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The effect of different stacking order of graphene multilayers on the electric field induced band gap is
investigated. We considered a positively charged top and a negatively charged back gate in order to indepen-
dently tune the band gap and the Fermi energy of three and four layer graphene systems. A tight-binding
approach within a self-consistent Hartree approximation is used to calculate the induced charges on the
different graphene layers. We found that the gap for trilayer graphene with the ABC stacking is much larger
than the corresponding gap for the ABA trilayer. Also we predict that for four layers of graphene the energy gap
strongly depends on the choice of stacking, and we found that the gap for the different types of stacking is
much larger as compared to the case of Bernal stacking. Trigonal warping changes the size of the induced
electronic gap by approximately 30% for intermediate and large values of the induced electron density.
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I. INTRODUCTION

Graphene is a single layer of carbon atoms with hexago-
nal symmetry.1 Multilayers of graphene can be stacked dif-
ferently depending on the horizontal shift between consecu-
tive graphene planes, leading to very different electronic
properties,2 e.g., to various band structures.

A perpendicular electric field applied to bilayer graphene,
with the AB stacking, can open an electronic gap between the
valence and conduction bands.3 This was shown indirectly
by transport measurements.4,5 Later on, spectroscopic mea-
surements confirmed the opening of a gap in the energy
spectrum.6–10 The extension of these bilayer results to three
and four layers of graphene was presented in Ref. 11 in the
case the perpendicular electric field was realized by a single
gate. It was found that such an electric field causes an energy
gap which was found to be a nonmonotonic function of the
gate voltage, and a re-entrant opening and closing of the gap
was predicted as a function of the electric field strength. In
Ref. 12 the electronic band structure of the ABA-stacked
trilayer graphene in the presence of back and top gates was
investigated.

Recently, we generalized our previous results11 to the case
when two, i.e., top and back, gates were applied to three as
well as to four layers of graphene systems.13 We found that
due to the trigonal warping the obtained results do not ex-
hibit electron-hole symmetry. A nonmonotonic dependence
of the true energy gap in trilayer graphene on the charge
density on the gates was found. We also predicted an indirect
gap with a nonmonotonic dependence on the gate voltage.
Four layers of graphene exhibit a larger energy gap as com-
pared to the three layer system, which is a consequence of
the fact that Dirac fermions are present in the AB stacked
graphene multilayers in case of an odd number of layers,
while for an even number of stacked graphene layers only
charge carriers with a parabolic dispersion are present at low
energies.14

Using Raman spectroscopy measurements the graphitic
flake thickness, i.e., the number of graphene layers, can be
obtained as was demonstrated in Refs. 15 and 16. In Ref. 15
a tunable three-layer graphene single-electron transistor was

experimentally realized showing a transport gap near the
charge neutrality point. Up to now, no four layer system was
studied experimentally. Electrical tunable energy gap sys-
tems are of interest from a fundamental point of view but
also for possible applications in electronics �e.g., for transis-
tors� and photonics �i.e., wavelength tuning of a laser�.

The electronic low-energy band structure of the ABC
stacked multilayer graphene was studied within an effective
mass approximation in Ref. 17, with special attention to the
Lifshitz transition, in which the Fermi circle breaks up into
several pockets.

In this paper we study the effect of different ways of
stacking of multilayers of graphene on the electric field in-
duced band gap by top and back gates. We limit ourselves to
those stackings that have been found in graphite. The Bernal
stacking �ABA�, which has hexagonal symmetry, is common
and stable, but some parts of graphite can also have rhom-
bohedral one �the ABC stacking�.18 The band structure of
three and four layer graphene systems in the presence of a
perpendicular electric field is obtained using a tight-binding
approach, where we used a self-consistent Hartree approxi-
mation to calculate the induced charges on the different
graphene layers. We found that the gap for trilayer graphene
with the ABC stacking is much larger than the one for the
ABA stacking, which was studied in Ref. 13.

Similarly for four layers of graphene the energy gap also
strongly depends on the choice of stacking and is smallest in
case of Bernal stacking. When taking into account the circu-
lar asymmetry of the spectrum, which is a consequence of
the trigonal warping, we found considerable changes in the
size of the induced electronic gap for the considered systems
at intermediate and high densities of electrons induced on the
layers.

