
Isomeric and hybrid isomeric-vibrational states of Wigner molecules

S. A. Blundell* and S. Chacko†

SPSMS, UMR-E 9001, CEA-INAC/UJF-Grenoble 1, 17 rue des Martyrs, 38054 Grenoble cedex 9, France
�Received 8 February 2010; published 25 March 2010�

An accurate configuration-interaction method employing a numerical mean-field basis set is used to study
the excitation spectrum of Wigner molecules, including isomeric excitations, in small parabolic quantum dots.
We find that at intermediate electron densities �rs�8a0

�–20a0
��, in the regime of strong interaction and partial

Wigner localization, there are inversions of the usual Born-Oppenheimer ordering of isomeric and vibrational
excitations, yielding low-lying isomeric excitations. Quantum-mechanical hybridization of different isomers
can occur near an avoided crossing of a vibrational and an isomeric excitation. These findings suggest the
possibility of observing isomers and hybrid isomeric-vibrational states experimentally.
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Semiconductor quantum dots �QDs�, or artificial atoms,
are formed when a finite number �tens or hundreds� of free-
carrier electrons �or holes� are confined electrostatically to
nanometer-sized regions.1 Unlike real atoms or molecules, or
other finite-fermion systems such as nuclei or metallic clus-
ters, which have sizes fixed by the physics of their constitu-
ents, the size, shape, and average electronic density of a QD
may be varied experimentally.1 One can therefore study the
low-density regime of strong interaction, where the elec-
tronic interaction energy greatly exceeds the kinetic energy
and the electrons are expected to localize into a “Wigner
molecule,”2,3 a finite-size analog of the transition to a crystal
lattice �Wigner solid� in the low-density infinite homoge-
neous electron gas.4 Experimentally, it has been possible to
observe evidence of the bulk transition to a Wigner solid5 but
the effect in finite-sized systems has proved more elusive.
Recent experimental work on excited states of four-electron
QDs at high density has, however, revealed “rigid-rotor”
behavior of a molecularlike state.6 With further advances
in semiconductor QD growth techniques, it may soon
be possible to observe Wigner localization in quasi-two-
dimensional �2D� QDs at zero magnetic field.

There has been much recent theoretical work devoted to
Wigner localization in QDs.6–10 Very precise studies of
quasi-2D Wigner-molecule ground states have recently be-
come possible using quantum Monte Carlo �QMC� in the
variational Monte Carlo/diffusion Monte Carlo �VMC/DMC�
form,8 which has been applied for up to N=18 electrons and
to low densities rs�55a0

�.8,10 �Here rs= ��n̄�−1/2 for a
quasi-2D dot, where n̄ is the average electron density in the
plane. We use effective atomic units1 throughout, with a0

� the
effective Bohr radius in the semiconductor and Ha� the ef-
fective hartree.� A drawback of the VMC/DMC approach,
however, is that it is unsuitable for studying the excited states
of the system �aside from the lowest-energy state of a given
symmetry�.8 A quantum many-body approach that can apply,
in principle, to excited states is configuration interaction �CI�
�Refs. 7 and 11� but this method has so far been possible
only for more limited rs �e.g., rs�20a0

� in Ref. 6� and size
�e.g., N�8 in Ref. 7�, and it also has significantly worse
reported precision than VMC/DMC.

In this work, we use a CI approach employing a numeri-
cal mean-field basis, which we have developed recently. This
method yields vastly improved convergence in the Wigner-

molecule regime compared to CI with the more commonly
used harmonic-oscillator orbitals7,11 because the low-lying
members of the mean-field basis set already “know” about
the localization. As we shall see, the method gives energies
that are competitive with �or better than� VMC/DMC in pre-
cision for N=6; it is also stable up to much higher rs
�50a0

� than earlier CI treatments. These properties, together
with the capability of CI of extracting excited states, allow us
to study systematically the isomeric-vibrational states of the
Wigner molecule down to low densities. While several ear-
lier theoretical studies at low densities have focused on rota-
tional and vibrational excited states of small systems with up
to N=5 electrons �e.g., Refs. 12 and 13�, to our knowledge,
there has been no quantum many-body study of the isomeric
excited states and their interplay with vibrational modes in
this density regime. Yet parabolic QDs with N�6 electrons,
in general, have more than one classical isomer14 �that is,
stable arrangements of classical point electrons in a parabolic
trap� so that isomeric states should be a basic feature of the
spectrum of a Wigner molecule for all but the smallest sys-
tems �N�5�. We show here that at the intermediate densities
that may be reached in initial experiments �e.g., rs
�8a0

