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We investigate the diabatic electronic states of a photoexcited molecule within a diabatization method
originally proposed by Baer �Chem. Phys. Lett. 35, 112 �1975��. A diabatization denotes a unitary transfor-
mation which allows for incorporating nonadiabatic effects into the quantum Hamiltonian, expressed in the
adiabatic representation. A typical example is the treatment of avoided crossings in the potential-energy sur-
face, for instance, in the case of the retinal chromophore. In this paper, we present analytical and numerical
calculations for the diabatic states in the context of Green’s-function-based ab initio many-body perturbation
theory �density-functional theory plus GW method plus Bethe-Salpeter equation�. We present the calculation of
the adiabatic and diabatic lowest excited electronic states of the retinal chromophore molecule.
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I. INTRODUCTION

By separating the slow and fast degrees-of-freedom of the
quantum Hamiltonian of nuclei and electrons, the Born-
Oppenheimer approximation allows for a realistic descrip-
tion of many processes in condensed-matter systems. Within
this approximation, one assumes that the nuclei move on a
single potential-energy surface or, correspondingly, that the
electrons adjust immediately to any change in the nuclear
position. There are, however, situations in which this ap-
proximation may fail and nonadiabatic effects do play a role.
Typical cases are given, for example, by chemical reactions
caused by photoexcitation �such as photodissociation or pho-
toisomerization�. In this work, we investigate the photoi-
somerization process in the retinal chromophore in its proto-
nated Schiff-base form.

The retinal chromophore is a light-absorbing polyene
molecule in the rhodopsin protein. In the animal eye, visible
light absorbed by the 11-cis form of the retinal chromophore
causes its isomerization to the all-trans form, thus initiating
an ultrafast chemical reaction which effectively converts the
photon to an electrical signal activating the process of
vision.1 Another interesting case, which we consider in this
paper, is the photoisomerization of retinal from trans
to 13-cis in the bacterium Halobacterium halobium.
Under anaerobic conditions, this bacterium produces
bacteriorhodopsin—a protein which converts absorbed pho-
ton energy into an electrochemical gradient. This gradient
pumps protons unidirectionally across the membrane in
which the protein is located, thus forming a driving force for
the synthesis of adenosine triphosphate �ATP�.2 The light-
sensitive structure in bacteriorhodopsin is given by a retinal
chromophore which is linked by a protonated Schiff base to
the Lys-216-amino group of the protein. Upon absorption of
a single photon, the all-trans form isomerizes to the 13-cis
form. Figure 1 shows the chemical structure of the all-trans
isomer of the protonated Schiff-base retinal �PSBR�. For
simplicity �and for facilitating the calculations to be dis-
cussed in this paper�, we replace the chemical link to the
protein by a saturating methyl group �right-hand side of
Fig. 1�.

Retinal is an aromatic system, with its double bonds form-
ing large orbitals extending over the whole molecule. From
these orbitals, electrons can be easily excited by light of the
visible range of 400–800 nm wavelength. After this photo-
excitation, the molecule can isomerize by rotating around
one of the double bonds. Figure 1 illustrates one of these
possibilities, i.e., a rotation around the bond between atoms
13 and 14, turning the all-trans form into the 13-cis isomer
as it occurs in bacteriorhodopsin.

The photoisomerization of PSBR is often discussed
within two competing models, as displayed in Fig. 2. This
figure denotes schematically the ground state S0 and the first
two excited electronic singlet states S1 and S2 as a function
of the twisting angle. The all-trans form �13-cis form� refers
to a twist angle of 0° �180°�. The two-state model would
predict that a photoexcited electron causes a very fast tor-
sional motion toward the minimum �at about 90°� of the S1
excited-state potential-energy surface �PES� since the
Franck-Condon region in this PES would be repulsive
around 0°. This would lead directly to very fast movement
into the active region �at about 90°�, which should be accom-
plished within about 100–200 fs. From this configuration, the
ground state S0 �corresponding either to all-trans or 13-cis�
would be reached within another �500 fs, continuing the
torsional motion through the avoided-crossing point between
the PES of S0 and S1. The three-state model, on the other
hand, assumes that the torsional movement along the reac-
tion coordinate accesses a shallow well in the flat Franck-
Condon region on the PES of S1. This well would arise from
the avoided crossing between the S1 state and another excited
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FIG. 1. Chemical structure of the all-trans isomer of the proto-
nated Schiff-base retinal chromophore. The dashed line denotes the
twist axis considered in this paper �referring to the isomerization
between the all-trans and 13-cis configuration�.
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state �S2�. As the result of this tumbling state, the reactive,
steep region �between about 45° and 90°� would be reached
later in time, and the twisted conformation at the second
avoided-crossing point �at about 90°� would be reached in
about 500 fs, i.e., significantly slower than in the two-state
model. Both models have been supported both by theoretical
and by experimental studies �see Ref. 3, and references
therein for details�. However, recent experimental data4 seem
to favor the three-state model, with a quantum yield for the
photoisomerization reaction of about 0.64.5

