
Theory of valley-orbit coupling in a Si/SiGe quantum dot

Mark Friesen* and S. N. Coppersmith
Department of Physics, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA

�Received 4 February 2009; revised manuscript received 11 February 2010; published 19 March 2010�

Electron states are studied for quantum dots in a strained Si quantum well, taking into account both valley
and orbital physics. Realistic geometries are considered, including circular and elliptical dot shapes, parallel
and perpendicular magnetic fields, and �most importantly for valley coupling� the small local tilt of the
quantum-well interface away from the crystallographic axes. In absence of a tilt, valley splitting occurs only
between pairs of states with the same orbital quantum numbers. However, tilting is ubiquitous in conventional
silicon heterostructures, leading to valley-orbit coupling. In this context, “valley splitting” is no longer a
well-defined concept, and the quantity of merit for qubit applications becomes the ground-state gap. For typical
dots used as qubits, a rich energy spectrum emerges, as a function of magnetic field, tilt angle, and orbital
quantum number. Numerical and analytical solutions are obtained for the ground-state gap and for the mixing
fraction between the ground and excited states. This mixing can lead to valley scattering, decoherence, and
leakage for Si spin qubits.
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I. INTRODUCTION

In the past decade, much progress has been made in the
development of quantum-dot devices for quantum informa-
tion processing, spurred by the spin qubit proposal of Loss
and DiVincenzo.1 In GaAs devices, recent achievements
have included single-electron occupation of a quantum dot,2,3

pulse-gating and single-shot readout,4 and qubit rotations
about an arbitrary axis.5 However, it was noted early on that
materials properties in silicon are potentially well suited for
quantum computing.6 Predominant among these are weak
spin-orbit coupling and the ready availability of a nuclear
spin-zero isotope.

Several proposals were put forth for silicon-based
quantum-dot spin qubits.7–10 Many of the technological
achievements made in GaAs have now been realized in Si.
Recent experimental advances include controlled tunnel bar-
riers in modulation doped,11–14 degenerately doped,15 and un-
doped enhancement-mode devices,16,17 coupling between a
quantum dot and a nearby charge sensor,11,18,19 controlled
tunnel coupling between two sides of a double dot,20,21

single-electron occupation of a quantum dot,19 and observa-
tions of coherent quantum phenomena involving spins.22–24

On the other hand, it is known that the multivalley struc-
ture of the conduction band in Si may pose a challenge for
quantum computing.25 In the context of quantum-dot spin
qubits in strained silicon heterostructures, it is necessary for
the twofold degeneracy of the two-dimensional electron gas
�2DEG� to be lifted sufficiently that spins, not valleys, form
the relevant two-level system.26

The magnitude of the valley splitting has now been mea-
sured in strained Si quantum wells at both high fields27–30

and low fields.31 In certain cases, the measured values are
1–2 orders of magnitude smaller than expected from theoret-
ical calculations.32–34 Such splitting is too small for robust
quantum computing applications. It appears that the unex-
pected suppression is caused by atomic-scale steps at the
quantum-well interface, as originally suggested by Ando.35

In this picture, the steps can arise from the underlying miscut

in the growth substrate, which is transferred to the interface
by conformal epitaxial deposition. Alternatively, they can be
a consequence of strain-induced roughness. In either case,
when an electronic wave function extends laterally over
many steps, the valley splitting cannot be maximized on ev-
ery step, leading to an overall suppression of the valley split-
ting. Since the valleys states include a phase factor whose
value depends on the position of the interface,36 the suppres-
sion of valley splitting can be interpreted as an interference
effect caused by multiple steps.37

It should therefore be possible to overcome the suppres-
sion of valley splitting by laterally confining the wave func-
tion to a small number of steps. This proposal was put to the
test in recent experiments by probing the valley splitting un-
der strong electrostatic or magnetic confinement, in a quan-
tum point-contact geometry.31,38 Under such conditions, the
valley splitting was restored to its expected theoretical value.
By the same token, a smooth interface could partially explain
the exceptionally large valley splitting observed at a Si /SiO2
inversion layer.39

