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Plasmonic contribution to the van der Waals energy in strongly interacting bilayers
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We investigate the van der Waals or interaction energy due to the plasmon modes in bilayer fermion and
boson systems for several layer separation and coupling strength values. Interaction effects are studied within

the random-phase approximation (RPA), the quasilocalized charge approximation (QLCA), and the Singwi,
Tosi, Land, and Sjdlander (STLS) models of the dielectric function formalism. We find that the interaction
becomes repulsive at short separation distances for strongly coupled systems described by the QLCA and
STLS approaches in contrast to attractive behavior predicted by the RPA. At larger separation distances, the
interaction energy changes sign within the QLCA and STLS models leading to an attractive interaction. The
evident relation between our calculations and the Casimir effect is emphasized.
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I. INTRODUCTION

The intriguing macroscopic attractive force due to the
vacuum fluctuations between two parallel conductors at
small separations, or the Casimir force, has been known
more than half a century since Casimir published his seminal
papers.! Importance of the Casimir effect in technology is
evident today. With the advanced technology, it is now rou-
tine to fabricate micro- and nanoelectromechanical systems
(MEMS and NEMS), and many-layer quantum well struc-
tures, which have many applications in engineering and basic
science. Observations revealed that the vacuum and charge
fluctuations play a fundamental role in the performance of
MEMS and NEMS. Components of these devices attract
each other and stick to one another due to the Casimir effect.
Hence, the Casimir effect and its dependence on material
parameters, geometry, topology, and temperature in submi-
cron systems have been a subject of intense research in ex-
perimental and theoretical condensed matter physics.? It has
also generated substantial interest in many research fields
such as quantum chromodynamics, biology, astrophysics,
cosmology, and mathematical physics.?

Even more intriguing aspect of the Casimir force is that it
can become repulsive when real materials, i.e., dielectrics
and normal conductors, are arranged in a certain way deter-
mined by their dielectric permittivities.* A repulsive Casimir
force results in nanolevitation, which may lead to ultralow-
friction device technology. A recent experimental study has
shown that when the optical properties of the materials are
properly chosen, the long-range QED forces between solid
bodies can become repulsive.’ Feiler et al.® measured a re-
pulsive van der Waals (vdW) force between a gold sphere
and polytetrafluoroethylene surface in cyclohexane. Indeed,
they could tune the force from repulsive to attractive by
changing the refractive index of the liquid. There are also
some theoretical studies’ which report that the metamaterials
are good candidates for the realization of repulsive Casimir
force.

At short distances interaction energy due to the coupling
between the surface plasmons of the bodies is the familiar
vdW energy.®® The full retarded vdW energy, however, is
usually called as the Casimir energy, and it has contributions
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from photonic and plasmonic modes in real material systems.
Although current experiments can only measure their sum,
investigating these modes separately might provide us infor-
mation about the sign and strength of the Casimir force. In
computing this force at distances large compared to ¢/ w,
with ¢ as the speed of light in the medium, one should take
into account the retardation effects as a consequence of the
finite speed of light. At these distances, photon interactions
dominate the Coulomb interaction.

In the present work, we will explore the contribution as-
sociated with the plasmon modes to the Casimir energy. The
plasmonic contribution dominates the Casimir effect at short
distances, i.e., d<< A,. Here d is the mirror separation and A,
is the plasma wavelength associated with the metal. Impor-
tance of the plasmon modes in the Casimir effect has been
elucidated extensively in Ref. 10. Sernelius and Bjork!! stud-
ied the interaction energy between two quantum wells, which
were treated as strictly two-dimensional (2D) metallic sheets,
within the RPA model; and performed both retarded and non-
retarded calculations. They distinguished three regions of
separation distance where contributions of different excita-
tions become dominant. Bostréom and Sernelius'? later ex-
tended this calculation to include the finite-temperature ef-
fects. Intravaia and Lambrecht'? investigated role of the
surface plasmons in the Casimir force between two infinitely
large plane mirrors at zero temperature, and found out that
one of the plasmonic modes gives repulsive contribution. It
is concluded that the surface plasmon contribution is impor-
tant also at large distances. In a succeeding paper,'* the au-
thors obtained analytical expressions for the plasmonic con-
tribution at small and large distance asymptotics. Moreover,
their calculations yield a sign change, or a crossover from
attractive to repulsive, for the plasmonic contribution at short
distances (d=~0.08\,). Lau et al. studied the zero-point fluc-
tuations of the plasmon modes of bilayer Wigner crystals at
zero and finite temperatures. '’