�–20a0
��, isomeric states are in fact likely to be the first

excited level for a given orbital angular momentum Lz, re-
versing the more natural Born-Oppenheimer �BO�-type or-
dering of energy levels that would favor a low-lying vibra-
tional excited mode. This finding suggests that it may be
possible to observe isomeric states experimentally. Note also
that molecularlike states may be induced at high densities
�rs�1.5a0

�� by an intense magnetic field or by very high
orbital angular momentum.15

As an example of our CI method, Table I shows the en-
ergy of the ground state of an N=6 electron parabolic QD
for a density parameter �=8 �corresponding to rs�12a0

��,
where �= l0 /a0

� is the ratio of the parabolic confinement
length l0=�� /m��0 to the effective Bohr radius. We here
assume a quasi-2D electron system in the effective-mass
approximation,1 confined by a circular parabolic potential
Vext�r�=m��0

2r2 /2. We have organized the full CI calculation
by degree of excitation from a “model space,” which consists
of all determinants that may be formed from the lowest 8 or
10 states in the single-particle basis. The model space in
lowest order is already sufficient to give a semiquantitative
description of the many-body state. An extrapolation to the
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basis-set limit is also made �where the upper energy cutoff of
the basis set is allowed to go to infinity�, yielding the esti-
mated error shown; this error is the only error in a full CI
calculation.

Our CI energy is about 0.46�6� mHa� lower than that from
VMC/DMC.8 We consistently converge to our value for the
ground-state energy not only for the different sizes of model
space shown but also for different basis sets corresponding to
different mean fields. Since our energy is lower �more nega-
tive� than the VMC/DMC energy, which may be regarded as
a variational upper bound with a known statistical error,8 a
possible explanation for the discrepancy is that we have re-
vealed the systematic error in the VMC/DMC energy arising
from the fixed-node approximation.8 This pattern is repeated
for some of the other energies reported in Ref. 8; the full
details of our calculation method and these other compari-
sons will be given elsewhere.

The main features of the excitation spectrum are exhibited
by the N=6 electron dot, which is the smallest system to
show spin, rotational, vibrational, and isomeric excitations.
For six electrons, the classically stable configurations �see
Fig. 1� consist of a pentagonal �1, 5� ground-state isomer and
a staggered hexagonal �0, 6� excited isomer14 �the perfect
hexagon being a saddle point on the potential-energy sur-
face�. Now, the average Wigner-Seitz radius rs is given ap-
proximately by rs

3=1 / ��0
2�N� �in effective atomic units�.16

Taking this as the definition of rs and using the data for the
classical system �from Ref. 14 and our own calculations�, we
infer the following estimates of excitation energies: �Eiso
=0.0714rs

−1, �Evib=0.415rs
−3/2, and �Erot=0.0309rs

−2 �in
units of Ha� with rs in a0

��. Here �Eiso is the energy differ-
ence between the two classical isomers �Fig. 1�, �Evib is the
energy of one vibrational quantum in the lowest-frequency
normal mode of the ground-state �1,5� isomer, and �Erot is
the S-to P-wave rotational excitation energy of this isomer.
Owing to the differing dependencies on the length scale rs,
for sufficiently large rs, we must eventually find �Eiso
	�Evib	�Erot, that is, a BO-type separation of energy
scales.

To gain some idea of the appropriate length scales for the
six-electron dot, we have plotted these approximate excita-

tion energies �scaled by rs� in Fig. 1. The figure shows that
the strict BO ordering of energies will be realized only for
rs	34a0

�. At rs�34a0
�, there is a crossover between �Evib

and �Eiso, and at smaller rs, there is then an inversion of the
usual BO ordering, with the isomeric excitation energy com-
parable to or smaller than the vibrational excitation energies.

On the other hand, for all rs
2a0
�, the rotational excita-

tion energy is small, �Erot��Evib , �Eiso, and so we may
expect the rotational motion to decouple well for this entire
range of rs �at least, for low to moderate Lz�. This observa-
tion is consistent with the experimental evidence found by
Kalliakos et al.6 for rigid-rotor behavior of low-angular-
momentum states in N=4 electron dots already for rs�2a0

�.
We have also shown in Fig. 1 a typical spin excitation

energy �Espin, which is defined as the energy splitting of the
S=3 excited state and the S=0 ground state in the ground-
state spin multiplet. According to our CI calculations, this is
well fit by �Espin=0.056 exp�−0.29rs� Ha� for 6a0

��rs
�30a0

� �see also the QMC data in Refs. 8 and 17�. For rs
�6a0

�, the spin energies �exchange interactions� and the iso-
meric and vibrational excitation energies are all nominally
comparable.

