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We provide a theory for scanning tunneling microscopy and spectroscopy using a spin-polarized tip. It it
shown that the tunneling conductance can be partitioned into three separate contributions, a background
conductance which is independent of the local spin, a dynamical conductance which is proportional to the
local-spin moment, and a conductance which is proportional to the noise spectrum of the local-spin interac-
tions. The presented theory is applicable to setups with magnetic tip and substrate in noncollinear arrangement,
as well as for nonmagnetic situations. The partitioning of the tunneling current suggests a possibility to extract
the total spin moment of the local spin from the dynamical conductance. The dynamical conductance suggests
a possibility to generate very high-frequency spin-dependent ac currents and/or voltages. We also propose a
measurement of the dynamical conductance that can be used to determine the character of the effective
exchange interaction between individual spins in clusters. The third contribution to the tunneling current is
associated with the spin-spin correlations induced by the exchange interaction between the local-spin moment
and the tunneling electrons. We demonstrate how this term can be used in the analysis of spin excitations
recorded in conductance measurements. Finally, we propose to use spin-polarized scanning tunneling micros-
copy for detailed studies of the spin-excitation spectrum.

DOI: 10.1103/PhysRevB.81.115454 PACS number�s�: 72.25.�b, 73.63.�b

I. INTRODUCTION

Pushing the limits for detection of electronic, magnetic,
and vibrational properties toward the quantum limit requires
appropriate experimental tools and techniques. In particular,
single atomic spins1–3 and magnetic nanostructures consist-
ing of few magnetic atoms4–8 on nonmagnetic substrates are
frequently studied as model systems for miniature data-
storage devices, spintronics applications, and qubits which
are crucial for quantum information technology. Being well
defined and controllable on the atomic scale, they ideally
serve their purpose for studies of fundamentals of their local
properties and interactions.

The scanning tunneling microscope �STM� was invented
in 1980s �Ref. 9� for the purpose of imaging metallic sur-
faces with atomic resolution, and it was theoretically de-
scribed by Tersoff and Hamann,10 relating the tunneling con-
ductance to the density of states �DOS� of the local
environment. More than being a scanning tool, one can park
the tip over an object and perform differential conductance
measurements in order to reveal information of the local
electronic structure. Using the STM equipment as a means
for spectroscopical measurements was previously discussed,
see, e.g., Refs. 11–16, the approach that is commonly known
as scanning tunneling spectroscopy �STS�. This technique
has since been successfully applied in several directions, e.g.,
detection of noise,17 indirect measurements of the Kondo
effect,18 and the observation of exchange splitting.19

Extensions of the STM/STS techniques have been pro-
vided by using a spin-polarized tip �SP-STM/SP-STS�, e.g.,
magnetic CrO2 tips,20 or, e.g, nonmagnetic W tips which are
coated with a ferromagnetic metal, e.g., Fe �Ref. 21� or an
antiferromagnetic metal, e.g., Cr.22 To this end, the theory by
Tersoff and Hamann was extended to also account for the

spin polarization in the tip and the substrate.23–25 The latter
formulation was, for instance, used in Ref. 26 in analyzing
experimental SP-STM results of spin moments for single Co
atoms on a Pt substrate. The lack of explicit reference to the
spin moments of the adatoms located on the substrate in this
theory, however, calls for an advancement in the theoretical
formulation. In this paper, we present a theory which suggest
to use the SP-STM technique for directly extracting quanti-
tative information about the magnetic moments of nanoscale
objects.

The theory presented here is discussed in the context of
recent experimental observations, using both STM and STS
approaches and using both a nonmagnetic and spin-polarized
tip. Our discussion will be cast in the light of the theoretical
description of the SP-STM, particularly for measurements
performed in presence of local-spin moments, Sn, located at
rn on the substrate. We find that indeed STM tunneling is, in
principle, capable of detecting single spin and moreover de-
tect the spin orientation. This conclusion can be drawn, for
instance, when we consider the tunneling electrons to be in-
teracting with the local spins through exchange. For this type
of interaction mechanism, the tunneling matrix element can
be separated into one spin-independent and one spin-
dependent component. Under such conditions, we find that
the tunneling conductance can be separated into three com-
ponents, of which the first provides a conductance depending
on the electron and magnetic densities of the tip and the
substrate, the second yields a conductance which is directly
proportional to the local-spin moment, and the third being
proportional to the noise produced by the local-spin fluctua-
tions. The last contribution to the current, or conductance,
was recently discussed in Refs. 27–30.

We point out that we are interested in the qualitative ef-
fects caused by the presence of local-spin, or magnetic, mo-
ments located on the substrate surface. For this reason, we
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will build upon previous results concerning the matrix ele-
ments for the tunneling electrons between the tip and the
substrate. In particular, the spin dependence in the tunneling
current generated by the local-spin moment via exchange
interaction is of interest while other features that are perti-
nent to the tunneling, e.g., geometry of the tip, surface, and
adsorbate, bias-voltage dependence of the matrix element,
etc., will be treated with less accuracy.

We begin the paper by a derivation of the tunneling cur-
rent and the corresponding �differential� conductance in Sec.
II. We continue by discussing the main properties of the con-
ductance contributions in Sec. III, and thereafter we discuss
possible experimental measurements suggested by the theo-
retical results in Sec. IV, and we conclude the paper in Sec.
V.