Barton calculated the Casimir energy of spherical plasma
shells inspired by carbon molecule C¢, by considering a stan-
dard hydrodynamic plasma model.'® He then investigated the
cohesive Casimir energies for a thin flat sheet at zero tem-
perature by calculating the contributions from the surface
plasmons and photons.!” In addition the nonretarded, per-
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fectly reflecting and the no-cutoff limits were discussed. He
also studied the effects determined directly by the Maxwell
fields, and calculated the self-stress of a single plasma
sheet.!®

Bordag et al.”” obtained the spectrum of a flat plasma
sheet model. They solved Maxwell equations with suitable
boundary conditions at the plasma layer by employing Hertz
potentials. Spectrum of their model consists of continuous
branches as well as surface plasmons. Bordag has studied the
Casimir force between two dielectric bodies and for two in-
finitely thin plasma sheets by investigating the contributions
of surface plasmons and the photon modes. He concluded
that at small distances, the plasmon contributions dominate
the vacuum energy.?’

Dobson et al.?!' investigated the dispersion interaction in
nanostructures with different geometries. They showed that
the usual sum of R~ contributions from elements separated
by distance R may give qualitatively wrong results for the
nonretarded vdW interaction. Recently, by employing a
coupled-plasmon approach and using electron hydrodynam-
ics, White and Dobson?? have studied the dispersion interac-
tion between two collinear quasi-one-dimensional structures
separated by a vacuum gap in the nonretarded regime. They
have found that the coupled plasmon energy continues to
grow with the wire length at fixed separation.

Plasmons are the well-defined collective excitations of a
charged system when its dielectric function (DF) vanishes,
i.e., e(q,w)=0. In an uncoupled bilayer system, each layer
has a 2D plasma mode with a long-wavelength (g — ) dis-
persion w(q)~ Vg, where ¢=|q|, q=(g,.q,) is the 2D wave
vector. As the layers get closer, the interlayer Coulomb inter-
action gets stronger and the system displays two different
longitudinal modes: in-phase (optic) mode with energy
fiw,(q) in which the charge density oscillations in the layers
are in unison, and out-of-phase (acoustic) mode with energy
fiw_(q), where the oscillation phase of the layers differs by
180°. Both modes tend to the single-layer plasmon mode
fiw,(q) as the layer separation d— . Thus, by subtracting
energy of the single-layer modes we can find the interaction
energy due to the correlations between the surface plasmons
in different layers as

fiw,(q) ﬁw_<q)]d h
E(d) = — == .(q.d
@=3 |10 S0t

L 19

+0_(q,d) - 20,(q)]. (1)

This energy is considered to be the plasmonic contribution to
the vdW energy or the nonretarded Casimir energy. For a
method to calculate the plasmon dispersions including the
retardation effects see, for instance, Refs. 10 and 23.

The present work is devoted to the computation of plas-
monic contributions to the Casimir energy in strongly
coupled bilayer fermion and boson systems at zero tempera-
ture within the DF formalism. We are motivated by the pre-
vious calculations'!!31% emphasizing the role of plasmons
but were confined mainly to the RPA.

In strongly coupled bilayer systems correlation effects be-
yond the RPA need to be taken into account. Making use of
available quantum Monte Carlo (QMC) simulation data we
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construct models for the DF from which the plasmon disper-
sions are obtained. Through numerical computations we find
that such correlations give rise to a sign change in the plas-
monic contribution to the Casimir energy.