We now turn to an analysis of the excited states using our
quantum many-body CI procedure. Since we are here prima-
rily interested in the isomeric and vibrational degrees of
freedom, we shall consider only S-wave �Lz=0� excited
states. Now, because the exact density is circularly symmet-
ric �in the “laboratory” frame�,18 we analyze the underlying
pattern of Wigner localization by means of �spin-summed�
pair-correlation functions �PCFs�,11,13,15 g�r0 ,r�= �	i�j�r0
−ri��r−r j�
. The quantity g�r0 ,r� is proportional to the
conditional probability of finding an electron at r given that
a second, reference electron is located at r0. In Fig. 2, we
plot PCFs for the six-electron QD as a function of r, with the
position r0 of the reference electron indicated by a dot. The
PCFs here have been converged to better than a few percent
and display a pronounced “correlation hole”8 at r=r0.

For rs=20a0
�–50a0

�, the spin excitation energies are very
small �see Fig. 1�, and the excited states for given Lz thus

TABLE I. CI energies of the ground state �S=0� of the N=6
electron parabolic dot for density parameter �=8�rs�12a0

��, using a
model space formed from either 10 �v10� or 8 �v8� single-particle
states. Units: Ha�.

Excitation �v10� �v8�

Lowest order 0.96757 0.97614

Singles −0.01691�6� −0.01988�5�
Doubles −0.00672�1� −0.01023�2�
Triples −0.00153�1� −0.00309�1�
Quadruples −0.00027�2� −0.00073�1�
Pentuples −0.00003�1� −0.00008�2�
Hextuples 0.00000 −0.00001

Total 0.94211�6� 0.94213�6�
QMC, Ref. 8 0.942580�5�
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FIG. 1. �Color online� Approximate excitation energies of the
six-electron parabolic dot versus Wigner-Seitz radius rs �see text�.
Energies are scaled by rs. Inset: stable configurations of the classi-
cal six-electron parabolic dot �from Ref. 14�: �a� pentagonal
ground-state configuration and �b� excited isomer �staggered
hexagon�.
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consist of a series of nearly degenerate spin multiplets; these
multiplets are typically separated from each other by a few
mHa� due to the isomeric and vibrational degrees of free-
dom. The PCFs for each member of a spin multiplet are
found to be very nearly the same �in this range of rs� so in
Fig. 2 we show only a representative PCF for each multiplet.
For all rs=20a0

�–50a0
�, the ground-state geometry corre-

sponds to the classical pentagonal �1,5� ground-state
structure.10 The ground-state spin multiplet has a multiplicity
of 4 �number of S values present in the multiplet� with al-
lowed total spin quantum numbers S=0, 1, 2, and 3.

Now, at rs=20a0
�, we see from Fig. 2 that the first excited

multiplet corresponds to a quite pure hexagonal �0,6� isomer.
Thus, we confirm that there is indeed an inversion of the
usual BO ordering of isomeric and vibrational energies at
this rs, consistent with the simple classical argument �Fig. 1�.
Interestingly, the allowed spins S= �0,0 ,1 ,2� and multiplic-
ity of 4 for this isomer are those associated with the perfect
C6v hexagonal symmetry,19 and not with the staggered hex-
agonal geometry of the classical isomer �Fig. 1�b��, which

may be shown to lead to a different set of allowed spins. �A
detailed analysis of the group theoretical considerations for
all states in this Rapid Communication will be presented
elsewhere.�

At rs=35a0
�, however, we find that another multiplet has

come down to lie between the �1,5� ground-state and the
�0,6� excited isomer. This corresponds to one vibrational
quantum in the �1,5� geometry. Again, the allowed spins S
= �0,0 ,1 ,1 ,1 ,1 ,2 ,2� and multiplicity of 8 are just those ex-
pected from a group-theory analysis,19 confirming this inter-
pretation. We see from Fig. 2 that the crossover between the
isomeric and the vibrational excitation here occurs between
rs=25a0