In the Born-Oppenheimer approximation and the adia-
batic representation, two or more adjacent PES may exhibit
so-called avoided crossings, as indicated by the solid lines in
Fig. 2. An avoided crossing would inhibit any electronic
transitions between the two PESs as the reaction coordinate
varies. Such inhibition is often not realistic and constitutes a
significant failure of the Born-Oppenheimer approximation.
A straightforward way to overcome such problems is to de-
scribe the so-called nonadiabatic effects �i.e., effects beyond
Born-Oppenheimer� directly in the traditional adiabatic rep-
resentation. This requires to evaluate two quantities, i.e., �i�
the global PESs of the adiabatic states and �ii� the nonadia-
batic coupling terms �NACTs� between them. The latter re-
sult from the action of the nuclear kinetic-energy operator on
the electronic wave function. In practice, this implies that in
the adiabatic representation, the quantum-dynamical calcula-
tion of the nonadiabatic process is pursued by substituting
the molecular Hamiltonian into the Schrödinger equation. In
here, a set of coupled differential equations must be inte-
grated in time, including the calculation of the NACTs as the
investigated reaction proceeds. Since the NACTs are for-
mally given by the matrix elements of the nuclear derivative
operator between electronic states, the calculation of them is
a very demanding task.

In this work, we employ an alternative approach, i.e., the
change in representation by an appropriate unitary transfor-
mation applied to the electronic and nuclear eigenstates. In
this new diabatic representation, the derivative couplings be-
tween electronic states are rigorously removed or at least
reduced to a minimum.6 The electronic Hamiltonian matrix
becomes nondiagonal, and the diagonal elements of it con-
stitute new PESs which may now cross each other. Such
diabatic PESs are illustrated in Fig. 2 as dashed curves. Dia-
batization has been applied traditionally in the context of
quantum chemistry calculations, such as, e.g., the
configuration-interaction �CI� method.7 Diabatization is,
however, not a unique method. Owing to the computational

cost of quantum-chemical many-particle methods such as CI,
several approximative methods have been suggested, leading
to a quasidiabatic representation. These usually avoid the
computation of the derivative couplings between states.
Some of these approximations rely on the diagonalization of
a so-called property matrix.8 Others analyze the coefficients
of the CI states and check for so-called dominant configura-
tions in them, which should not change significantly as the
reaction coordinate varies.9

The big advantage of working in the diabatic representa-
tion is given by a significant reduction in computational cost
as compared to the adiabatic representation. In the adiabatic
representation, the electronic wave functions depend on
nuclear coordinates and therefore, one has to solve a set of
coupled equations for the molecular wave function and cal-
culate the first- and the second-order derivative of the elec-
tronic wave function with respect to all nuclear coordinates.
In our approach, on the other hand, first we calculate only the
first-order derivative along the reaction coordinate of interest
and second we do it typically only for a few states of interest.
Without this, staying at the BO approximation, one de-
couples nuclei and electronic degrees of freedom and the
result is that the motion of the nuclei evolve separately in
each electronic state without being affected by each other.
This means that any kind of photoisomerisation and also
quite a big number of photodissociation processes cannot be
simply described.

In the present work, we propose a physics-motivated
method to obtain the diabatic electronic states. Here we use
many-body perturbation theory within the DFT-GW-Bethe-
Salpeter equation �BSE� scheme to get an accurate descrip-
tion of the excited electronic states. We then apply a univer-
sal diabatization method proposed by Baer,10,11 which we
find most suitable in our approach. In particular, this method
does not depend on any other additional assumptions.

The paper is organized as follows. In Sec. II, we briefly
describe the diabatization scheme and its embedding in the
GW-BSE method. In Sec. III, we investigate the photoisom-
erisation reaction of PSBR by discussing both adiabatic and
diabatic electronic states of the molecule, taking into account
the first two singlet excited states. Our findings are summa-
rized in Sec. IV.

II. METHODOLOGY

In this section, we discuss all the indispensable theoretical
components of the theory and provide the realization of
Baer’s diabatization scheme within the GW-BSE method.