II. PROBING THE LOCAL-SPIN MOMENT

The wave function of the tunneling electrons in the tip,
separated from the substrate by distance d, has an exponen-
tially small overlap with the substrate electron wave func-
tions. The spin-dependent tunneling matrix element can be
calculated using Bardeen’s result31 and is given by32–34

�n = �0 exp�−�� − JSn�t� · �

�0
� , �1�

which is understood as a matrix in spin space. Here,
�= ��x ,�y ,�z� is the Pauli-matrix vector whereas �0 de-
scribes the spin-independent tunneling in absence of J. � is
the tunneling barrier height while �0=�2 /8md2 is the energy
related to the distance d between the tip and surface. In prin-
ciple, the spin-dependent tunneling matrix element depends
on energy, position, applied bias voltage, and quantum num-
bers of the electron states, which have been discussed exten-
sively in the literature.11–13,35–38 In the present study, we shall
omit those dependencies, however, for the sake of focusing
on the dependence of the tunneling conductance on the local-
spin moments.

The exchange energy J�S� is small compared to the barrier
height so that we can expand the exponent and find the ef-
fective tunneling matrix element,

Tn = T0 + T1� · Sn, �2�

where

T0 = �0e−��/�0 cosh
J�S�
2�

� �

�0
, �3a�

T1 = �0e−��/�0 sinh
J�S�
2�

� �

�0
, �3b�

such that T1 /T0�J /�. For metals and semiconductors, it is
reasonable to use J�0.1 eV �Ref. 39� while the tunneling
barrier ��1 eV, giving typical values of T1 /T0�1 /10. In
the following discussion, the tunneling rates T0 and T1 are
treated as constants, except that we allow T1 to carry a spatial
dependence which is related to the positions of the local-spin
moments. More details of this description of the tunneling

matrix elements can be found in, e.g., Refs. 32–34.
We next assume that the substrate surface is metallic for

which Hsub=�k��k�ck�
† ck� is sufficient, where ck�

† creates a
surface electron with energy �k�, momentum k, and spin �.
The energy-momentum dispersion relation need not be of
free-electron character but may assume any general form, for
which the specific details are unimportant for the present
derivation. The energies �k� are given relative to the Fermi
level �F, which is common for the system as a whole. We
associate the electronic and magnetic densities N�r ,�� and
M�r ,��, respectively, with the electrons in the substrate. For
simplicity, we will assume in the following that those densi-
ties are slowly varying with energy. Analogously we model
the electrons in the tip by Htip=�p��p�cp�

† cp�, and define its
corresponding electronic and magnetic densities n��� and
m���, respectively.

In general, the magnetic moments of the substrate and tip
may be in a noncollinear arrangement. Thus, defining the z
direction of the global reference frame in, e.g., the spin-
quantization axis of the tip, the operators of the substrate are
transformed according to

�ck↑

ck↓
� = �cos��/2�e−i�/2 − sin��/2�e−i�/2

sin��/2�ei�/2 cos��/2�ei�/2 ��ck+

ck−
� , �4�

where � and � are the azimuthal and polar angles between
the local substrate reference frame �spins s=	� and the glo-
bal one �spins �= ↑ ,↓�.

Tunneling of electrons between the tip and the substrate in
the presence of the local-spin moments is captured by the
model,

HT = �
pkn

���

cp�
† 	T0
��� + T1�r − rn����� · Sn


�ck��e
ik·r+ieVt + H.c., �5�

where the bias voltages applied across the junction is de-
noted by eV. Due to the local nature of the spins, we have
included a spatial dependence in the interacting tunneling
rate, and we use, e.g., T1�r−rn�=T� exp�−�r−rn� /��, where
� is the decay length.

The charge current running between the tip and the sub-
strate is derived using nonequilibrium Green’s functions
�GFs� on the Keldysh contour, starting from the fundamental
relation I�t�=−e�t�p��np��, where np�=cp�

† cp�, giving

I�r,t,V� = −
2e

�
Im �

pkn

���

�cp�
† �t�T̂����rn,t�ck���t��e

ik·r+ieVt,

�6�

where we have defined T̂����rn , t�
=T0
���+T1�r−rn����� ·Sn�t�. The current expresses
the rate of change in the expectation value of np�,
corresponding to the number of charges, e, in the tip. Ex-
panding the average in the above expression according to
�A�t���−i��C�	A�t� ,HT�t��
�dt�, and by converting to real
times, the current can be written as
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I�r,t,V� =
2e

�
Re�

pp�
kk�

�
���

����

�
nm
�

−

t

ei�k−k��·r+ieV�t−t��

� �	cp�
† �t�T̂����rn,t�ck���t�,ck���

† �t��

�T̂�����rm,t��cp����t��
�dt�. �7�

Here, notice the appearance of the commutator taken be-
tween the operators inside the average. Separating the tun-

neling operator T̂ into its components T0 and T1, we find that
the current can be naturally written as a sum of three terms,
i.e., I�t�=�i=0

2 Ii�t�. We consider the differential conductance
�I�r , t ,V� /�V=�i=0

2 �Ii�r , t ,V� /�V of stationary source-drain
voltages since such conditions are predominant in experi-
mental situations.

A. Background conductance

The first contribution from the average in Eq. �7� is given
by

T0
2
���
�����	cp�

† �t�ck��t�,ck��
† �t��cp���t��
�

= T0
2
���
������cp�

† �t�cp���t����ck��t�ck��
† �t���

− �cp���t��cp�
† �t���ck��

† �t��ck��t��� , �8�

where we have decoupled the averages in the integral in
terms of correlation functions for the substrate and tip elec-
trons. Under the assumption that scattering between
different momentum and spin states can be neglected, and
introducing the notations g��

� �t , t��= i�c��
† �t��c���t�� and

g��
� �t , t��= �−i��c���t�c��

† �t���, the first contribution to the tun-
neling current is defined by

I0�r,t,V� =
2eT0

2

�
Re�

pk
�
�
�

−

t

	gp�
� �t�,t�gk�

� �t,t��

− gp�
� �t�,t�gk�

� �t,t��
eieV�t−t��dt�. �9�

Here, the lesser and greater correlation functions of the tip
electrons are given by

gp�
�/� �t,t�� = �	i�f�	�p��e−i�p��t−t��, �10�

respectively, and analogously for the correlation functions of
the substrate electrons. Here, f�x� is the Fermi function.
Thus, performing the time integration and replacing the mo-
mentum summations by integrations over the corresponding
spin-resolved density of electron states �DOS� n���� and
N��r ,�� in the tip and the substrate, respectively, we finally
arrive at the tunneling current,

I0�r,t,V� =
2�eT0

2

�
�
�
� n��� − eV�N��r,��

�	f�� − eV� − f���
d�

=
2�2eT0

2

h
� 	f��� − f�� − eV�


�	n�� − eV�N�r,�� + m�� − eV� · M�r,��
d� .