In the following we briefly describe calculation of the
plasmon dispersions in electron and charged-boson (CB) bi-
layers within various DF models. In Sec. III, we present our
numerical results for the plasmonic and photonic contribu-
tions to the Casimir energy.

II. MODEL AND THEORY

We envisage two layers of charged particles (electrons or
bosons) with equal density n separated by a distance d,
which is comparable to the Wigner-Seitz radius in a single-
layer a=1/\mn. Our system is thus a symmetric bilayer.
Each layer is assumed to be embedded in a rigid uniform
background of opposite charge so that the whole system is
neutral. Furthermore, finite thickness effects, disorder ef-
fects, and interlayer tunneling are ignored.

Each layer is characterized by the dimensionless coupling
parameter r,=a/ay, where az=f’€/(e*m") is the effective
Bohr radius in terms of dielectric constant of the background
medium e=ke), and band effective mass of the particle
m*. The charged particles in layers 1 and 2 interact via
Coulomb potentials (in Fourier space) v,;(q)=v»(q)=v.(g)
=2me*/(eq), and v15(q)=v,,(q)=v.(q)e™9". The energies in
the subsequent discussion are presented in effective Rydberg,
Ry*=h?/ (2m*a;2)=(r§/ 2)Ep, units to make comparison be-
tween the electron and CB bilayers possible.

For symmetric bilayers the DF matrix can be diagonalized
by separating the in-phase (+) and out-of-phase (-) direc-
tions. The matrix elements e.(q,w)=g;,(q,w) * e(q,w)
are obtained in terms of v.(g)=v,;(q) Tv»(g), and the
Lindhard function x,(q, ) as

~ v-+(q)x0(q, ®)
1+ 09 x0(q, 0)[G11(q) = Gx(q)]

Short-range exchange and Coulomb correlation effects
among the particles are taken into account in the DF through
intra- and interlayer static local-field (LF) factors, i.e.,
G,,(q) and G,,(q), respectively. Different assumptions in the
formulation of the DF give rise to distinct forms for the LF
factors.

The calculations in this study are based on three different
approaches within the DF formalism: random-phase approxi-
mation (RPA), quasilocalized charge approximation®*
(QLCA), and self-consistent field theory of Singwi, Tosi,
Land, and Sjolander® (STLS). While the RPA is quite well
in describing the physical properties of high-density (Ilow r,)
systems, the STLS approach is more successful for the low-
density systems. The QLCA, on the other hand, has been
developed to satisfy the third-frequency-moment ({w?)) sum
rule, which is necessary for the correct calculation of the
plasmon dispersion in the long-wavelength limit. It has been
shown that the QLCA predicts a correlation-induced energy
gap w_(g—0) in both electron®® and CB?’ bilayer systems.

In terms of the intra- and interlayer static structure factors
S;(q), the LF factors in the QLCA read

e+(qw)=1 . (2)
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Gyi(q) = —2 gk’ ‘;“(("))[sum K) - $11(0)]
(@K 00
E qq4 012( ) 2(k),
2
Gi(q) =~ 12 @vm(k)su(q -k). (3)

v.(q)

On the other hand, the corresponding expressions within the
STLS approximation are

k
G(q) =~ Eq ”“((k))[sn(q—k)—l],
Gpl(q)=- Eq kzzgkisn(q k). (4)

In the RPA, the G;;(q)=0. Therefore, the RPA simplifies Eq.
(2) to e4(q, w)—l—v (@)[1+e %] x,(q,w). Note that the
S;;(q) are related to the pair distribution functions g;;(r) via

1 .
gij(l') =1+ ]T]E [Sij(q) - @j]ezq»r. )
q

II1. RESULTS AND DISCUSSION
A. Bilayer Fermion System

As a bilayer fermion system, we choose two disorder-free
electron quantum wells spaced by a distance d. For a nonin-
teracting 2D electron gas system, the Lindhard function at
zero temperature is given by?®

) L N
Xolg.w) == —5 1—2—%21(\'T+—\'T_) ;
Tiz(w + ) 4qn, w, = hwl/Eg, q,= qlkp. (6)

Using this relation in Eq. (2), one can numerically compute
spectrum of the collective excitations in a bilayer electron
system.