A. General theory on the adiabatic representation
and the diabatization scheme

Within the adiabatic representation, we write the molecu-
lar Hamiltonian of the system �consisting of nuclei and elec-
trons� as the usual sum of the nuclear kinetic-energy operator
T and the electronic Hamiltonian He. Consequently, from
solving the electronic eigenvalue problem at fixed nuclei po-
sitions R, we obtain the adiabatic electronic eigenstates
�n�r ,R� and eigenvalues �n. The molecular wave function �
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FIG. 2. Two commonly discussed models of the isomerization
reaction path from all-trans at 0° to 13-cis at 180° of PSBR in
bacteriorhodopsin.
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is constructed as an expansion in the complete orthonormal
basis of electronic states �n,

��r,R� = �
n

�n�R��n�r,R� , �1�

where � denotes the nuclear wave function. Substituting �
into the molecular eigenvalue problem, one arrives at the
following familiar equation, expressed in the adiabatic rep-
resentation and using a matrix form,

�T + V�X�R� = EX�R� . �2�

Here, V denotes the diagonal matrix of the electronic adia-
batic PESs and X is the vector of the nuclear wave functions.
T is the matrix of the nuclear kinetic-energy operator in the
electronic basis set, given more precisely as

Tmn�R� = T�R��mn + �mn�R� . �3�

The �mn coefficients are the NACTs that arise from the ac-
tion of the T operator on the �n states and contain the fol-
lowing derivative couplings between electronic states:

�mn
�1� = ��m�

�

�R
�n	 ,

�mn
�2� = ��m�

�2

�R2�n	 . �4�

In the adiabatic approximation the off-diagonal elements of
� are neglected, which corresponds to assuming that the
nuclear kinetic energy is much smaller than that of the elec-
trons. If one further assumes that also the diagonal compo-
nents of � depend only weakly on the nuclear coordinates,
one would neglect � completely and thus arrive at the com-
mon Born-Oppenheimer approximation.

Baer showed10 that upon a suitable unitary transformation
of the basis, Eq. �2� may be transformed into the diabatic
representation. In this representation, the �mn vanish and the
matrix T of Eq. �3� becomes diagonal whereas the matrix V
now acquires off-diagonal elements. This transformation is
described by a matrix A which results from solving the dif-
ferential equation,

�A + �A = 0. �5�

In here, the � matrix of derivative couplings consists of the
elements of ��1� of Eq. �4�; � is found to be anti-Hermitian.

Considering n electronic states, the diabatization can be
performed, in practice, by utilizing the fact that A should be
an orthogonal matrix. Therefore, it may be simply considered
as a product of n-dimensional rotational sub matrices Q,

A�	1,	2, . . .� = 

i
j

n

Q�ij��	ij� . �6�

The n parameters 	ij are the so-called nonadiabatic mixing
angles. Equation �6� leads to a system of coupled differential
equations of the same form as Eq. �5� for all n nonadiabatic
mixing angles 	. Once all the mixing angles 	 have been
found, the following transformation gives the diabatic repre-
sentation of the electronic Hamiltonian matrix:

W = A†VA . �7�

In here, the V matrix denotes the diagonal matrix of the
adiabatic electronic states.

B. Analytical embedding in the DFT-GW-BSE scheme

In this section, we discuss how to calculate the excited
electronic states in the adiabatic picture and how to evaluate
the derivative couplings that are required to define the dia-
batization formulas. The excited state is taken as one
electron-hole pair, which is generated when the system ab-
sorbs a photon. Since the molecule has a closed-shell �i.e.,
spin-singlet� electronic ground state, only singlet-to-singlet
excitations are of relevance for light absorption. The
electron-hole pair states and their excitation energies �n re-
sult from the poles of the interacting two-particle Green’s
function, which we evaluate by means of the so-called GW-
BSE method.12 A practical scheme of solving for the poles is
given by a diagrammatic expansion of the electron-hole
propagator G2 in terms of the scattering �or electron-hole
interaction� kernel K. This approach, which is known as the
BSE �Ref. 13� for G2, may be briefly written in frequency
space as

G2��� = G2
�0���� + G2

�0����K���G2��� , �8�

with G2
�0� being the propagator of an electron and a hole as

independent particles �given by a the product of two single-
particle propagators, G1, for the electron and the hole alone�.
In lowest order, the scattering kernel K consists of two terms,
i.e., a bare-Coulomb-interaction exchange terms and a
screened-Coulomb-interaction direct term. We evaluate the
latter in the ring-diagram approximation for the polarization
propagator �random-phase approximation �RPA��. This
evaluation of K was found useful first by Sham and Rice14

and later by Strinati.15

Before evaluating Eq. �8�, we have to solve the equation
of motion for the one-particle propagator G1, using Hedin’s
GW approximation16 to the self-energy, i.e., 
= iGW. Here
W is the screened-Coulomb interaction, which we again
evaluate at the RPA level. The eigenstates and eigenvalues
thus obtained have the interpretation of the Landau quasipar-
ticle states �describing both electron and hole states of the
molecule�. In practice, we deal with 
 as a perturbative cor-
rection to the single-particle states obtained from a preceding
density-functional theory �DFT� calculation.17

For G2, we mostly consider the case of forward propaga-
tion in time when calculating the particle-hole propagator
within RPA. In practice, this means that the excited states �n
can only be obtained by creation of an particle-hole pair,
neglecting the possibility of destroying the pair. This restric-
tion is known as the Tamm-Dancoff approximation �TDA� to
the RPA states �see the discussion in Ref. 18�. The excited
states can thus be expressed as linear combinations of the
particle-hole states,