This paper is organized as follows. A short overview of
our tight-binding approach with a description of the self-
consistent calculation are given in Sec. II for the ABC
stacked three layer graphene in the presence of top and back
gates. The corresponding numerical results are also discussed
here. In Sec. III we investigate four layer graphene with dif-
ferent stacking order in the presence of top and bottom gates.
Section IV summarizes our conclusions.
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II. THREE LAYER GRAPHENE WITH THE ABC
STACKING IN AN EXTERNAL ELECTRIC FIELD

We consider a system consisting of three layers of
graphene with the ABC stacking, which is modeled as three
coupled hexagonal lattices with inequivalent sites Ai and Bi
�i=1,2 ,3 is the layer number� with A1 and A2, as well as A3
and B2 atoms on top of each other, as shown in Fig. 1. We
use the Slonczewski-Weiss-McClure �SWMcC� parameters,
i.e., �0 ,�1 ,�2 ,�3 ,�4 of tight-binding couplings for bulk
graphite. Within each layer the interaction between nearest-
neighbor Ai and Bi atoms is described by the parameter �0.
The strong coupling between nearest layers, i.e., between
A1−A2 and B2−A3 atoms that lie directly above or below
each other is given by �1 and the weaker nearest layer cou-
pling by �3��4�, i.e., between sites B1−B2 and A2−B3 �B1
−A2, A1−B2, A2−A3, and B2−B3�. The interaction between
the next nearest layers �B1−B3� is determined by �2, as is
shown in Fig. 1�a� and for comparison in Fig. 1�b� we show
the unit cell for the ABA trilayer. Using these parameters we
compose the tight-binding Hamiltonian for three layer
graphene with the ABC stacking, which has the form19

H = � D1 H12 H13

H21 D2 H23

H31 H32 D3
� , �1�

where the rows and columns are ordered according to atom A
from layer 1, atom B from layer 1, atom A from layer 2, atom
B from layer 2, etc., with the following two by two matrixes:

D1 = � 0 �0f

�0f� 0
�, D2 = D1

†, �2a�

H12 = � �1 − �4f�

− �4f� �3f
�, H21 = � �1 − �4f

− �4f �3f� � , �2b�

H32 = H23
† = �− �4f �1

�3f� − �4f
�, H31 = H13 = �0 0

0 �2/2 �,

D3 = D2, �2c�

where

f�kx,ky� = eikxa0/�3 + 2e−ikxa0/2�3 cos kya0/2, �3�

with a0=2.46 Å the in-plane lattice vector length. The
Hamiltonian for the ABA stacking was discussed in Ref. 13.

To control the density of electrons on the different
graphene layers and independently the Fermi energy of the
system, a top gate with a density of negative charges nt�0
�the electron excess density is positive� on it, and a back gate
with a density of positive charges nb�0 are applied to the
trilayer �a schematic picture was presented in Fig. 1 of Ref.
13�. As a result a total excess density n=n1+n2+n3 is in-
duced �n=nt+nb�, with n1 is the excess density on the closest
layer to the top gate, n3 on the closest layer to the back gate,
and n2 is the excess density on the middle layer. In our model
the top or back gate produces a uniform electric field Et,b
=nt,be /2�0�, and due to the induced charges on the graphene
layers, in its turn create fields Ei=nie /2�0�, with �0 is the
permittivity of vacuum and � is the dielectric constant. There
is a simple relation between the charge density on the gates
and the voltage between the gate and the closest graphene
layer: Vt,b=ent,bd /2�0�, where d is the distance from the
gate to the closest graphene layer �usually d is equal to the
oxide thickness, which is typically about 300 nm�. For our
numerical calculations we use the value �=2.3, which corre-
sponds to graphene layers on SiO2. The difference between
the charge densities induced on the individual layers of
graphene creates asymmetries between the first and the sec-
ond layers, as well as between the second and the third lay-
ers, which are determined by the corresponding change in
the potential energies �1,2 and �2,3

�1,2�n� = ��n2 + n3 − �nb�� , �4a�

�2,3�n� = ��n3 − �nb�� , �4b�

where �=e2c0 /�0�, with c0=3.35 Å is the inter-layer dis-
tance. The Hamiltonian Eq. �1� in the presence of the top and
back gates is modified, and we have to add �1,2�n� and
−�2,3�n� to the first and third layer on-site elements in Eq.
�1�. The tight-binding Hamiltonian operates in the space of
coefficients of the tight-binding functions c�k��
= �cA1