�11�

The last expression is obtained by noting that
n�= �n+�mz� /2 and N�= �N+�Mz cos �� /2 �the factor
�= 	1� which thus provides a description that is indepen-
dent of the coordinate system.

We are, ultimately, interested in the tunneling
�differential� conductance, �I�r ,V� /�V, to which I0 contrib-
utes

�I0�r,t,V�
�V

=
�2�0T0

2

4kBT
� cosh−2� − eV

2kBT

�	n�� − eV�N�r,�� + m�� − eV� · M�r,��
d�

→ �2�0T0
2	n��F − eV�N�r,�F�

+ m��F − eV� · M�r,�F�
, T → 0, �12�

where �0=2e2 /h is the fundamental conductance unit
whereas kB and T are the Boltzmann constant and
temperature, respectively. The expression is obtained
under the assumption that the electronic and magnetic den-
sities in the tip vary slowly with energy. While this conduc-
tance contribution relates the DOS and magnetic density in
the tip 	n��F−eV� , m��F−eV�
 and the substrate
	N�r ,�F� , M�r ,�F�
, it is independent of the local-spin mo-
ments.

B. Dynamical conductance

We next consider the expression for the first-order con-
ductance in the total local-spin moment. This is provided by
a similar consideration of the second contribution to the tun-
neling current, i.e., beginning from

I1�r,t,V� =
2eT0

�
Re�

pk�

���
z �

n

T1�r − rn��
−

t

�	f��p��f�− �k���Sn
z�t��� − f�− �p��f��k��

� �Sn
z�t��
ei��p�−�k�+eV��t−t��dt�. �13�

Here, we again have assumed that scattering between differ-
ent momentum and spin channels within the tip and the sub-
strate is negligible. We replace the time-dependent spin by its
Fourier transform, i.e., �Sn

z�t��=��Sn
z����ei�td� / �2��. Along

with the replacement of the momentum summations by en-
ergy integration over the corresponding spin-resolved DOS
of the tip and the substrate, we find that this current can be
written as

THEORY OF SPIN-POLARIZED SCANNING TUNNELING… PHYSICAL REVIEW B 81, 115454 �2010�

115454-3



I1�r,t,V� =
2�eT0

h
�

n

T1�r − rn�� �Sn
z����cos �t

�	n���Mz�r,���cos � + mz���N�r,���


�	f���f�− ���
�� − �� − � + eV�

− f�− ��f����
�� − �� + eV�
d�d��
d�

2�
. �14�

We, thus, obtain the conductance,

�I1�r,t,V�
�V

=
�2�0T0

4kBT
�

n

T1�r − rn�� �Sn
z����cos��t�

�	mz���N�r,��� + n���Mz�r,���cos���


�	
�� − �� − � + eV� + 
�� − �� + eV�


�cosh−2 �

2kBT
d�d��

d�

2�

→ �2�0T0T1�
n
� �Sn

z����cos��t�	mz���

�N�r,�F� + n���Mz�r,�F�cos���


�	
�� + eV − �� + 
�� + eV�
d�
d�

2�
, �15�

as T→0.

C. Conductance with spin-spin correlations

The last term contained in the original expression given in
Eq. �7� can be written as

I2�r,t,V� =
2e

�
Re�

���
�
nm

T1�r − rn�T1�r − rm�� n����

�N�������
−

t

ei��−��+eV��t−t��	f���f�− ���

� ���� · �Sn�t�Sm�t��� · ���� − f�− ��f����

� ���� · �Sm�t��Sn�t�� · ����
dt�d�d��, �16�

explicitly expressed in terms of the spin-spin correlation
functions of the local spins. Although the spin-spin correla-
tion function, e.g., �Sn�t�Sm�t��� provides all information
from the local-spin correlations to the tunneling current, it is
convenient to rewrite this general function in terms
of the propagators �nm

	��t , t��= �−i��Sn
	�t�Sm

��t��� and
�nm

z �t , t��= �−i��Sn
z�t�Sm

z �t���. We notice in the stationary re-
gime, that these correlation functions depend on the time
difference t− t�, which allow us to express them through the
Fourier transforms, e.g. �nm

z �t , t��=��nm
z ���e−i��t−t��d� / �2��.

