states in an with eigenvalues �gn in terms of

e�gna+−gn
2/2�0�an

. �nk�Ak
and �nk�Bk

correspond to Fock states of
the bosonic operators Ak

+ and Bk
+ with nk bosons for a fre-

quency �k. ��1� and ��2� can be expanded in the bosonic
coherent states of a series of nk, which are orthonormalized
in the bosonic operators Ak

+�Bk
+�

��1� = �
n1,. . .,nN

Ntr

cn1,. . .,nN�
k=1

N

�nk�Ak
, �7�

��2� = �
n1,. . .,nN

Ntr

dn1,. . .,nN�
k=1

N

�nk�Bk
, �8�

where c	nk
� are coefficients with respect to a series of
	n1 ,n2 , . . . ,nN
 for different bosonic modes and Ntr is the
bosonic truncated number.

Then the Schrödinger equations of the Hamiltonian �3�
are derived as

−
�

2
��2� −

�

2
��1� + �

n=0

�

�n�An
+An − gn

2���1� = E��1� , �9�

−
�

2
��1� +

�

2
��2� + �

n=0

�

�n�Bn
+Bn − gn

2���2� = E��2� . �10�

After the substitution of Eqs. �7� and �8� and Left multiply-
ing the bosonic coherent states with the both sides of Eqs. �9�
and �10�, we have

�
i=0

�

�i�mi − gi
2�c	mk
 −

�

2 �
	nk


d	nk
�
k=1

N

Ak
�mk�nk�Bk

−
�

2
c	mk


= Ec	mk
, �11�

�
i=0

�

�i�mi − gi
2�d	mk
 −

�

2 �
	nk


c	nk
�
k=1

N

Bk
�mk�nk�Ak

+
�

2
d	mk


= Ed	mk
. �12�

The bosons state �nk� and �mk� with different coherent
bosonic operators Ak

+ and Bk
+ are not orthogonal. The overlap

can be denoted by Ak
�mk �nk�Bk

= �−1�nkDmknk
and Bk

�mk �nk�Ak

= �−1�mkDmknk
with

Dmknk
= e−2gk

2 �
i=0

min	mk,nk


�− 1�i
�mk!nk!�2gk�mk+nk−2i

i!�mk − i�!�nk − i�!
.

According to the symmetry of Hamiltonian for �=0, the co-
efficients satisfy cm1,. . .,mN

= � �−1��kmkdm1,. . .,mN
. Equations

�11� and �12� can then be transformed into the following set
of coupled equations:

�
�

2 �
n1,. . .,nN

c	nk
�
k=1

Dmknk
+ �

i=0

�

�i�mi − gi
2�c	mk
 = Ec	mk
.

�13�

A complete implementation of the numerical diagonalization
is described below to obtain the amplitudes set of c	nk
 of the
bosonic state �1��2�. The Hilbert space can be labeled by a
vector n� = �n1 , . . . ,nN� with nk=0,1 , . . . ,Ntr. The sum of
bosonic number nk is restricted to truncated number Ntr, e.g.,
�nk�Ntr. For example, with a set of N=3, Ntr=3 the in-
volved configurations of bosonic states �n1 ,n2 ,n3� are ex-
pressed as following:

�000� ,

�100�, �010�, �001� ,

�200�, �110�, �020�, �101�, �011�, �002� ,

�300�, �210�, �120�, �030�, �201�, �111�, �021�, �102�, �012�, �003� .

Consequently, the total number of basis states Ns=20. To
obtain the true exact results, in principle, the number of
bosonic modes N and the truncated number Ntr should be
taken to infinity. Fortunately, in the present calculation, set-
ting N=16, which is big enough in NRG, and Ntr=5 is suf-
ficient to give very accurate results with relative errors less
than 10−5 in the whole parameter space. The following re-
sults are just obtained with N=16 and Ntr=5.

To study the QPT in the sub-Ohmic spin-boson model, we
employ the ground state fidelity to locate the critical point

c. A simple expression of the ground-state fidelity is given
just by the modulus of the overlap

F�
,
�� = ���1�
���1�
��� + ��2�
���2�
���� . �14�

The QPT is expected to be signaled by a drop in the fidelity
corresponding to two arbitrarily neighboring Hamiltonian
parameters 
�=
+	
.21,23 Based on the normalized ground
states ��1� and ��2�, we now illustrate our results obtained by
numerically diagonalization of Eq. �13�.

Fig. 1�a� shows the behavior the fidelity F�
 ,
�� in the
sub-Ohmic case with s=0.5,0.6,0.8,0.9 for the spin tunnel-
ing amplitude �=0.01. A sharp drop at the critical point 
c
separates the delocalized phase at small 
 and the localized
phase at large 
. So it is evident that we can locate the
critical points 
c efficiently by the ground state fidelity. It is
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interesting that the ground state fidelity does not drop to 0 at
critical points, demonstrating a continuous QPT.26

The QPT from delocalized to localized phases can also be
shown by behavior of the tunneling motion ��x� between
spin up and spin down.13 ��x� goes rapidly to zero in the
localized phase and is finite in the delocalized phase. The

�� ,s� dependence of ��x� is shown in Fig. 1�b�. For all
value of s, we observe that ��x� is continuous at the transi-
tion. The discontinuous behavior observed previously13 may
be attributed to the special variational approach itself and is
perhaps worthy of a further study.