,cB1
,cA2

,cB2
,cA3

,cB3
�, where cAi

=cAi
�k�� and cBi

=cBi
�k�� are the ith layer coefficients for A and B type of

atoms, respectively. The total eigenfunction of the system is
then given by

�k��r�� = 	
i=1

Nl

cAi
	k�

Ai�r�� + 	
i=1

Nl

cBi
	k�

Bi�r�� , �5�

with Nl is the number of layers. By diagonalizing the Hamil-
tonian one can obtain the six coefficients 
in Eq. �5�� for
fixed values of the layer asymmetries, from which we obtain
the excess electronic densities on the individual layers:

ni =
2



� dkxdky��cAi

�2 + �cBi
�2� . �6�

The coefficients cAi
and cBi

depend on the energetic band
index. Here we are interested in the case when the Fermi
energy is located in the band gap, and in order to find the

FIG. 1. Schematic of the different couplings between the sites
for three layers of graphene, where A sites are indicated by white
circles and B sites by black dots for: �a� the ABC stacking and �b�
the ABA stacking.
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redistribution of the electron density over the different layers
in the valence bands one should integrate Eq. �6� over the
Brillouin zone. The Fermi energy can be tuned into the
opened gap when the magnitudes of the top and back gates
are equal to each other but with opposite charges on them.
The other case when the Fermi energy is located in the con-
duction or valence band was discussed in Ref. 13 for the
ABA stacked trilayer where we found that the obtained re-
sults do not exhibit electron-hole symmetry in the presence
of trigonal warping. Using Eqs. �1�–�4� and �6� we evaluate
the energy gap �0 at the K-point and the true gap, �̃, self-
consistently for a fixed total density nt+nb=n1+n2+n3 �see
Refs. 3 and 13�.

In the following we will consider two cases. First,
we neglect all interactions except between the nearest-
neighbor atoms in the same layer and between the atoms of
adjacent layers which are on top of each other, i.e., we put
�2=�3=�4=�5=0. This leads to a circular symmetric spec-
trum. In our calculations we used the parameter �0
=3.12 eV which leads to an in-plane velocity �=�3�0a /2�

106 m /s, and for the interlayer coupling strength, we take
�1=0.377 eV �see Ref. 20�. Second, the full interaction case
is studied where the interaction between the different atoms
is expressed by the SWMcC parameters ��2=−0.0206, �3
=0.29, �4=0.12, �5=0.025�, i.e., the effect of warping is
included.

Figure 2 shows the band structure for trilayer graphene
with the ABC stacking when charges on the top and back
gates are opposite but equal in magnitude with −nb=nt
=1013 cm−2 when only �0 ,�1 are taken into account �with
�=2.3�, and the Fermi energy is located in the forbidden gap.
Notice that there is conduction band–valence band symmetry

around the Fermi energy, and the true gap �̃ occurs away

from the K-point where the gap is �0=266 meV��̃
=195 meV. For the ABA stacking for the case when only
�0 ,�1�0 the true gap is zero for all densities.

When all the interactions between the different atoms are
taken into account the surface of constant energy is no longer

circular. In Fig. 3 we show the gap �0 at the K-point �dotted

blue curve� and the true direct gap �̃ �solid red curve� for
trilayer graphene with the full interaction, as a function of
the top gate density nt providing the back gate density −nb
=nt. For comparison in the same figure we show also the

corresponding results, �0� �dashed red curve� and ��˜ �dot-
dashed blue curve� when only �0 ,�1�0. Notice, that for
high densities �−nb=nt�1013 cm−2� the inclusion of the full
interaction leads to a lowering of the true gap by 30%. It is
interesting to note that similar values for the energy gaps and
the relative difference between them were found for the case
of bilayer AB graphene:13 the true gap for the AB bilayer at
−nb=nt�1013 cm−2 is 142 meV when �=2.3 and 198 meV
for the case of �=1 when the full interaction is included.
These results compare with 169 meV ��=2.3� and 207 meV
��=1� for our ABC trilayer.