These remarks lead to that we can write the third contribu-
tion to the tunneling current according to

I2�r,t,V� =
i�e

8�
�
nm

T1�r − rn�T1�r − rm�� �f���f�− ���
�� − �� − � + eV� − f�− ��f����
�� − �� + � + eV���	�nm
+−��� + �nm

−+���


�	n���N���� − m��� · M����
 + 	�nm
+−��� − �nm

−+���
	n���Mz����cos � − mz���N����


+ 4�nm
z ���	n���N���� + m��� · M����
�d�d��

d�

2�
. �17�

Despite the unappealing length of this expression, it provides a convenient starting point for analyses of spin inelastic
tunneling spectroscopy. The conductance corresponding to this tunneling current becomes27

�I2�r,t,V�
�V

= i��

4
�2 �0

2kBT
�
nm

T1�r − rn�T1�r − rm�� 	f���
�� − �� − � + eV� + f�− ��
�� − �� + � + eV�


��	�nm
+−��� + �nm

−+���
	n���N���� − m��� · M����
 + 	�nm
+−��� − �nm

−+���
	n���Mz����cos � − mz���N����


+ 4�nm
z ���	n��F�N��� + m��� · M����
�cosh−2 ��

2kBT
d�d��

d�

2�

→ i��

2
�2�0

2 �
nm

T1�r − rn�T1�r − rm�� 	f���
�� − � + eV� + f�− ��
�� + � + eV�


��	�nm
+−��� + �nm

−+���
	n���N��F� − m��� · M��F�
 + 	�nm
+−��� − �nm

−+���
	n���Mz��F�cos � − mz���N��F�


+ 4�nm
z ���	n���N��F� + m��� · M��F�
�d�

d�

2�
, T → 0. �18�
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We summarize this section by pointing out that Eqs. �12�,
�15�, and �18� serve as the main results of this paper. Below,
we shall clarify the use of the partitioning of the conductance
and how we can interpret experimental results in terms of the
different contributions.

We notice, however, that the electronic structures in the
tip and the substrate are described in a simple fashion, in that
we assume dependence on a single momentum vector in
terms of the homogeneous GFs, e.g., gk��t , t�� for the sub-
strate electrons. Beginning from the current given in Eq. �7�
we can, however, repeat the above derivation allowing for an
inhomogeneous description of the electronic structures, us-
ing, e.g., g����k ,k� ; t , t�� for the substrate electrons. This
will modify the formulas given for the conductance, some-
thing which goes beyond the scope of the present study.

In connection to this, we also notice that we, here, have
disregarded that the electronic and magnetic densities in the
substrate are influenced by the local-spin moments of the
adatoms. In reality, the local spins and the substrate mutually
influence one another and self-consistently create a total ef-
fective magnetic moment locally around the adatoms. The
basic formulas, Eqs. �12�, �15�, and �18�, remain unchanged,
however, by a self-consistent treatment of the substrate and
adatoms. From the point of view we take in this paper, we
can assume that the self-consistently created magnetic mo-
ment in the substrate is already included in the density M.

III. DISCUSSION OF THE
TUNNELING CONDUCTANCE

The first contribution to the conductance, see Eq. �12�,
essentially captures the Tersoff-Hamann theory10,23–25 for
magnetic tip and substrate. One should notice, however, that
we here have neglected the specific relation between the lo-
cal tunneling matrix element T0 and the local DOS in the
substrate since we here are interested in the possibility to
resolve its dependence on local-spin moments located on the
substrate. In studies of magnetic surfaces, this conductance
provides a sufficient tool for analysis of the magnetic struc-
ture of the surface, by using the spin polarization of the
electronic structure at the Fermi level since the density
M��F� contains all such information. An analysis of local-
spin moments adsorbed onto the substrate can, in this model,
only be performed on the level of the DOS and spin splitting
of electron states at an energy defined by the Fermi level and
the applied bias voltage. The total spin moment of the ada-
tom can, nevertheless, not be accessed through this conduc-
tance. This fact is based on that although one can include the
adsorbate into the electronic and magnetic densities of the
surface, one only obtains energy-dependent information of
the adsorbate while the spin moment is defined by the spin
polarization integrated over all energies. Any deeper infor-
mation about the adsorbate can, thus, not be achieved. In this
sense, we can consider the contribution �I0 /�V as generating
a background conductance which includes features originat-
ing from the substrate.

The second conductance contribution, see Eq. �15�, con-
tains terms which depend on the spin polarization in the tip,
mz���, and of the substrate, Mz�r ,�F�, respectively, and van-

ishes in case both the tip and the substrate are nonmagnetic.
An important result here is that this contribution explicitly
identifies a linear relationship between local-spin moment,
�Sn

z����=��Sn
z�t��e−i�tdt, and the tunneling conductance.

Equation �15� implies that one, in principle, can obtain a
direct estimation of the size of the local-spin moment simply
by measuring the differential conductance at its location. In
order to achieve this functionality, it is necessary as seen in
Eq. �15�, that the spin polarizations of the tip and the sub-
strate are known. We further discuss this application below.
It is worth pointing out, however, that although we have
assumed stationary, i.e., time independent, conditions, there
is nevertheless a time-dependent component in the tunneling
conductance. This time dependence is generated by the dy-
namics of the local spin and it is this feature that would
enable a readout of the local-spin moment. The occurrence of
the time-dependent component in the conductance, and tun-
neling current, also suggests a mechanism which may be
employed for generation of high-frequency electrical cur-
rents. The effective magnetic fields acting on the local spins,
e.g., anisotropy fields, etc., may be on the order of millielec-
tron volts, see below, which would enable generation of high
gigahertz to tetrahertz ac currents.

The last conductance contribution, see Eq. �18�, provides
signatures that are generated by the spin-spin correlations or
spin fluctuations, occurring in the adsorbate. It is important
to note that this conductance is finite for any polarization of
the tip and the substrate, even when both electrodes are non-
magnetic. Hence, regardless of the electronic and magnetic
conditions of the system, this conductance directly depends
on spin fluctuations in the adsorbate. It is also noticeable that
the formulation of �I2 /�V suggests one, in principle, will be
able to study and distinguish between particular spin excita-
tions in the adsorbate. This functionality is expressed from
the fact that the sum and difference of the correlation func-
tions �nm

+− and �nm
−+ are multiplied by different combinations of

the electronic and magnetic structures of the tip and the sub-
strate. One is therefore capable to configure the STM setup
in order to probe particular spin excitations in the local spin.
This will be discussed further below.