For quantum computing applications, we are most inter-
ested in quantum-dot devices, where the confinement is con-
trolled by the top-gate geometry and the application of gate
voltages and magnetic fields. Recent experiments have
shown that excitation energies in few-electron quantum dots
may be of order 0.1–0.3 meV, which provides an estimate for
the valley splitting.24 From a quantum computing perspec-
tive, the size of this splitting is encouraging, since it is larger
than both the typical electron temperature in a dilution re-
frigerator ��150 mK�, and the Zeeman spin splitting in
fields up to about 2 T. �Note that valley splitting and Zeeman
splitting are both functions of the magnetic field.� The mag-
nitude of the valley splitting therefore appears sufficient for
quantum computing in many cases. However, it is essential
to understand the complicated dependence of valley splitting
on the shape of the quantum dot and on the materials param-
eters associated with silicon heterostructures. In the context
of decoherence, it is important to understand how valley-
orbit coupling causes quantum-dot orbitals to hybridize. The
latter effect plays a role in valley scattering and can allow the
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spin qubit to leak into a higher-dimensional spin-valley Hil-
bert space.

There are many possible approaches to modeling silicon
quantum dots, ranging from highly simplified geometries,
such as circular quantum dots on a flat quantum-well inter-
face, to realistic three-dimensional �3D� structures with top
gates and disordered interfaces. While the simple geometries
may be treated analytically, the more realistic geometries re-
quire numerical methods. In this paper, we take a middle
road by solving a somewhat complicated model that still
allows analytical solutions. Specifically, we study interorbital
valley coupling in a quantum dot with an elliptical shape and
arbitrary step orientation, in parallel or perpendicular mag-
netic fields. In a previous numerical analysis, we also in-
cluded the effects of interfacial disorder in circular dots,37

although we did not account for interorbital valley coupling.
In that case, we observed that interfacial step disorder has a
strong moderating effect on the suppression of valley split-
ting. Because disorder is not easy to accommodate in our
analytical treatment, we focus here on a uniform interface.
However, we do allow for an effective tilt angle, which ap-
proximates some aspects of disorder.

The paper is outlined as follows. In Sec. II we describe
our theoretical method and procedure. In Sec. III, we con-
sider a quantum-dot geometry with the magnetic field ori-
ented parallel to the sample surface. General solutions are
obtained for the valley coupling in an elliptical quantum dot,
whose orientation with respect to the steps is arbitrary. We
solve several important limiting cases, including high aspect
ratios and circular quantum dots. In Sec. IV, we study circu-
lar and elliptical quantum dots in a perpendicular field geom-
etry. In Sec. V, we summarize our main results and provide
an intuitive explanation for the origin of valley-orbit cou-
pling. We discuss some consequences of valley-orbit cou-
pling and why valley splitting is not an entirely well-defined
quantity. We also discuss materials parameters that affect the
magnitude of the valley splitting, such as disorder at the
interface, and we suggest future experiments to characterize
these materials properties. In Appendix, we provide a discus-
sion of the important approximations used in this paper, in-
cluding the treatment of the interfacial tilt as smooth and
uniform.

II. VALLEY-ORBIT COUPLING

A. Effective-mass formalism

We build on the work of Ref. 36 to develop an effective-
mass theory of valley coupling in a quantum dot. In contrast
with most previous theories, we now include interorbital
couplings. These have a significant effect on the valley split-
ting in typical qubit devices, and they are essential for un-
derstanding valley scattering.

In this theory, we treat the valley coupling as a perturba-
tion. Thus, at zeroth order, valleys do not enter the analysis
except through the anisotropic effective-mass tensor. The re-
sulting equations have a simple form for inversion layers40

and strained silicon heterostructures41 since only z valleys
are low enough in energy to play a role in the calculations. In

this case, there is only one envelope function equation: the
effective zeroth order Hamiltonian,

H0 = �
j=x,y,z

1

2mj
�− i�

�

�rj�
+ eAj�r���2

+ VQW�z�� + VQD�x�,y�� .