��n� = �
v

�
c

Avc
n av

†bc
†�0� , �9�

where the first sum runs over all occupied single-particle
states �i.e., holes� while the second sum runs over the empty
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states �i.e., electrons�. The av
† and bc

† operators create the
particle-hole pair; the �0� state denotes a single Slater deter-
minant of the occupied valence states. Expressing the
electron-hole amplitudes of G2 according to Eq. �9� and in-
serting this into the BSE �Eq. �8�� results in the following
eigenvalue problem:

��c − �v�Avc
n + �

v�c�

Kvc,v�c���n�Av�c�
n = �nAvc

n . �10�

In here, �c and �v are the quasiparticle energies of the occu-
pied �hole� and unoccupied �electron� single-particle states,
as obtained from the GW calculation. Solving the BSE yields
the expansion coefficients Avc

n and excitation energy �n of
each coupled electron-hole pair state n �n=1,2 , . . .�. Further
technical details of the GW-BSE approach can be found in
Ref. 19.

The next step is to consider the derivative couplings �mn,
which occur in Eq. �5�. First, we analyze the coupling be-
tween the electronic many-body ground state �labeled “0”�
and an excited state n�1. This coupling is given by

�0n = ��0���n� , �11�

where �0 is the Slater determinant �0
det of all the occupied

single-particle states. The derivative with respect to nuclear
coordinates is abbreviated as �. In all further calculations, we
take �0

det as

�0
det�x1, . . . ,xN� =

1

N!

�
P�SN

sgn�P��v1
�xP�1�� . . . �vN

�xP�N�� .

�12�

The sum runs over all elements P of the permutation group
SN, thus acting as the antisymmetrizator operator of the
single-particle states �. N is the number of occupied states
and x denotes both space and spin. The �n, on the other
hand, have the form of

��n� = �
vc

Avc
n ��vc

det� . �13�

��vc
det� denotes an independent electron-hole pair state, with

the hole �electron� from single-particle level v�c�. Since we
focus on spin-singlet excited states, ��vc

det� can immediately
be expressed as

��vc
det� =

1

2

���v↑c↓
det � − ��v↓c↑

det �� . �14�

In here, ��v↑c↓
det � denotes a Slater determinant similar to Eq.

�12� but with one occupied state �i.e., v↑� replaced by an
empty state �i.e., c↓�, referring to an excitation,

�vi↑cj↓
det �x1, . . . ,xN�

=
1


N!
�

P�SN

sgn�P��v1
�xP�1�� . . . �vi↑�xP�i�� . . . �cj↓�xP�N�� .

�15�

Correspondingly, �0n can be written as

�0n = ��0
det���

vc

Avc
n �vc

det	
= �

vc

��Avc
n ���0

det��vc
det� + �

vc

Avc
n ��0

det���vc
det� . �16�

Here we assume explicitly that both the coefficients A and
the determinants � depend on the reaction coordinate, upon
which we differentiate with the operator �. Analyzing
Eq. �16� further we recognize that in the first sum,
��0

det ��vc
det�=0 for all vc simply from orthogonality of the

single-particle states from which the Slater determinants are
constructed. In the second sum, ��0

det ���vc
det� contains the de-

rivative of two electron-hole-pair Slater determinants �see
Eq. �14�� with respect to the reaction coordinate. After some
algebra, which fully retains the spin, Eq. �16� finally simpli-
fies to

�0n = 
2�
vc

Avc
n ��v���c� �17�

since the scalar product between one Slater determinant and
�the derivative of� another results from the scalar products of
the contributing single-particle states �or their derivatives�.
To be more precise, the �v and the �c wave functions ap-
pearing here are the single-particle states in which at fixed v
and c both determinantal structures differ, and the factor 
2
is due to spin �cf. Eq. �14��.

Finally, we consider the derivative coupling �mn between
two excited singlet states m and n,

�mn = ��m���n� . �18�

Similar to �0n, the �mn �with m�1� can be written as

�mn = ��m���
vc

Avc
n �vc

det	
= �

v�c�
�
vc

Av�c�
�m ��Avc

n ���v�c�
det ��vc

det�

+ �
v�c�

�
vc

Av�c�
�m Avc

n ��v�c�
det ���vc

det� �19�

and can be immediately simplified to the following many-
particle form:

�mn = �
vc

Avc
�m � Avc

n + �
v�c�

�
vc

Av�c�
�m Avc

n ��v�c�
det ���vc

det� .