IV. PHYSICAL INFORMATION CONTAINED IN THE
TUNNELING CONDUCTANCE

We now discuss a few different physical examples which
are introduced in order to shine some light on different as-
pects of the tunneling conductance. Before we go into the
examples, however, we introduce the model of the local
spins adsorbed on the surface.

We consider a cluster of spins on the substrate and write
the Hamiltonian for the spin Sn in the cluster according to
Hn=g�BB ·Sn, where B is an external magnetic field. The
effective exchange interaction between the spin moments in
the cluster is given by a Heisenberg model
HJ=−J�n�mSn ·Sm. This effective exchange comprise a com-
bination of, e.g., direct Heisenberg exchange and
Ruderman-Kittel-Kasuya-Yosida-type exchange. The sign of
the effective J may, thus, vary with distance between the
spins in the cluster.26 In this way, we describe clusters of
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spins with a total spin moment S. We define the resulting
eigensystem ��� , �S ,��� ,�=−S ,−S+1, . . . ,S, for the
eigenenergies and eigenstates, respectively, of the model,

HS = �
n

Hn + HJ + �
n

	D�Sn
z�2 + E��Sn

x�2 − �Sn
y�2�
 ,

�19�

where we have added the spin anisotropy fields D and E.
This model is pertinent to the recent studies of transition-
metal elements adsorbed onto surfaces, e.g., Fe and Mn on
CuN surface,5,6 and Fe and Co on Pt surface.8 In those ele-
ments, the magnetism is constituted by the electrons in the d
shell whereas the electrons in the s and p shell strongly hy-
bridize with the surface states in the substrate. We, therefore,
assume that the s and p electrons in the adsorbate are in-
cluded in the Hamiltonian for the surface electrons and, be-
low, we shall refer to them as conduction electrons. The elec-
trons in the d shell can be regarded as only weakly
hybridizing with the conduction electrons which, therefore,
enables us to disregard their contribution to the conductance.

Under the assumption of very weak coupling between the
d electrons and the conduction electrons, which is pertinent
to the recent experiments on, e.g., Fe and Mn on CuN,5,6 we
write the total dynamical local-spin moment in terms of the
eigensystem defined for the cluster according to

�Sz���� = 2� �
�=−S

S

�f����
�� − ��� , �20�

where f���� provides the occupation of the state �S ,��.
Hence, the conductance is proportional to ��Sz����d� / �2��
=���f����, cf. Eq. �21� below.

In order to also describe the experiments conducted on,
e.g., a Pt surface,8 we phenomenologically introduce a width
of the local-spin excitations by replacing Dirac delta func-
tions by Lorentzian functions. Such a treatment can be physi-
cally motivated by that this would be the essential effect of a
mean-field-approximated dressing of the bare spin averages
and spin-spin correlation functions. This phenomenological
model is sufficient for our present purposes since we do not
attempt to explain all the details of the experiments.

A. Estimating the spin moment

The conductance in Eq. �15� can be directly linked to the
total local-spin moment �Sn

z�. This is simplest seen by assum-
ing that the electronic and magnetic densities in the tip and
the substrate vary slowly with the energy. Calculating the
Fourier transform of �I1�t� /�V and integrating over all fre-
quencies gives

�I1�r,V�
�V

= 2�2�0T0�
n

T1�r − rn��Sn
z�	mz��F − eV�

� N�r,�F� + n��F − eV�Mz�r,�F�cos���
 ,

�21�

where we have identified the total spin moment of the nth
spin by �Sn

z�=��Sn
z����d� / �2��. In this fashion, we obtain a

linear relationship between the differential conductance
�I /�V and the average spin moment �Sn

z�.
Our theory suggests that the STM conductance generates

a time-dependent signal, in agreement with earlier studies
which suggest time-dependent noise spectroscopy using
STM tunneling current,32,33 regardless of the time depen-
dence, or time independence, of the bias voltage. The Fourier
transform of this signal provides an energy-resolved signal
from which additional understanding, i.e., dynamics about
the spin systems can be extracted.

Consider the simple example, given for, e.g., a
single- �n=1� spin moment of S=1, for which
�=0, 	1. The anisotropy fields D and E break up the spin
symmetry, such that the spin levels are given by
�0=0 and �	1=D	�E2+ �g�BB�2 for B=Bẑ. The
dynamical spin moment, thus, becomes �Sz����
=�	f��1�
��−�1�− f��−1�
��−�−1�
, which generates a non-
vanishing current when the populations f��	1� of the states
�1, 	1� are different. This observation holds for an adatom
with any value of the spin and emphasizes the fact that the
local spin has to have a definite moment in order to be mea-
surable through the SP-STM. Using this dynamical spin mo-
ment in Eq. �15� and assuming slowly varying electronic and
magnetic densities in the tip and the substrate, results for low
temperatures in

�I1�t�
�V

� f��1�cos �1t − f��−1�cos �−1t . �22�

More generally the time dependence of the conductance
can be written as

�I1�t�
�V

� �
�

�f����cos ��t . �23�

The period of the conductance oscillations are, thus, di-
rectly linked to the energy levels of the spin states, see Fig.
1�a� for an example of the time-dependent conductance for
two different setups of the SP-STM. The period of the con-
ductance oscillations can, thus, be changed by applying an
external magnetic field Bz in order to vary the energy levels
��, as is illustrated in Fig. 1�b�, showing the magnetic field
dependence of the Fourier-transformed dynamical conduc-
tance. The time scale associated with the conductance oscil-
lations is given by the set of eigenenergies ��, which means
that only very low-lying excitation energies �0.066 meV cor-
responding to 100 GHz� are reachable by means of the state-
of-the-art experimental technology. Although detection of
spin moments using this method definitely challenges todays
experimental resources and capabilities, it should be an ac-
cessible regimes within the nearest future.