�1�

In Eq. �1�, we refer to two different coordinate systems. The
unprimed coordinate system �x ,y ,z� is aligned with the crys-
tallographic axes, while the primed coordinate system
�x� ,y� ,z�� is aligned with the growth axis, where ẑ� is per-
pendicular to the plane of the quantum well. For the z val-
leys, the transverse effective mass is given by mx=my =mt
�0.19m0, while the longitudinal effective mass is given by
mz=ml�0.92m0. The confinement potentials include VQW,
the vertical quantum-well potential, and VQD, the lateral
quantum-dot potential. The eigenstates of H0 are denoted as
envelope functions, Fn�r��, with the discrete orbital index n.
Since H0 does not depend on the individual z valleys, the
energy eigenvalues �n are doubly degenerate.

At first order in the perturbation theory, we introduce a
valley coupling potential Vv. Following Fritzsche42 and
Twose,43 we can obtain a set of coupled equations for the
two-valley system,

�
n

�
v=�1

�ñ,n,veivk0z�H0 + Vv�r�� − Eñ	Fn�r�� = 0. �2�

Here, the index v= �1 refers to the valley centered at kv
=vk0ẑ, where k0�0.82�2� /a� and a=5.43 Å is the Si cubic
unit-cell dimension. The interaction Vv mixes unperturbed
orbitals with different quantum numbers n, so Eq. �2� must
include a sum over the index n. The resulting eigenstates
of the perturbation Hamiltonian are indexed by a new label,
ñ, with corresponding eigenvalues Eñ and eigenvectors
�ñ, whose components span the unperturbed basis set

�n� � �v�. Due to valley-orbit mixing, it is not appropriate to
distinguish between orbital and valley quantum numbers in
realistic quantum dots, except in certain limiting cases. The
index ñ is therefore a combined valley-orbital label.

We note that umklapp terms are absent in the summation
of Eq. �2�. In the context of valley coupling by a shallow
donor, the omission of umklapp processes is known to give
numerical errors in the calculation of binding energies.44,45

While these might be resolved by going beyond conventional
effective-mass theory,46 the conventional theory does provide
acceptable results and intuitive explanations that are in
agreement with more detailed analyses, both for single-
valley and multivalley semiconductors.47 For quantum wells,
the two-valley treatment of Eq. �2� provides remarkable
agreement with more sophisticated theories.32,36 This is not
surprising, one would expect the umklapp errors to be sup-
pressed in quantum wells, as compared to donors, because
the Fourier-transformed potential VQW�k� decays more
quickly in reciprocal space. Based on the overall agreement
between effective mass and more detailed theories, we will
not pursue umklapp processes here.

Each term in Eq. �2� corresponds to a different unper-
turbed valley orbital, identified by indices v and n,
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�r��n,v� = eik0vzFn�r�� . �3�

It is also convenient to define a special index referring to the
opposite valley, v̄�−v, such that

�r��n, v̄� = e−ik0vzFn�r�� . �4�

As discussed elsewhere,31,36,37 the valley coupling potential
takes the form of a � function in the effective-mass theory,

Vv�r�� = vv��z� − z0� , �5�

where z�=z0 is the position of the sharp quantum-well inter-
face. In principle, one �-function potential should be in-
cluded for each interface of the quantum well. However, in a
typical modulation-doped device, the envelope function is
centered near the top interface �closest to the doping layer�,
and is exponentially suppressed at the bottom interface.
Therefore, we include only one � function, for the top inter-
face. �If necessary, a second interface could easily be in-
cluded in the theory.�

Equation �5� describes a geometry where the interface oc-
curs on a horizontal plane in the �x� ,y� ,z�� coordinate sys-
tem. This assumes that the stepped interface can be approxi-
mated as uniformly tilted. The validity of such an
approximation is discussed in detail in Appendix. In brief,
since a single-atom step of height a /4=1.4 Å is much
smaller than any effective-mass length scale, the continuum
approximation is well justified in most situations. Addition-
ally, the assumption of a smooth interface is well justified,
locally, in the absence of significant step bunching.