In order to simulate the system better, we computed the
LF factors by making use of the g;;(r) generated by the QMC
studies reported in Ref. 29. The plasmon dispersions com-
puted within the QLCA for a system of two quantum wells
with layer spacing d=0.5a are plotted in Fig. 1, as an ex-
ample. In this figure, black dotted line is the upper bound of
single-particle continuum, where the plasma modes decay
into single electron-hole pairs.

We observe an energy gap of 3.049E in the w_(q) mode.
For a given density (or r,), this gap decreases sharply as the
layer spacing increases, and almost vanishes for d>1.5a.
Furthermore, it is larger in high-density systems for a given d
[see Fig. 11 of Ref. 26].

Because each plasma mode enters the single-particle con-
tinuum at a different (critical) g value, and gets damped
there, we modified the interaction energy expression [Eq.
(1)] for electron bilayers as
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FIG. 1. (Color online) Dispersion of collective modes in a sym-
metric bilayer electron system with r,=10 and d=0.5a.

Ed) _t

N =2 fo 4, dg,[0.(q,.d)O(q; - q,)

+ U)_(qmd)®(f]; - qn) - 2wp(Qn)®(q€ - qn)]' (7)

Our method differs from that of Sernelius and Bjork in the
sense that they let the modes stay on the continuum bound-
ary. We should also stress that their system was a high-
density one corresponding to r¢=1.41. In contrast, here, we
consider systems with r,=10 and 20, where the correlations
are much stronger. At these large values of r,, we have
checked numerically that both methods yield essentially the
same result.

For the sake of generality, we compute the interaction
energy per particle. We first present the results obtained
within the RPA in Fig. 2. It is observed that the energy is
negative for all layer spacings studied. The curves qualita-
tively show the same behavior for 0.3=d/a=1.5. We found
that in this interval, the interaction energy varies approxi-
mately as d='? at r,=10, and d~"'? at r;=20. This means that
the power law is density dependent. Evidently, in the single-
layer limit (d— ) the energy goes to zero. We can obtain
the force by taking the derivative of the energy with respect
to the layer spacing. This procedure yields a repulsive force,

O W = Ot

—_

~Energy/N (x1072 Ry*)

FIG. 2. (Color online) Interaction energy per particle as a func-
tion of layer spacing in an electron bilayer computed within the
RPA.
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FIG. 3. (Color online) Interaction energy per particle as a func-
tion of layer separation in an electron bilayer computed within the
QLCA.

which varies as d~7/> and d=°? at respective r, values.

When the gap between the layers is ~1 cm, the interac-
tion energy per particle drops to —6.27 X 10°Ry* and
-3.61 X 107"2Ry*, respectively, when r,=10 and 20. Inclu-
sion of the retardation effects results in —3.84 X 107 '1°Ry* and
—2.8 X 10713Ry* for the same r, values. Therefore, the retar-
dation effects are weak for the distances (=um) we are in-
terested.

The correlation-induced energy gap or more generally the
correlation effects lead to quite interesting behavior in d de-
pendence in the QLCA model. Figure 3 shows that the inter-
action energy is positive for small d values, in contrast to the
RPA results, and becomes negative starting at d=0.48a for
ry=10, and d=0.58a for r,=20. Unfortunately we have only
four data points due to the available QMC data we used as
input in our calculations. But it is obvious that there is a sign
change in the interaction energy. This sign change shows
importance of the exchange and correlation effects beyond
the RPA.