It is important to notice, however, that the presence of the
time-dependent component in the conductance opens the
possibility to generate high-frequency ac currents. Due to the
high anisotropy fields acting on the local-spin moment, on
the order of millielectron volts �see Sec. IV B�, one would be
able to generate electrical and spin-dependent ac currents
and/or ac voltages with frequencies in the tetrahertz regime.
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B. Anisotropy parameters

Our next example of the usefulness of Eq. �21� is to con-
sider an S=1 adatom, and we plot for this system the con-
ductance �I1 /�V, see Fig. 1�a�, where the anisotropy fields
D=−10 meV and E=0 meV for different temperatures, i.e.,
T=0.3 K �dashed� and T=4.3 K �solid�. These parameters
are pertinent to the recent studies of Co/Pt�111�.1,8,26 The
plots in �a� clearly show the phase shift of � when the mag-
netic field B is reversed from antiparallel �lower� to parallel
�upper� orientation with mtip. The magnetization curves are S
shaped �not shown�, which correspond to a paramagnetic be-
havior of the local spin and which was observed in
experiments.26

From the dynamical conductance, �I�t� /�V or �I��� /�V,
one can obtain information about the magnetic anisotropy
fields D and E acting on the local spin. In the case of
D�0 and E=0, the spin moment points perpendicular to the
surface, which generates a maximal conductance. The re-
sponse remains strong for values of B sufficiently large to
maintain a spin splitting of the adatom which is larger than
the thermal excitation energy kBT. This is illustrated in Fig.
1�b�, where ��1I�� ,B� /�V� is plotted for an S=1 adatom, as a
function of � and B. Bright �dark� colors correspond to large
�small� amplitude of ��1I�� ,B� /�V�. The lines that represent
the ground state of the adatom cross at zero magnetic field,
which is expected since the ground state is spin degenerate at
B=0.

A finite value of E, on the other hand, provides a tilting of
the spin moment away from the perpendicular orientation,
which leads to a weakened conductance. This is illustrated in
Fig. 1�c�, where E=2. The finiteness of E breaks the spin

degeneracy of the ground state at vanishing magnetic field.
The ground state is, however, pointing parallel to the sub-
strate, which leads to that �Sz����=0 at B=0. The resulting
magnetization line remains S shaped �not shown�. Despite
the low temperature, however, the magnetization curve is
reminiscent of the magnetization curve for higher tempera-
ture. This is expected since the anisotropy field E introduces
an energy barrier for the adatom to overcome in order to
point its spin perpendicular to the substrate.

In the production of the plots in Figs. 1�b� and 1�c�, we
replaced the Dirac delta function by a Lorentzian function
with a broadening of 0.01 meV. This broadening is roughly
two order of magnitudes smaller than what is expected from
the experimental setup with Co/Pt�111�, see Sec. IV D for
estimates, and is chosen in order to emphasize the different
behavior of the conductance of different anisotropy param-
eters. Using more realistic anisotropy parameters blurs the
resulting image, however, the main difference between the
character of the conductance for vanishing and finite field E
can be resolved.

C. Character of exchange-interaction parameter

Studies of the dynamical conductance can also be used to
reveal the sign of the effective exchange interaction between
magnetic adatoms located on the surface. Consider, for ex-
ample, a spin dimer. In case of ferromagnetic exchange,
J�0, the ground state of the spin dimer is a spin triplet.
Varying the magnetic field, the ground state of the dimer
acquires a magnetic moment, e.g., �Sz�=S or −S, depending
on whether the magnetic field is antiparallel or parallel with
the magnetic moment in the tip, in analogy with the single-
spin case discussed above. Hence, there is a measurable dy-
namical conductance. In case of an antiferromagnetic ex-
change, however, the ground state of the spin dimer is a spin
singlet, with zero magnetic moment. Then, the dynamical
conductance vanishes, cf. Eq. �15�, and the total conductance
is strictly time independent, except for possible noise fluc-
tuations.

D. Spin fluctuations

To illustrate the effect of spin fluctuactions, we consider a
local-spin moment S comprising two coupled spins
Sn, n=1,2, a spin dimer, and consider them to be antiferro-
magnetically coupled. The ground state is a spin singlet
�S=0,�=0� while the first excited states constitute a spin
triplet �S=S1+S2 ,�=0, 	 (S1+S2)�. Assuming an exchange
energy �J�= �ES−ET��kBT, where ET�S� denotes the triplet
�singlet� energy in order to prevent thermal excitations at
zero bias, the equilibrium conductance is given by the elastic
tunneling between the tip and the substrate only, i.e.,
dI /dV=dI0 /dV. Effects from tunneling electrons scattering
off the local-spin moment averages to zero.

The coupling to the tunneling electrons via the spin-spin
interaction, e.g., cp�

† ���� ·Snck� enables, on the other hand,
each individual spin constituting S to undergo spin-flip tran-
sitions which are assisted by spin flips of the tunneling elec-
trons. Due to this coupling, the correlation function, e.g.,
���� · �Sn�t�Sm�t��� ·���� is nonvanishing, in general. The
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FIG. 1. �Color online� Various aspects of �I1 /�V for a single
S=1 adatom. �a� �I1�t ,V� /�V, Eq. �15�, for B=Bẑ and mtip antipar-
allel, B=−1 T �lower plots�, and parallel, B=1 T �upper plots�.
The plots correspond to T=0.3 K, E=0 �dashed�, T=4.3 K, E=0
�solid�. �b� and �c� ��I1�� ,V ,B� /�V� as a function of � �horizontal
axis� and B �vertical axis� at T=0.3 K, and �b� E=0 and
�c� E=2 meV. Bright �dark� colors correspond to large �small� am-
plitude. The conductances have been normalized by
2�2�0T0T1	mzN+nMz
. Here, D=−10 meV, g=2, mz=3n��F� /4,
Mz=0, and V=0.3 meV.
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spin-spin interaction, thus, provides a coupling between the
singlet and triplet states which supports transitions between
them. As a result of these transitions, a new channel for
conductance opens at bias voltages V� �J� /e.