�20�

The evaluation of Eq. �20� in terms of single-particle quan-
tities is a little bit more complicated than Eq. �17�, mostly
because of the second term which contains nontrivial qua-
druple sum of integrals ��v�c�

det ���vc
det�. nonetheless, after

some straightforward algebra we find that the nonvanishing
components can be symmetrically summed up, resulting in
the following final expression for �mn:
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�mn = �
vc

Avc
�m � Avc

n + �
vi

�
cj

�
cl

Avicj

�m Avicl

n ��cj
���cl

�

− �
vi

�
cj

�
vk

Avicj

�m Avkcj

n ��vi
���vk

� . �21�

Similar to Eq. �17�, this final expression for the derivative
coupling is completely given by integrals of the contributing
single-particle wave functions and their derivatives with re-
spect to the nuclear coordinates. It should be noted that for
many systems �including the one studied in this work�, the
wave functions � j of the quasiparticle states are nearly iden-
tical to the Kohn-Sham orbitals resulting from the underlying
DFT calculation, which we employ for the calculation of �mn
throughout this paper.

III. NUMERICAL RESULTS

Here we present our numerical results on adiabatic and
diabatic lowest singlet excited states of the retinal chro-
mophore PSBR. In detail we analyze their behavior as a
function of the twist angle of the photoisomerization process
from all-trans to 13-cis. First, we perform a standard DFT
calculation of the all-trans isomer of PSBR within the local-
density approximation. After geometry relaxation, the Kohn-
Sham eigenstates enter the GW-BSE calculation. All single-
particle eigenstates, including the Kohn-Sham and
quasiparticle wave functions, are expanded in atom-centered
Gaussian-orbital basis functions.20 The elements of the
Gaussian basis have the following Cartesian form:

�ijk�r� = Nijkx
iyjzke−�r2

, �22�

of which the orbitals of s, p, d, and s� symmetry type for
each individual atom are taken into account. We take four
decay constants � for the carbon and nitrogen atoms, with
the values 0.2, 0.5, 1.25, and 3.2. For hydrogen, we take
three decay constants with the values 0.1, 0.4, and 1.5. This
yields a basis size of 1840 for the whole molecule. The basis
set contains both localized and more extended orbitals, thus
describing both the wave-function behavior near the nuclei
and their decay into vacuum equally well. We have checked
that below the vacuum level, the single-particle Kohn-Sham
eigenvalues resulting from this basis agree with those of a
converged plane-wave basis to within 0.1 eV. Above the
vacuum level, this comparison becomes difficult to quantify
since the plane-wave expansion would simply reflect the pe-
riodicity of the supercell. Nonetheless, the Gaussians yield
the local density of states above the vacuum level with high
accuracy, as well, and the convergence behavior of the
electron-hole excited states with respect to the Gaussians
proves that all relevant physics above the vacuum level is
well represented by our basis.

In order to guarantee convergence of the dielectric func-
tion and the self-energy of the subsequent GW calculation,
this calculation has been performed with all 1840 states,
meaning that the number of empty states included is 30 times
larger than the number of occupied states �retinal has 60
occupied levels�. In the BSE calculation, we incorporate the
upper 50 of the 60 occupied �hole� states, as well as the

lowest 190 of the unoccupied �electron� states. This means
that 9690 free particle-hole transitions �vc�, between
all single-particle states from EHOMO−12 eV to
ELUMO+15 eV, for all values of the twist angle of the pho-
toisomerisation reaction, are included in the BSE-TDA
Hamiltonian, leading to a convergence of �n of better than
0.1 eV for n=1 and 2. Further technical details of the GW-
BSE-TDA can be found in Ref. 21.

Our BSE-TDA results for the all-trans isomer of the
PSBR molecule yield excitation energies of 2.66 and 3.28 eV
for the S1 and S2 singlet excited states. In addition to BSE-
TDA, we also carry out a BSE-RPA calculation, i.e., includ-
ing resonant-antiresonant coupling �see the discussion in
Sec. II B�, with dynamical screening of the electron-hole in-
teraction kernel K and the same particle-hole basis elements
�vc� �for details see Ref. 19�. The BSE-RPA excitation ener-
gies are correspondingly 2.07 and 3.08 eV with a very good
agreement �to within �0.1 eV� with experiment.22 In Table
I, we compile our results and available data from the litera-
ture. These data can by further supplemented by a very de-
tailed study of several retinal structures as presented by Lee
and co-workers.26 Our BSE-TDA excitation energy of S2
agrees very well with a very recent photoabsorption experi-
ments of Nielsen et al.22 The BSE-TDA excitation energy of
the S1 state appears to be overestimated by about 0.6 eV,
which we attribute to the use of the Tamm-Dancoff approxi-
mation. In Ref. 27, some of us have reported relatively big
values for the matrix elements of the particle-hole interaction
kernel K within full RPA treatment, where one allows for
unlimited number of particle-hole pairs propagating in both
time directions. One can also associate this disagreement be-
tween TDA and RPA to the fact that TDA is the limiting case
of RPA for the case when the particle-hole interaction K is
small compared to the poles of the one-particle propagators
G1. Apparently, in the case of the S1 excitation of PSBR
this condition might not be fulfilled due to the specific
chemical nature of the large photoactive orbitals from which
S1 is formed. A time-dependent density-functional theory
�TDDFT� calculation by Tachikawa et al.24 �also performed
beyond the TDA� shows a slightly worse agreement with
experiment than GW-BSE-RPA. Interestingly, the Tamm-
Dancoff approximation to the TDDFT �Ref. 28� �TDDFT-
TDA� shows effects very similar to our BSE-TDA data.