We might consider two GaAs-based quantum wells as a
potential experimental system. Assuming x=12.6 and m"
=0.067m, in the conduction band, one obtains a;=99.5 A.
As a result, ;=10 and 20 correspond to electron densities of
3.2X%10° cm™ and 8 X 108 cm™2, respectively. Also, the in-
terparticle distance a in GaAs wells is found as =100 nm
for r;=10, and =200 nm for r,=20. These data enable us to
predict the plasmonic interaction energy, and corresponding
force per unit area. For example, at r,=10 and d=500 A, we
find the energy per unit area as —1.05X 107 erg/cm? in the
RPA, and 0.38 X 107® erg/cm? in the QLCA.

In GaAs quantum wells, the envelope functions are at
least 10 nm in width.3® This fact implies that the layer spac-
ing typically should be d=30 nm to prevent tunneling be-
tween the wells. In a system with r,=10, the spacing d
=0.2a corresponds to 20 nm. Then, we conclude that our
results at d=0.2a may be only qualitative for GaAs-based
bilayer systems.

Photonic contribution to the interaction energy results
from independent coupling of the p- and s-polarized photons
with the electric fields in the quantum wells. The energy per
particle from the photon interaction may be computed
through!!
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log1o[-Energy/N (Ry™*)]

FIG. 4. (Color online) Energy contribution from the longitudinal
plus p-polarized and s-polarized interactions, respectively, shown
with thick and thin lines, as a function of layer separation in an
electron bilayer.

E, (d

(@ & f N f - :
Pt dwd Inl1 = —2gdy(q,iv) 22 .
N “amnl, ). wdg g In[1-e Byl

(8)

Here y(q,iw)=\1+(w/Zq)* is the retardation factor. In
GaAs, we can assume ¢=c/\ k. For the coupling between the
p-polarized photons and longitudinal electric field of the
quantum well,

_ ’)/(q’lw)OZO(wa)
P T gio aolgio)” ©)

where «(q,iw)=-v.q)xo(¢,iw) in the RPA. On the other
hand, the s-polarized photons induce a transverse current in
the well. For this interaction,

2ae’nlgm*c?y(q,iw)

= . 10
Ay 1 + 2me*nigm*c*y(q,iw) (10)

Comparing with Eq. (9), we can define 2mwe?n/(gm*c?) as the
transverse polarizability.

Our results for the photonic contribution are displayed in
Fig. 4. As is seen, this term is also particle density dependent
similar to the plasmonic contribution, but negative for all
layer spacings. It is, however, much smaller than the plas-
monic contribution even up to d=1 cm. The s-photon con-
tribution is the dominant term. We note that the s- and
p-polarization effects are calculated within the RPA model of
the DF formalism.

B. Bilayer Charged-Boson System

The Casimir effect in condensed bosonic systems con-
fined to a parallel plate geometry has been studied in detail.
For example, Biswas’! investigated temperature dependence
of the Casimir force for an ideal Bose gas confined between
two slabs, and using the Dirichlet boundary conditions,
showed that below the condensation temperature 7. the force
decreases with temperature, but independent of temperature
for T=T,. Also, his calculations yield a slab separation de-
pendence for the Casimir force as d=> for all temperatures.
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FIG. 5. (Color online) Interaction energy per particle as a func-
tion of layer spacing computed within the RPA for a CB bilayer
system.

Bera and Bhattacharjee,32 however, predicted a crossover
from a power law to an exponential fall off for the force
depending on the size and density of the ideal Bose gas.
Schiefele and Henkel® derived a renormalized expression
for the phononic Casimir energy density of a weakly inter-
acting condensate at zero temperature in the same geometry
with periodic boundary conditions.

We consider an infinite, strongly interacting CB bilayer
system confined to slab geometry. The system is assumed to
be in the condensed phase at zero temperature.