The spin-spin correlation functions �nm
−+���, �mn

+−���, and
�nm

z ��� are calculated in terms of the eigensystem for the
total spin, giving

�nm
�	��� = �− i�2��

iv
�i�Sn

��v��v�Sm
	�i�P�Ei�

�	1 − P�Ev�

�� + Ei − Ev� , �24a�

�nm
z ��� = �− i�2��

iv
�i�Sn

z �v��v�Sm
z �i�P�Ei�

�	1 − P�Ev�

�� + Ei − Ev� , �24b�

where i �v� denotes the initial �intermediate� state whereas
P�x� accounts for the population in the corresponding state.
Equation �24� provides the general qualitative features of the
spin-spin correlation function, and shows that there will ap-
pear steps in dI /dV whenever the bias voltage matches the
transition energy 	�Ei−Ev�. In the case of a spin dimer, for
instance, there appear steps in dI /dV when the bias voltage
supports the inelastic transitions between the single and trip-
let states. In case of, e.g., Fe/CuN, the calculated results are
plotted in Fig. 2, for a nonmagnetic tip and substrate, show-
ing that the presented theory reproduces the results discussed

in Ref. 28 and shows an excellent agreement with
experiments.5,6

Signatures of the excitations in the experimental measure-
ments do have a finite width, which corresponds to that the
intermediate states have finite lifetimes. Replacing the delta
functions in Eq. �24� by Lorentzian funtions 1 / �x2+�2�, we
phenomenologically include the �uniform� lifetime � /� for
all intermediate states. In case of a single Fe on CuN with
spin S=2,6 and the anisotropy parameters given in Table I,
we find that the Fe spin is weakly coupled
���10–30 �eV� to the Cu�100� through the CuN layer, see
Fig. 2�c�. This value is extracted by comparing the ratio be-
tween the maximal and minimal conductance with the ex-
perimental result ��1 /2�. Similarly we also extract the
widths of the single Fe�S=3 /2� and Co�S=1� adsorbed onto
Pt�111� surface.8 In Figs. 3�a� and 3�b�, we have plotted
d2I /dV2 for Fe �upper� and Co �lower� and we find the best
correspondence with experiments using the parameters given
in Sec. I. In Fig. 3�c�, we finally provide a computation of
the Fe dimer on Pt�111� reported in Ref. 8. Because of the
presence of two Fe atoms, we make use of space dependence

TABLE I. Anisotropy parameters, D and E, used for the con-
ductance plots given in Figs. 2�c� and 3, the best widths, �, for the
intermediate states in the spin-spin correlation functions.

S
D
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�meV�
�
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�. Plots are off-set for clarity.
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of the tunneling rate and the decay length �, and plot the
computed d2I /dV2 for different values of the decay length. In
comparison with the experimental results, the decay length
of 0.5 Å gives the best agreement, suggesting a very rapid
spatial decay of the spin-dependent tunneling rate. In the
figure, we for reference have also included the resulting
d2I /dV2 in absence of the broadening.

In the calculations, we have estimated the population
numbers P�Ei�v�� of the states �i�v�� involved in the spin-spin
correlation functions, cf. Eq. �24�, by making use of the fol-
lowing observation. By expanding the correlation function,
e.g., �nm

+−�t , t�� in terms of its eigenstates, we can write
it as �nm

+−�t , t��=�iv�i�Sn
−�v��v�Sm

+ �i��−i���di
†dv��t��dv

†di��t���,
where di

† �di� creates �annihilates� a particle in the state
�i�. In the atomic limit, we can employ the
decoupling ��di

†dv��t��dv
†di��t���= �di

†�t�di�t����dv�t�dv
†�t���

= P�Ei�	1− P�Ev�
ei�Ei−Ev��t−t��, where the population number
P�Ei�= �di

†di� can be estimated by using, e.g., the Gibbs dis-
tribution P�E�=e−�E /�ie

−�Ei.

E. Probing specific spin excitations

We observe in Eqs. �18� and �24� that the transition se-
quences �i�Sn

+�v��v�Sm
− �i�, �i�Sn

−�v��v�Sm
+ �i�, and �i�Sn

z �v��v�Sm
z �i�

are associated with different projections of the spin-resolved
local DOS in the tip and the substrate. The sum and
difference of the first two sequences couple to
n���N��F�−m��� ·M��F� and mz���N��F�−n���Mz��F�cos �,
respectively, while the last sequence couples to
n���N��F�+m��� ·M��F�. The different couplings reflect an
ability to enhance or attenuate the response of certain inelas-
tic transitions, at will, by using different combinations of
electronic and magnetic densities in the tip and the substrate.

In STM without spin polarization �m ,M=0�, for instance,
the excitation spectrum can be analyzed to certain detail by
means of applying an external magnetic field, e.g., along the
z direction of the spin-quantization axis of the sample. Such
application of the magnetic field introduces a Zeeman split-
ting of the levels, which thus leads to a separation of the
peaks in the d2I /dV2. To be specific, consider a single ada-
tom with S=1, and anisotropy fields D�0 and E=0,
which is described by the states �S=1,�=0, 	1�, where
E��E0 at B=0. In this system, the leading contribution to
the term in dI2 /dV containing �nm

−+���+�nm
+−���, cf. Eq. �18�,

is proportional to ��=	1	P�E��− P�E0�
	f�eV−E�+E0�
− f�eV+E�−E0�
 while the term containing �nm

−+���−�nm
+−���

vanishes. The former contribution generates steps in the con-
ductance at bias voltages eV= 	 �E�−E0�. Those steps are
separated by �E+1−E−1� whenever the states �1,0� and �1,��
are unequally occupied. Hence, the spin splitting imposed by
the external magnetic field is detectable through separate but
equally high steps in the conductance. This splitting can be
seen in Fig. 4, where we plot d2I /dV2 of this scenario, where
the lowermost curve correspond to nonmagnetic conditions
whereas the second curve from below is obtained with
B=Bz and B=1.