This similarity becomes more remarkable if we compare
the layer densities induced by external gates for the ABA and
ABC trilayers with the AB bilayer. For the ABA trilayer,
when only a back gate was applied to the first layer,11 we
found that n1=6.1, n2=3.2 and n3=1.2 at nb=10 �in units
1012 cm−2�. The small amount of excess charges on the last
layers was explained by the fact that the graphene layers
screen the electric field and the layer asymmetries between
the last layers, counted from the gate, are very small. The

true gap for this system ��̃=17 meV� is smaller in compari-
son with the bilayer case, where for the latter n1=6.7 and

n2=3.3 ��̃=82 meV�. Now, when only a back gate is ap-
plied to the ABC trilayer we find that the densities on the
second and the third layers �counted from the back gate� are
very close to each other: n2=n3
2 at nb=10 and n1=6.24,
which makes the ABC system distribution and the gap �with

�̃=117 meV� similar to the AB bilayer ones. In Fig. 1�a�
one can see that in the case of the ABC stacking there are
never three atoms stacked on top of each other, as in the case
for the ABA. As a result the electric field �of the gate located
near the first graphene layer for the ABC stacking� penetrates

FIG. 2. �Color online� The circular symmetric band structure of
trilayer graphene with the ABC stacking order around the K-point
when charges on the top and back gate are opposite but equal in
magnitude, i.e., −nb=nt=1013 cm−2, for the case when only

�0 ,�1�0. Horizontal dotted line is the Fermi level. The true gap �̃
and the energy gap at the K-point �0 are indicated.

FIG. 3. �Color online� The dependence of the gap �0 �dotted

blue curve� at the K-point, the true direct gap �̃ �solid red curve� for
the ABC trilayer graphene as a function of the top gate density nt

providing the back gate density is −nb=nt. For comparison we show

also the corresponding results, �0� �dashed red curve� and ��˜ �dot-
dashed blue curve� when only �0 ,�1�0.
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easier to the last layers inducing excess charges, while for
the ABA stacking the electric field is much more strongly
screened.

When both gates are applied to the ABC trilayer graphene
�when the full interaction is included� the excess charge den-
sities at −nb=nt=10, shown in Fig. 4, on the outer layers are
−n1=n3=4.9 and in the middle layer is zero. Notice that the
excess charge densities on the bottom and the top layers are
symmetric as in the case of the AB bilayer, as well as the
gaps have also similar values. While for the ABA trilayer it
was n1=−3.84 and n3=3.67,13 and n2=0.17 when −nb=nt
=10; the inclusion of the full interaction in the ABA case
makes the excess electron density in the middle layer differ-
ent from zero, and it opens a small gap about 5 meV. So, we
see that the ABC system has a large gap, comparable with the
AB bilayer one and behaves as a bilayer with shifted sheets,
while the ABA opens up much smaller gap and is similar to
the case of an AA stacked bilayer.

In the case of the previous studied ABA trilayer11 the in-
clusion of trigonal warping leads to a nonmonotonic behav-
ior of the gaps as a function of gate voltage, as well as a
much stronger lowering of the true gap. Here, we found that
the energy gaps for the ABC stacked trilayer is much larger
as compared to the case of the ABA trilayer. Figure 5 shows
a three-dimensional �3D�-plot and the corresponding contour
plot of the highest valence band for three layer ABC stacked
graphene near the K-point �K-point is chosen as the origin,
�=2.3� for nt=−nb=1013 cm−2. The lowest conduction band
is again symmetric with the highest valence band just as in
the case when only �0 ,�1�0. Here, for the ABC stacking we
find three maxima but did not find additional maxima as in
the case of the ABA stacking13 and as a result we do not
observe an indirect gap.

III. FOUR LAYER GRAPHENE SYSTEM IN AN
EXTERNAL ELECTRIC FIELD

Now, we consider the four layer graphene system, which
can be arranged in many different ways as schematically
shown in Figs. 6�a�–6�c�. The tight-binding parameters �i

and the interaction between the individual carbon atoms for
all these cases are indicated in these figures. Four layer
graphene is described by the Hamiltonian

H =�
D1 H12 H13 H14

H21 D2 H23 H24

H31 H32 D3 H34

H41 H42 H43 D4

� , �7�

where Hij and Di with i=1,2 ,3 are the matrix elements of
the ABC trilayer given by Eqs. �2a� and �2b� and for the
ABCA stacking we have

H14 = H41 = �0 0

0 0
�, H42 = H24

† = � 0 0

�2/2 0
� , �8a�

H43 = H34
† = H32, D4 = D3, �8b�

while for the ABCC stacking these matrixes have the follow-
ing form:

H14 = H41 = �0 0

0 0
�, H42 = H24

† = �0 �5/2
0 0

� , �9a�

FIG. 4. �Color online� The charge density ni on the different
graphene layers for the ABC trilayer with �=2.3 and with the full
interaction included as a function of the charge density on the top
gate nt with the back gate density nb=−nt.