Starting from the all-trans isomer geometry, we calculate

TABLE I. Excitation energies of the all-trans isomer of PSBR.
All values are in electron volt.

Method S0-S1 S0-S2 Ref.

Expt. 2.00 3.22 22

CASPT2 2.07 2.85 23

TDDFT 2.39 3.24 24

TDDFT-TDA 2.63 3.40 25

GW-BSE-RPAa 2.07 3.08 This work

GW-BSE-TDAb 2.66 3.28 This work

aUsing GW-BSE at the RPA level.
bUsing GW-BSE at the TDA level, i.e., forward time propagation
only.
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the BSE-TDA PESs for the ground state S0 and the S1 and S2
states along the twist angle of the photoisomerization reac-
tion �see Fig. 3�. The ground-state PES increases gradually
up to the active region of the photoisomerization reaction at
around 92° and then decreases up to 180° �which corre-
sponds to the 13-cis isomer�. The configuration at 0° is also
more stable �by 0.2 eV� than the one at 180°. The S1 PES, on
the other hand, is not really repulsive near the 0° geometry
but rather relatively flat. With increasing angle it overpasses
a maximum at around 60°, thus forming a potential well of
about 0.3 eV depth. These results do support the three-state
model of the photoisomerization reaction, as visible in Fig.
3, the torsional movement passes through the avoided-
crossing point between the PESs of S1 and S2 at about 60°
before the twisted conformation at the second avoided cross-
ing �this time between S1 and S0� is reached at about 92°.
While our calculation of the position of the highest-energy
barrier point at 60° agrees with the results by Tachikawa
et al.,24 who report it to be 58°, we are not aware of an
experimentally derived position of this point. It should be
noted, however, that our calculations of PSBR in the gas
phase with the saturation by a methyl group cannot be
strictly compared to experiments in which the PSBR is con-
nected through the amino group to the protein. Our calcu-
lated depth of about 0.3 eV can be also compared with the
TDDFT results of Tachikawa et al. who find it to be about
0.53 eV. The experimental value for the depth of this well
�for PSBR bound to the protein� is found to be about
0.043 eV.29

We also checked that along the twist angle, the S1 excited
state is composed mainly �i.e., to about 90–95 %� of the
HOMO→LUMO transition �T1�, accompanied by some
contribution �of about 5%� of HOMO−1→LUMO+1 �T2�
The S2 state, on the other hand, is composed of the
HOMO−1→LUMO transtition �T3� �to about 70–90 %�
and of the HOMO→LUMO+1 transition �T4� �to about
5–20 %�. However, a closer analysis of the states �and, in
particular, of their Avc coefficients� reveals an interesting fea-

ture. While the T1 and T3 transitions rather maintain their
dominant character in both excited states S1 and S2 as the
twist angle is changed, the coefficients of the T2 and T4
transition tend to undergo an exchange between states S1 and
S2 in the vicinity of the expected avoided-crossing points at
about 60° and 120°. This provides a first understanding of
the expected nonadiabatic effects between the many-body
electronic states in the retinal molecule. It seems that the
adiabatic wave functions of S1 and S2 do not interchange
fully their character at the avoided-crossing points, which is
in distinction to the chemical reactions involving the bond
fission processes.30 Instead, the two states rather become an
admixture of each other as the twist angle passes through 60°
�and again near 120°�. The fact that both states become an
admixture of each other or interchange their character com-
pletely simply means that they are coupled to each other. If
one calculates the matrix elements of the nuclear kinetic-
energy operator in the adiabatic representation �or, equiva-
lently, the derivative couplings � in the diabatic representa-
tion, as showed in Fig. 4�, one will see that they are nonzero
in the vicinity of the avoided-crossing points. Similar effects
are to be expected for the avoided crossing between S0 and
S1 near 90°. This, however, requires a different analysis since
in our method the ground state S0 �i.e., one Slater determi-
nant, resulting from DFT data� and the excited states �i.e.,
linear combinations of two determinants, resulting from GW-
BSE data; see above� are conceptually different.