Using SP-STM opens further possibilities in the
studies of spin systems since then the term in dI2 /dV con-
taining �nm

−+���−�nm
+−��� is finite. In case of the S=1 adatom,

the leading contribution to this term is proportional
to ��=	1�	P�E��− P�E0�−2P�E��P�E0�
	f�eV−E�+E0�
− f�eV+E�−E0�
, where it is important to notice that the
contributions to this term have opposite signs. Hence, by
combining the electronic and magnetic densities in the tip
and the substrate such that mzN−nMz cos ��0, this term
leads to an attenuated �intensified� signal from the transition
�1,0��1,+1� ��1,0��1,−1��, cf. third and fourth curves from
below in Fig. 4. By the same token, the signal is intensified
�attenuated� when mzN−nMz cos ��0, see uppermost curve
in Fig. 4. While the details of the terms containing the sum
and difference of the spin-spin correlation functions �nm

−+ and
�nm

+− differ from system to system, the general conclusion we
can draw out of this observation is that the intensity of the
signal from any specific transition depends on the magnetic
densities of the tip and the substrate, and on their relative
orientation.

F. Maximizing the signal from fluctuations

Finally we notice that the conductance dI0 /dV vanishes
for nN+m ·M=0, which corresponds to the case with a half-
metallic tip and substrate such that their magnetic moments
are in antiparallel alignment. In this setup also the conduc-
tance dI1 /dV=0, which implies that the measured signal is
generated solely by dI2 /dV. As can be seen in Eq. �18�, this
conductance only depends on the transverse components,
i.e., the sum and difference of �nm

−+ and �nm
+− since the term

containing �nm
z is proportional to nN+m ·M�=0�. Therefore,

despite the presence of possible thermal noise, such a setup
would benefit from a very low current noise since most of
the noise would be related to the spin fluctuations, that is, the
noise we want to measure. This can be seen by identifying

the spin-dependent current operator with 
Î�t�=T1S�t� ·s,
where s=�pk���cp�

† �ck��. The current-current correlation

function is then given by32,33 �
Î�t�
Î�t���
=T1

2s · �S�t�S�t��� ·s, where we average over the dynamics of
the localized spins and over the ensemble of the tunneling
electrons. Under the condition that nN+m ·M=0, the total dc
current I is proportional to T1

2�−
t s · �S�t�S�t��� ·sd�t− t��, and
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since the shot noise is approximately �Ishot
2 ����� I, the

signal-to-noise ratio is about unity.

V. CONCLUSIONS

The theory we propose here for STM/STS measurements
�essentially� contains the well-known Tersoff-Hamann
term,10,24,25 Eq. �12�, which maps the energy dependence of
electronic and magnetic densities of states, for energies de-
fined by the Fermi level, of the substrate, and the applied
bias voltage. For the situation where magnetic impurities are
located on the substrate, our theory also contains a contribu-
tion which is proportional to the magnetic moment of the
local spins, and allows for a quantitative analysis of spin
moments using SP-STM. This is, hence, different from the
currently most common analysis, which is solely focused on
the energy-dependent spin polarization of the DOS. We show
here that studies and analyses of both the dynamical conduc-
tance, �I�V , t� /�V or �I�V ,�� /�V, and the total conductance
�I�V� /�V can be linked to the dynamical, �Sz�t�� or �Sz����,
and total, ��Sz����d� /2�, magnetic moments, respectively,
of the local spins. This contribution generates different re-
sponse at the local spins depending on their relative orienta-
tion compared to the spin moment on the SP-STM tip. To our
knowledge, this contribution has not been discussed before,
and the direct relation between the differential conductance
and the local-spin moment is expected to make a significant
impact on the potential capabilities in using SP-STM, and to
extract quantitative information about local-spin moments.

We also point out that despite the present difficulties to
experimentally record the time-dependent component in the
conductance in a high gigahertz or even tetrahertz regime, it
is important to observe that the dynamical component to the
conductance opens new possibilities for the generation of

high-frequency ac currents and/or voltages. Thus, by using
local-spin moments adsorbed onto metallic surface, such a
scenario requires at least one magnetic electrode which pro-
duces a local magnetic field that can interact with the local-
spin moment and, thus, provide a time-dependent net contri-
bution to the tunneling current and conductance. Having in
mind anisotropy fields from the substrate acting on the spin
moment, it would be possible to generate spin-dependent ac
currents/voltages in the tetrahertz regime since the aniso-
tropy fields may be on the order of millielectron volts.

It is important to note that our description goes beyond
the treatment reported in, e.g., Refs. 23 and 24 since we also
include effects from the local spin-spin interaction between
delocalized spin built up by the tunneling electrons, and the
localized spin of the adatom. These spin-spin interactions are
included already in the tunneling matrix element, cf. Eq. �1�,
and describe that the tunneling electrons of different spins
are subject to different tunneling barriers, i.e., spin-
dependent tunneling barriers.

The theory presented here for obtaining quantitative spin-
resolved information in a SP-STM experiment provides an
alternative to the method used in Ref. 26, where a mean-field
model based on the Weiss molecular field40 was used. Future
work, primarily of experimental nature, will judge which ap-
proach is the most reliable one.
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