FIG. 5. �Color online� The highest valence band, with the cor-
responding contour plots for the ABC stacked trilayer graphene near
the K-point �K-point is chosen as the origin� with equal but opposite
charges on the top and back gate when nt=−nb=1013 cm−2. The
Fermi energy is located in the energy gap at E=0.

FIG. 6. Schematic of the couplings between the different
�A-white and B-black dots� sites for four layers of graphene for: �a�
the ABCA, �b� the ABCC stacking, and �c� the ABAB Bernal
stacking.
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H43 = H34
† = � �1 − �4f*

− �4f �1
�, D4 = D3. �9b�

We consider a four layer graphene system with top and back
gates, which induce a total excess density n=n1+n2+n3+n4,
where ni is the excess density on the ith layer as counted
from the top gate. The corresponding change in the potential
energy between consecutive layers is

�1,2�n� = ��n2 + n3 + n4 − �nb�� , �10a�

�2,3�n� = ��n3 + n4 − �nb�� , �10b�

�3,4�n� = ��n4 − �nb�� . �10c�

By adding �II=�1,2�n�, �III=�1,2�n�+�2,3�n�, and �IV

=�1,2�n�+�2,3�n�+�3,4�n� to the on-site elements of the II,
III, and IV layer of the ABCA or the ABCC four layer Hamil-
tonian, respectively, we obtain the Hamiltonian in the pres-
ence of top and bottom gates. The eight coefficients cAi

=cAi
�k�� and cBi

=cBi
�k�� for fixed values of the layer asymme-

tries defined by Eqs. �10a�–�10c� can be obtained by diago-
nalizing the corresponding Hamiltonian. The electronic den-

sities on the individual layers are given by Eq. �6�. The gaps

�0 and �̃ are evaluated self-consistently analogously as was
done for the three layer system.

The variation in the gap �0 at the K-point �dot-dashed red

curve�, the true direct gap �̃ �solid red curve�, and the true
indirect gap �dotted blue curve� �kk� with the top gate density
nt�nb=−nt� for four layer graphene with the full interaction is
shown in Fig. 7�a� for the ABCA stacked four layer graphene
and in Fig. 7�b� for the ABCC stacking. One can see that for
the ABCA stacking with full interaction the true direct gap is
very close to the corresponding gap in the case of a trilayer
with the ABC stacking, e.g., for nt=−nb=1013 cm−2 the true
gap is about 171 meV for four layer graphene with the ABCA
stacking and for the ABC trilayer it is 169 meV. In Figs. 8�a�
and 8�b� we present the layer densities for the ABCA and
ABCC four layer graphene systems, respectively, and we in-
clude the curves for the densities in the ABC stacked trilayer
for comparison in both figures �dashed curves�. It is remark-
able that the excess densities for the ABCA system on the
outer as well as on the inner layers are symmetric. Notice
that the densities, shown in Fig. 8�a�, on the outer layers for
the ABCA are very close to the ABC trilayer graphene ones

FIG. 7. �Color online� The dependence of the gap �0 at the K-point �dot-dashed red curve�, the true direct gap �̃ �solid red curve�, and
the true indirect gap �dotted blue curve� �kk� as a function of the top gate density nt for four layer graphene where we included the full
interaction. The back gate density −nb=nt is the same �but opposite in sign� as the top gate. Results are shown for: �a� the ABCA stacking
and �b� the ABCC stacking.