Before analyzing the nonadiabatic effects in more detail,
we briefly investigate the effects of the Tamm-Dancoff ap-
proximation at various twist angles. Taking into account the
disagreement between BSE-TDA results and experiment, and
the much better quality of the BSE-RPA for the all-trans
isomer at 0°, we have also carried out BSE-RPA calculations
at selected configurations of 48°, 92°, 136°, and 180°. These
results are included in Fig. 3 as empty symbols. The differ-
ence between RPA and TDA results for the S1 state is larger
at 0° than in the most active area of the reaction coordinate
�near 90°�. This corresponds to our observation that the two
excited states �as well as the S0 state� change their character
due to nonadiabatic effects as the twist angle increases.
These findings nonwithstanding, our calculations indicate
that the allover behavior of the BSE-TDA data as a function
of twist angle is very similar to the BSE-RPA results. There-
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FIG. 3. Adiabatic potential-energy surfaces of the retinal chro-
mophore, calculated along the twist angle from Fig. 1. S0 denotes
the electronic ground state. All energies are with respect to the
ground-state energy at 0°. The solid lines for S1 and S2 represent
BSE-TDA results while the empty squares and empty circles denote
BSE-RPA results, i.e., including resonant-antiresonant coupling �see
text and Table I�.
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FIG. 4. Derivative couplings between the three states S0, S1, and
S2 shown in Fig. 3.
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fore, the following discussion of nonadiabatic effects is car-
ried out for the BSE-TDA data, only. The analysis of diabatic
coupling among the BSE-RPA states would be significantly
more difficult than the formalism outlined in Sec. II B. We
believe that our findings also reflect nonadiabatic behavior of
retinal to be expected from the BSE-RPA framework.

Based on the BSE-TDA results, we perform a diabatic
transformation of the states S0, S1, and S2 as described in
Sec. II A. First, we calculate the derivative couplings �, as
given by Eqs. �17� and �21�. This requires to evaluate the
derivatives of the Kohn-Sham eigenstates with respect to the
twist angle �, which we realize by finite differences. Since
the Kohn-Sham states � are represented by Gaussians, i.e.,
��=�mCm,��m�, the integrals of the form ��� ����� can be
written at the lowest-order approximation as

�������� = �1 − ��������−1�
mn

Cm,�
� ���Cn,��� + ���

��m����n�� + ���� , �23�

i.e., by an unsymmetrical two-point formula for numerical
derivatives. Particular care is required when evaluating the
integrals �m��� �n��+���� between Gaussian basis functions
since this overlap is taken between functions at the reference
and the shifted geometry. In our calculations, we use a spatial
shift of ��=0.1°, and we sample the whole range of twist
angle from 0° to 180° in steps of 6°. All three derivative
couplings are plotted in Fig. 4. The solid line is the S0-S1
coupling, the dashed line stands for the S0-S2 coupling, and
dashed-dotted line for S1-S2. The nonadiabatic derivative
couplings indicate several issues. The coupling between S0
and S1 is the most prominent one, with a sharp peak centered
around 92°. The coupling between S1 and S2 is significantly
smaller, being almost symmetrical with respect to �=92°,
and exhibits maximum values at about 60° –65° and
120° –125°. This could already be expected from the loca-
tion of the avoided crossings between S1 and S2 in the adia-
batic picture, as shown in Fig. 3. The S0-S2 coupling is close
to zero, meaning that these states are only very weakly
coupled.

Once all the derivative couplings between states of inter-
est are obtained, one can perform the diabatization transfor-
mation by first solving the differential equation, Eq. �5� and
then applying Eq. �7�. Within the three-state model of pho-
toisomerization one has to perform the diabatization in the
space of all three states. In this case, Baer’s formula Eq. �5�
is a set of three coupled first-order differential equations
which can be solved numerically to give all the mixing
angles 	 at all considered geometries. The final results are
shown in Fig. 5. The original adiabatic states are included as
dotted lines, and the newly derived states in the diabatic
representation are given by the dashed lines.

As expected, the diabatic states clearly exhibit a very
smooth behavior with varying twist angle. They also show a
very important feature: instead of avoided crossings one gets
energies that cross each other at the former avoided-crossing
positions. In the case of the three-state diabatization, our di-
abatic energies do not exactly coincide with their adiabatic
analogs after the twist angle has passed the avoided-crossing

region.31,32 This is an effect of being the solution of coupled
differential equations with different couplings between each
pair. Nonetheless, they are located reasonably with respect to
the adiabatic ones. Strict coincidence of the diabatic and
adiabatic energies for twist angles of 0° and of 180° can be
realized in the case of the two-state diabatization, by putting
appropriate boundary conditions on �. These additional re-
sults are showed in Fig. 6.