When we compute matrix elements, as described below, it
is more convenient to transform to the crystallographic
�x ,y ,z� coordinate system,

Vv�r� = vv��z − zi�x,y�	 , �6�

where

zi�x,y� = z0 − x tan � cos 	 − y tan � sin 	

� z0 − x� cos 	 − y� sin 	 . �7�

Here, � is the interfacial tilt angle, which is typically small.
For example, samples grown on commercial substrates may
have �
2°, corresponding to a step width of 3.9 nm. 	 is
the tilt direction in the x-y plane with 	=0 corresponding to
a downhill slope in the x direction. For a quantum dot cov-
ering many steps, the valley coupling should depend very
weakly on the relative position, z0, as we have verified nu-
merically. In the opposite limit of very few steps, we should
treat the steps explicitly, as described in Appendix. For the
present analysis, where we treat the interface as smoothly
tilted, it is appropriate to choose the value of z0 to simplify
our calculations.

The parameter � should be viewed as an effective tilt
angle. �See Appendix.� Normal growth dynamics tend to pro-
duce interfaces that are disordered,48 so the local tilt angle
can differ from the global tilt. As discussed below, lower
ground-state energies can be attained at flat interfaces. Con-
fined electrons will therefore adjust their center positions
slightly, to seek out locally flat regions. A more careful treat-
ment of this phenomenon, and disorder in general, lies out-

side the scope of the present work. However, we can capture
some of the relevant physics simply by treating � as an
effective, locally averaged tilt angle.

To solve Eq. �2�, we proceed as in Ref. 36: we left mul-
tiply by e−iv�k0zFn�

� �r��, integrate over all space and remove
any resulting small terms. In particular, we drop terms in the
integrand containing fast oscillations.49 In this way, we ob-
tain the following expression for the matrix elements of the
perturbation Hamiltonian,

�n�,v��H�n,v� =� ei�v−v��k0zFn�
� �r��HFn�r��dr�, �8�

where we define H=H0+Vv.
After solving for the valley orbitals, we may finally com-

bine the atomic and confinement scale components of the
wave function, following the prescription given by Kohn,47

�ñ�r� � �
n

��ñ,n,−1e−ik0zu−k0
�r� + �ñ,n,+1e+ik0zu+k0

�r�	Fn�r�� .

�9�

Here, e�ik0zu�k0
�r� are the bulk Bloch functions for the two-

valley minima. Note that the periodic functions u�k0
�r� do

not play a role in our calculations of the valley orbitals. The
atomic-scale details of the valley coupling are captured in the
coupling parameter vv.

B. Selection rules and broken symmetries

We evaluate the matrix elements of Eq. �8� as follows. For
the case v�=v, we find

�n�,v�H�n,v� = �n,n���n + vv� �Fn�x�,y�,z0��2dx�dy�� ,

�10�

where we have used Eq. �5�. For every quantum-dot geom-
etry studied in this paper, we observe the following form of
separability for the envelope function,

�Fn�x�,y�,z��� � �fn�x�,y�����z�� . �11�

Equation �10� then reduces to

�n�,v�H�n,v� = �n,n���n + vv�2�z0�	 , �12�

when the envelope functions are properly normalized.
The case v�= v̄ can be expressed as

�n�, v̄�H�n,v� = vv�2�z0�e2ivk0z0� e−2ivk0�x�� cos 	+y�� sin 		

 fn�
� �x�,y��fn�x�,y��dx�dy�. �13�

Here, we have made use of Eq. �7�, and the fact that �x ,y�
��x� ,y�� when ��0. Note that we have dropped the terms
�n� , v̄�H0�n ,v� because they contain fast oscillations and are
therefore small. Since all coordinate variables in Eq. �13� are
primed, we henceforth drop the prime notation for simplicity,
except where noted.