The response function for the noninteracting CB gas at
zero temperature is )(o(q,w)=2nEq/[(ﬁw+i77)2—Efi], where
E,=h*q*/(2m*) and 7 is a positive infinitesimal quantity.
Using this expression in the equation &(q,®)=0, one can
easily obtain dispersion relations for the collective modes of
a bilayer CB system as

4
8
[ (q)) = q—4 + 2ty & 0l 16 (q) = Ga(g)lh

o (11)

where ¢, =qa. Note that these relations are exact and ana-
lytical due to the simple form of the yy(q,w). The RPA re-
sults are obtained again by setting G;(q)=0. We refer the
reader to our previous work?’ for the excitation spectrum and
some other physical properties of CB bilayers for a wide
range of system parameters.

The RPA interaction energy results are depicted in Fig. 5.
They display the same qualitative behavior as the electron
bilayer system. We find that the energy varies with spacing
as d ' for r;=10, and d>% for r,=20 in the range 0.3
=d/a=1.5. Hence, the force is repulsive, and varies ap-
proximately as d>.

In our investigations within the QLCA and STLS, we re-
sorted to the S(q) data obtained via reptation QMC method
by De Palo et al.* for a single-layer CB system. On the other
hand, since neither g,,(r) nor S;,(q) are available from the
QMC simulations, we confined our calculations to approxi-
mate S),(q) within the RPA.

In the QLCA model, the energy is positive until d
=1.45a at r;=10, and d=1.4a at r;=20 values; then it be-
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FIG. 6. (Color online) Interaction energy per particle as a func-
tion of layer spacing computed within the QLCA for a CB bilayer
system.

comes negative (see Fig. 6). It varies with the layer spacing
as d=*2, and d3 for densities, respectively, r,=10 and 20 in
the range 0.3=d/a=1.5. Thus, the attractive/repulsive na-
ture of the Casimir force due to plasmonic contributions ap-
pear not to depend on charged particle statistics. The effect,
however, is much smaller for charged bosons as revealed by
the scales of Figs. 3 and 6(b). The main reason for this dif-
ference in magnitudes is the fact that in the charged-boson
case there are larger cancellation effects in Eq. (1) because of
the greater range of ¢ values in the dispersion relations,
whereas in the fermion case particle-hole continuum limits
the integration [see Eq. (7)].

Notice that the energy displays a somewhat different
qualitative behavior in the STLS approach than that in the
QLCA. We observe two well-separated regions in Fig. 7. For
small spacings it is positive but decreases and becomes nega-
tive. Then, after a minimum, it starts to increase. These dif-
ferences are related to the way exchange-correlation effects
are treated in different DF approaches. Hence, the sign
change in the interaction energy as a function of layer sepa-
ration seems to be result of beyond-RPA correlations.

We have also computed the photonic contributions to the
interaction energy for the CB bilayers, and found similar
results obtained for the electron bilayers.

In summary, we have investigated plasmonic contribution
to the Casimir energy in strongly correlated fermion and
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FIG. 7. (Color online) Interaction energy per particle as a func-
tion of layer spacing computed within the STLS for a CB bilayer
system.

charged-boson bilayer systems confined to parallel plate ge-
ometry at zero temperature. Our analysis is based on differ-
ent models of the dielectric formalism. Our findings explic-
itly show the importance of intra- and interlayer Coulomb
interactions. Inclusion of the interactions beyond the RPA via
local-field corrections gives rise to sign change in the plas-
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monic interaction energy and force. Plasmonic contributions
to the nonretarded Casimir energy are dominant for layer
spacings available in typical devices. We have also obtained
some power laws for the layer spacing dependence of the
energy. Variation in the Casimir energy with interlayer dis-
tance is particle density dependent. Indeed, this observation
has been experimentally verified recently by Chen et al.?
Their measurement of the Casimir force between a gold
coated sphere and two silicon plates of different particle den-
sities using atomic force microscopy revealed that the Ca-
simir interaction can be modified by changing the carrier
density of the semiconductor plate by several orders of mag-
nitude. It would be most interesting to perform Casimir force
experiments in the strongly interacting regime.
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