Discussing the general properties of the diabatic states,
one immediately notices that they fully confirm the expected
character of the photoisomerisation reaction in the retinal
chromophore. In particular, Fig. 5 exhibits one diabatic sur-
face �I� which connects the all-trans ground state S0 to the
13-cis S2 excited state, and a second diabatic surface �II�
connecting the all-trans S2 excited state to the ground state in
13-cis configuration. A third surface connects the S1 all-trans
to the S1 13-cis state. The existence of the I and II surfaces
can be understood within the chemical picture, in which two
�-type electrons are lifted from the bonding to antibonding
orbital as a result of the molecular torsion by 180°. The
diabatic states, as they result here, do not provide a rigorous
quantitative description of the photoisomerisation reaction.
Nonetheless, the analysis of their behavior can confirm or
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FIG. 5. �Color online� Adiabatic and diabatic BSE-TDA derived
electronic states resulting from the derivative couplings of Fig. 4
between S0, S1, and S2. The dotted lines represent the adiabatic
states �same as in Fig. 3� and the dashed lines are the diabatic states.
All energies are with respect to the ground-state energy at 0°.
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FIG. 6. �Color online� Adiabatic and diabatic BSE-TDA derived
electronic states resulting from coupling between only two of the
three states S0, S1, and S2 �two-state block diabatization�. The dot-
ted lines represent the adiabatic states �same as in Fig. 3� and the
dashed lines are the diabatic states. The left �right� panel considers
coupling between S0 and S1 �S1 and S2�. All energies are with re-
spect to the ground-state energy at 0°.
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disprove the chosen reaction model. In the present case, our
findings strongly support the three-state model.

Diabatic states and their energies can be used in subse-
quent time-dependent quantum-wave-packet dynamics.33,34

Such calculations can be conveniently performed by solving
the time-dependent Schrödinger equation for the molecular
wave function of Eq. �1� but now expressed in the diabatic
representation. Here one propagates effectively a vector of
nuclear wave packets in all three diabatic channels S0, S1,
and S2 by means of applying the operator e−i�H to the wave
function, with H containing the nondiagonal matrix V of the
electronic Hamiltonian in the diabatic representation. The
propagation itself can be done very efficiently by means of a
new state-of-the-art high-order factorization operator
method.35 The key answer from the dynamical simulations is
then not only the quantum yield for the photoisomerisation
but also the prediction of the time needed to pass the S1-S2
and S0-S1 crossings, and finally the time-resolved photon ab-
sorbance spectra for this reaction. All these results depend
heavily on the nonadiabatic coupling between the states, on
their overall shape, and the position of the avoided-crossing
points.

At this point it is important to stress that the diabatic
results displayed in Figs. 4–6, have been performed at the
TDA level. This means that all the formulas required to de-
rive the nonadiabatic derivative couplings �, as was dis-
cussed in Sec. II B, have assumed the TDA form of the
many-body excited state of Eq. �9�. As we already discussed,
the BSE-RPA calculations resulted in better agreement with
experiment than BSE-TDA. Taking a look at Fig. 3 again, it
is evident that within BSE-RPA, one may eventually obtain
slightly different diabatic states. Apart from the vertical shift
of the excited states as a function of the twist angle, there
might also be a displacement of the first S1-S2 avoided-
crossing point �at around 60°� toward smaller twist angle, as
well as a displacement of the second S1-S2 avoided crossing
toward larger twist angle. There are, however, conceptual
differences between diabatization of the BSE-TDA and BSE-

RPA derived excited states. In particular, the BSE-RPA de-
rived excited state �n has the following wave-function form:

��n� = �
vc

�Avc
n av

†bc
† − Bvc

n bcav��0� . �24�

This is the typical RPA representation of the many-body
wave function.36 It includes �in addition to the TDA form� a
new term containing the bc and av operators, destroying the
particle-hole pair in the ground state. Diabatization of the
BSE-RPA states would thus require to rederive the diabati-
zation formulas for this particular form of the wave function,
which would go far beyond our present work.

IV. CONCLUSIONS

We presented a scheme of evaluating diabatic electronic
states which is applicable to molecules, clusters, and periodic
systems and allows to obtain the true physical description of
nonadiabatic phenomena where the Born-Oppenheimer ap-
proximation fails. The diabatization schemes have been for a
very long time conducted in the context of quantum-
chemical studies. Our approach is the usage in the context of
an electronic-structure method from the physics community,
i.e., the DFT-GW-BSE method. We demonstrate the applica-
bility of the approach by discussing nonadiabatic effects in
the photoisomerization reaction of the retinal chromophore
existing in in bacterium Halobacterium halobium.

Other possible applications beyond this study are many
other light-driven dissociation processes in condensed mat-
ter, on surfaces, etc. We consider the calculation of the de-
rivative couplings in the Baer’s method as relatively straight-
forward from a computational point of view within the GW-
BSE scheme, which makes the whole approach a rather
universal one. Finally, the diabatic states may be used as the
input for direct quantum-dynamical simulations, whenever it
is important to retain nonadiabatic effects without artificial
electronic movements between the potential-energy surfaces
such as, e.g., in the surface hopping method.37
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