When v�= v̄ and �=0, Eq. �13� simplifies, due to the or-
thonormality of the valley orbitals. The result is proportional
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to �n,n�. However, when ��0, the phase factors inside the
integral are nonvanishing, and interorbital couplings arise. In
this way, we see that the tilt of the quantum well is directly
responsible for the off-diagonal valley-orbit coupling. Since
roughness is ubiquitous in realistic devices, we must always
expect some degree of interorbital valley coupling.

The emergence of interorbital coupling has further inter-
esting consequences. First, it causes broken time-reversal
symmetry. When �=0, the perturbation produces only in-
traorbital terms; the valley coupling is identical for every
orbital, and its phase factor is trivial, since it can be elimi-
nated by setting z0=0. But when ��0, the interorbital cou-
plings are complex, and they cannot be trivially removed.
The perturbation Hamiltonian is intrinsically complex and
time-reversal symmetry is broken.50 Similar behavior is ob-
served in the multivalley graphene system with important
implications for weak localization.51–53 Second, the valley
index can no longer be treated as a good quantum number.
When �=0, the valley labels are universal, in the sense that
they have the same meaning for every orbital. In a square
well, for example, the wave functions can be unambiguously
characterized as odd or even.36 However, when ��0, there
is no universal labeling scheme. Valley-orbit coupling causes
level mixing, which differs from orbital to orbital.

C. Summary of approximations and their consequences

The effective-mass approximation forms the basis of our
analysis, as it allows us to analyze quantum dots in terms of
their envelope functions rather than their wave functions.
The approximation is a natural one, based on the large sepa-
ration of lengths scales:54 atomic ��0.1 nm� vs confinement
�10–100 nm�. One could expect the approximation to break
down when the confinement potential is sharp since the two
length scales are then comparable. However, the effective-
mass approximation remains viable for many materials, in-
cluding silicon, even near an abrupt interface.40 This is be-
cause the valleys are roughly parabolic in the regions of the
Brillouin zone where the wave function is concentrated.

Valley coupling is therefore a higher-order effect in the
effective-mass approximation. A confinement potential with
components at large k will couple the valleys in silicon, lead-
ing to an envelope function equation of the form of Eq. �2�,
where the leading-order approximation for the coupling takes
the form of a � function, as in Eq. �6�. When the interface is
aligned with the crystallographic axes, the interface position
zi is a constant. This leads to our first selection rule, that a
sharp interface always causes intervalley coupling within a
given orbital. We note however, that even if the effective-
mass approximation were to break down near a sharp inter-
face, the valley degeneracy would still be lifted, as confirmed
by atomistic theories.32 Comparison between atomistic and
effective-mass theories generally confirms the effective-mass
approach.34,36 In the absence of any interfacial tilt, the valley
coupling is strictly intraorbital. This is a consequence of the
assumed separation of variables in the confinement potential,
which forms an excellent approximation in quasi-2D
devices.55

When the interface is not aligned with the crystallo-
graphic axes, we have chosen to treat the interface as

smoothly tilted, since single atomic steps are much smaller
than effective-mass length scales. The approximation leads
immediately to our second selection rule, that a tilted inter-
face causes interorbital coupling between opposing valleys, v
and v̄. Of course, the smooth interface approximation will
not be valid if the misalignment is highly nonuniform, as in
the case of multiple step bunching. In Appendix, we consider
several scenarios where the smooth interface approximation
breaks down, most notably in cases involving wide steps. For
very wide steps, the smooth approximation leads to a very
weak valley coupling. A more accurate treatment, taking into
account the relaxation mechanism described in Appendix,
would suppress the valley coupling even beyond the predic-
tions of the present theory.

III. PARALLEL FIELD GEOMETRY

We now analyze some specific geometries. We first con-
sider the case where the magnetic field is oriented parallel to
the sample. Because the x and y directions are now inequiva-
lent, even in the absence of interfacial steps, the angular
momentum quantum number l is not a good quantum num-
ber.