FIG. 8. �Color online� The layer densities ni �solid curves� for the four layer system as a function of the charge density on the top gate
nt �providing −nb=nt� when the full interaction is included: �a� for the ABCA stacking and �b� for the ABCC stacking. In both cases we added
the results for the layer densities ni� �dashed curves� for the ABC stacked trilayer when the full interaction is included.
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for all the values of nt: at −nb=nt=10 for the ABCA
n4=−n1=5.4, while for the ABC trilayer graphene n3=−n1
=4.9 �in the units 1012 cm−2�. We see that also the ABCA
four layer graphene behaves as the AB bilayer. The localiza-
tion of the atoms �see Fig. 6� can explain why the excess
electron densities on the outer sheets for the ABCA system
are larger than the densities for the ABC trilayer and even in
comparison with the AB bilayer densities �which has n2=
−n1=3.7 at −nb=nt=10�. For the ABCA system there are
never four atoms on top of each other, as is the case for the
ABAB stacking. As a consequence, the electric field of the
top gate, e.g., at A3 
see Fig. 6�a�� is screened only by the B2
atom. Similarly, the field of the back gate at B2 is screened
only by A3 atom. As a result, both these atoms feel the field
of the top as well as the back gate, which leads to a decrease
in excess charges on the inner layers �i.e., to a neutralization
of these charges by the opposite gates�. However, an outer
layer �of the ABCA system� which is mainly charged by its
closest gate does not feel the further located gate since the
latter is screened by the inner layers. In the AB bilayer the
two sheets feel both gates, and consequently the excess
charges �by absolute value� are less than in the outer layers
of the ABCA. Due to this, also the gap for the AB bilayer is
less �see the gap value in previous section� than the ABCA
one �for the same strength of the top and back gates�. We see
also, that the gap is large when the amount of excess charges
in the inner layers is small �as it is for the ABCA system�. We
found also that for �=1 the true gap is 183 meV for the
ABCA; the relative difference with the case of �=2.3 is only
about 5%.

In contrast, for the ABCC four layer graphene the excess
density on the third layer is larger, and on the fourth layer is
smaller than the corresponding densities found in the case of
the ABCA system. So, the increase in the excess densities as
well as the density asymmetry in the inner sheets leads to a
decrease in the gap. Also, the fact that the third and fourth
sheets are not shifted, i.e., they have the AA stacking order,
explain that in the ABCC four layer graphene the electric
field opens up a smaller gap. In both cases we found a much
larger gap �about 170 meV for the ABCA stacking and 70
meV for the ABCC stacking at nt=−nb=1013 cm−2� than in
the case of the ABAB stacked four layer graphene13 �with 5
meV for the same density�. So, we see that from all the
systems, considered in this paper and in Ref. 13, the Bernal
stacking leads to the smallest gap.

Figures 9�a� and 9�b� show 3D plots and corresponding
contour plots of the highest valence and the lowest conduc-
tion bands near the K-point �K-point is chosen as the origin,
�=2.3� in the case of nt=−nb=1013 cm−2, for the ABCA and
the ABCC stacking, respectively. The conduction band for
the ABCC stacking has a “Mexican hat” shape maxima and
minima on a ring, as shown in the contour plot, e.g., there is
a minimum at kxa0
−0.17 and kya0=0. In its turn the va-
lence band has a local minimum between the two maxima at
the plane kxa0
−0.17. The asymmetry between the contour
plots for the conduction and the valence bands for the ABCC

see Fig. 9�b�� leads to an indirect true gap. At low densities
there is a true direct gap for the ABCC but due to the overlap

between the bands at different points in k space the indirect
gap is negative as is shown in Fig. 7�b�, i.e., we have a
semimetal for low gate densities. For the ABCA we find only
three minima in the conduction band and a symmetric va-
lence band 
see Fig. 9�a��, analogously with the ABC trilayer
case. For the ABCA system the indirect gap is smaller than
the direct one at low densities, and they coincide at high
densities.

When finishing this paper we came aware of a recent
preprint21 on the effect of an electric field on multilayers of
graphene with different stacking. They used the simplest ap-
proximation where only �0 ,�1�0. They argued that the in-
clusion of the other tight-binding parameters do not affect
strongly the band structure and the true gap. However, our
calculations show that the true gap can be changed by 30%.

IV. CONCLUSIONS

The effect of different stacking order on the electric field
induced energy gap of three and four layers of graphene was
investigated. For three—as well as for four—layer graphene
the energy gap strongly depends on the choice of stacking,
and we found that the gap is much larger than for the previ-
ously studied Bernal stacking. We found that the true gap for
the ABC trilayer and the ABCA four layer graphene is com-
parable with the corresponding gap for bilayer graphene with
Bernal stacking. The account of the circular asymmetry of
the spectrum, which is a consequence of the trigonal warp-
ing, considerably changes the size of the induced electronic
gap for the studied systems.
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FIG. 9. �Color online� 3D plots and corresponding contour plots
of the highest valence band �bottom figures� and the lowest conduc-
tion band �top figures� around the K-point �K-point is chosen as the
origin �=2.3� when nt=−nb=1013 cm−2 for: �a� the ABCA and �b�
the ABCC stacking of four layers of graphene.
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