� and 30a0
�, quite close to the value rs�34a0

�, we
predicted from the simple classical argument. Interestingly,
near the �avoided� crossing, the excited states mix and show
evidence of quantum-mechanical hybridization between
�1,5� and �0,6� isomers. Thus, the �0,6� structures show a
central peak while the �1,5� vibrational mode at rs=30a0

�

shows a very weakly formed sixth peak in the outer ring.
Moving on to rs=50a0

�, we find that three vibrational mul-
tiplets have come down to lie between the ground �1,5� and
the excited �0,6� isomer; they are shown in Fig. 3. This con-
firms the trend that vibrational excitation energies decrease
faster with rs than the isomeric excitation energy so that the
system is beginning to come into a more typical BO energy
ordering with �Evib��Eiso. The pattern of allowed spins can
be shown to imply that these multiplets correspond to one
vibrational quantum in three different normal modes. Note
that the central peak in the third excited state shows clear
evidence of a vibrational excitation.

There is a different type of isomeric hybridization around
rs�6a0

�. At rs=4a0
�, the ground state �S=0� shows partial

Wigner localization in a predominantly �0,6� �and not �1,5��
geometry11 but as rs increases, the ground state transforms
gradually into a �1,5� geometry,10 the transformation being
quite complete by rs�10a0

�. In more detail, we find that at
rs=4a0

�, the first spin-0 S-wave excited state has a predomi-
nantly �1,5� geometry; thus, the classical energy ordering of
the �1,5� and �0,6� isomers is for this rs �and S=0� inverted.
As rs increases, there is isomeric hybridization and a gradual
interchange of �1,5� and �0,6� geometries. By rs=10a0

�, the
two isomers are quite pure and in their classical energy or-
dering with �1,5� below �0,6�, and they stay this way for all
higher rs �see Figs. 2 and 3�. The inversion of the �1,5� and
�0,6� energy ordering for rs=4a0

� is presumably an effect of
mixing of isomeric states by the exchange interactions �or
other atomiclike correlation effects�; as the spin energy de-
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FIG. 2. Representative pair-correlation functions of S-wave spin
multiplets of the six-electron parabolic dot for rs=20a0

�–35a0
�. �0�,

�1�, …, etc., signify the ground-state spin multiplet, the first excited
multiplet, …, etc., respectively. The fixed reference electron is in-
dicated by a dot and the set of total spins present in each multiplet
is also given.

(1) (3)(2)

• • •

FIG. 3. Representative pair-correlation functions of the �1� first,
�2� second, and �3� third excited S-wave spin multiplets for the
six-electron dot at rs=50a0

�. See Fig. 2 for further conventions.
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creases relative to the isomeric excitation energy �see Fig. 1�,
the two isomers eventually regain their classical energy or-
dering.

One can generalize these results to higher N using classi-
cal estimates of excitation energies �similar to Fig. 1�. Thus,
one finds that rotational excitation energies are generally
small, �Erot��Evib ,�Eiso. Furthermore, the excitation ener-
gies �Evib of the majority20 of normal modes are greater than
those of the first isomer �Eiso at intermediate rs�20a0

� �at
least up to N=20, which we have studied explicitly�. Thus,
for these larger dots also, the first excited level �spin multi-
plet� for fixed Lz at intermediate rs can be an isomer rather
than a vibrational mode of the ground state. For instance, for
N=19, the classical ground state has a �1,6,12� geometry and
there is a �1,7,11� excited isomer;14 the crossover condition
�Evib=�Eiso here occurs at rs�800a0

� so that the strict BO

energy ordering of isomeric and vibrational excitations
would be expected to occur only for rs	800a0

�.
The fact that isomeric states are expected to be low-lying

excitations at intermediate densities may facilitate their ob-
servation. Possible experimental signatures include �i� selec-
tion rules for optical processes such as inelastic scattering6 or
absorption, which depend on the symmetry of the isomer or
vibrational normal mode and are directly analogous to those
for molecules;19 �ii� Franck-Condon-type factors19 for interi-
somer transition rates; and �iii� the pattern of allowed spins
and multiplicities �e.g., Figs. 2 and 3�, which depends on the
isomer or vibrational mode and may be inferable from spin
selection rules. In addition, recent improvements in high-
spatial-resolution scanning probe techniques21 may make it
possible to map out the spatial distribution of a Wigner mol-
ecule, leading to a direct observation of the geometry.
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