As discussed above, both the fidelity F�
 ,
�� and tunnel-
ing parameter ��x� can be used to locate the critical points of
the QPT. We observe that both quantities can give nearly the
same critical points. The phase boundaries obtained by either
methods as a function of s is plotted in Fig. 2 in case of the
tunnel splitting � ranging from 10−4 to 10−1 for �=0. The
results from previous NRG techniques10,11 are also collected
for comparison. It is interesting to note that the present re-
sults for the critical points are in good agreement with the
NRG ones. Because we also use the truncated NRG Hamil-
tonian �3�, the critical points should be slightly above the

QMC ones15 where all frequencies are included. For fixed
truncated Hamiltonian, as Ntr increases, 
c converges to the
true value from above very quickly. We believe that we ob-
tain the converging critical points for any values of � for
fixed N in the present work.

The ground-state fidelity susceptibility � is defined as the
second derivative of the fidelity21,23

��
� = 2 lim
	
→0

1 − F�
,	
�
	
2 . �15�

Since � is independent of the arbitrary small parameter 	
, it
is regarded as a more effective tool to detect the singularity
in QPT. As addressed in Ref. 23, the fidelity susceptibility is
similar to the magnetic susceptibility. In the localized phase,
the scaling behavior of fidelity susceptibility � obeys

��
� � �
 − 
c��. �16�

Recently, the studies from the QMC approach,15 the
exact-diagonalization,16 and the modified NRG18 have shown
that the quantum-to-classical mapping is valid for the sub-
Ohmic spin-boson model, i.e., the critical exponents are clas-
sical mean-field like, in contrast with the early standard NRG
calculations where the quantum-to-classical mapping is sug-
gested to fail for s�1 /2. It was argued15 that the standard
NRG is not able to capture the correct physics in the local-
ized phase. It is known that the localized phase is twofold
degenerate. Our ansatz Eqs. �7�–�10� is just proposed for
these two states, and the unknown coefficients can be ob-
tained by solving the Schrödinger equations very accurately.
Therefore, we will extract the susceptibility critical exponent
for s�1 /2, to address this crucial controversy.

Fig. 3 presents that the fidelity susceptibility � as a func-
tion �
−
c� for s=0.1,0.2,0.3,0.4 in log-log scale. All
curves show almost perfect straight line with a slope very
close to −1, demonstrating that the susceptibility critical ex-
ponent may be just equals to �=−1 with ���
−
c�−1. Re-
cently, the critical exponent of the magnetic susceptibility
has been estimated to be −1 by QMC simulations15 and
exact-diagonalization studies.16 We do not think this is a co-
incidence. You et al.23 showed a neat connection between the
fidelity susceptibility � and the magnetic susceptibility �m
through �=�m /4KBT �KB is the Boltzmann constant and T is
the temperature�. We believe this relation is also applicable
to zero temperature, and therefore these two susceptibilities
can give the same order-parameter critical exponents in QPT.
We also confirm the mean-field behavior for 1 /2�s�1.

In summary, we have introduced an efficient algorithm in
the bosonic coherent Hilbert space and presented reliable so-
lution for the sub-Ohmic spin-boson model. The ground-state
fidelity, which is a quantum information tool, is employed to
locate the critical coupling strength 
c of the QPT. The tran-
sition from the localized phase to delocalized phase is ac-
companied by a minimum of the fidelity. Furthermore, the
fidelity susceptibility gives the order-parameter critical expo-
nent �=−1 in the case s�1 /2, which agrees well with the
exponent of magnetic susceptibility. Both behaviors of the
tunneling ��x� and the fidelity around the critical point ex-
clude the possibility of the first-order QPT. We stress that all

FIG. 1. �Color online� �a� The fidelity F as a function of 
 for
various values of s and �b� the tunneling ��x� between two states of
the spin as a function of 
 in the case of �=0.01 and �=0.

FIG. 2. �Color online� The delocalized-localized transition point

c as functions of s obtained by the present approach in the case
�=10−1, 10−2, 10−3, and 10−4. The NRG data are also shown for
comparison.
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eigenstates and eigenvalues of the spin-boson model can be
obtained accurately and many observable can be calculated
directly within the present approach. The present technique
to deal with bosons would be combined with other estab-
lished methods.
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FIG. 3. �Color online� The
scaling behavior of the fidelity
susceptibility ���
−
c�� in log-
log scale for s=0.1,0.2,0.3,0.4
with �=0.1. The data fit well with
the straight line with slope very
close to −1.
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