We initially treat the problem as an anisotropic 3D simple
harmonic oscillator with lateral confinement frequencies �x
and �y. In the most general case, we assume the oscillator
frequencies are unequal: �x��y. The quantum-well confine-
ment potential is also taken to be parabolic, with �z��x, �y.
Because of the strong confinement along ẑ, the quantum-dot
wave function is approximately separable in the variable z,
despite the presence of a magnetic field. However, we will
find that the wave function acquires an intrinsic phase when
the interface is tilted due to valley coupling. Since the mag-
netic field also produces a nontrivial phase, which could po-
tentially lead to interference effects, it is important to work
through the details of the problem without assuming separa-
bility, a priori.

We take the magnetic field to be oriented along one of the
major elliptical axes �ŷ�, otherwise the problem becomes in-
tractable. Adopting the symmetric gauge A= �z ,0 ,−x�B /2
for the vector potential, the envelope Hamiltonian becomes

H0 = �
j=x,y,z

� 1

2mj
�− i�

�

�xj
+ eAj�2

+
mj� j

2xj
2

2
� . �14�

The eigenvalue problem is separable in the variable y, lead-
ing to solutions of the form

Fnx,ny
�r� = fnx

�x,z�gny
�y� , �15�

where nx and ny are non-negative integers. The solutions for
gny

are given by

gny
�y� = �2nyny!�−1/2�mt�y

��
�1/4

e−�mt�y/2��y2
Hny

��mt�y

�
y� ,

�16�

where Hn�x� is a Hermite polynomial.56

The magnetic field couples the x and z variables in Eq.
�14�, making the problem somewhat more complicated.
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However, by rescaling the coordinate variables as

x = �ml/mt�1/4x̃ , �17�

z = �mt/ml�1/4z̃ , �18�

the x-z Hamiltonian is brought into a more tractable form,

H̃0 =
1

2�
�− i��̃ + eÃ	2 +

�

2
��x

2x̃2 + �z
2z̃2� , �19�

where ���mtml, and we define a scaled vector potential,

Ã= �z̃ ,0 ,−x̃�B /2.

In principle, the �z oscillator possesses a distinct quantum
number, nz. However, we restrict our investigation to the first
subband approximation �nz=0� since �z��x. We also as-
sume that the quantum-well confinement is stronger than the
magnetic confinement, �z��c, as consistent with typical
laboratory conditions. �Here, �c=e�B� /mt is the cyclotron
frequency.� Although valley coupling can cause mixing of
the higher subbands, the relevant energy scales are very
large, and the couplings are small. We ignore such mixing
here.

An exact solution for Eq. �19� was first obtained in Ref.
57. For the problem considered here, the results can be ex-
pressed as

fnx
�x,z� = Nnx

exp� iJxz

�
−

M1�1�ml/mt�1/2z2 + 2iLM1�1M2�2xz + M2�2�mt/ml�1/2x2

2��L2M1�1M2�2 + 1� �
 �

l=0

nx cln!

l!�nx − l�!
Hnx−l��2M2�2/��LM1�1�ml/mt�1/4z − i�mt/ml�1/4x�

L2M1�1M2�2 + 1
� , �20�

where

J = −
�

2
��z

2 − �x
2

�c
� +

�

2�c

���x
2 + �z

2 + �c
2�2 − 4�x

2�z
2,

�21�

L =
�c

����x
2 + �z

2 + �c
2�2 − 4�x

2�z
2

, �22�

M1,2 =
2����x

2 + �z
2 + �c

2�2 − 4�x
2�z

2

��z
2 − �x

2 � �c
2� + ���x

2 + �z
2 + �c

2�2 − 4�x
2�z

2
,

�23�

�1,2 =
1
�2

��x
2 + �z

2 + �c
2 � ���x

2 + �z
2 + �c

2�2 − 4�x
2�z

2	1/2,

�24�

Nnx
= �− i

2
�nx� �M1�1M2�2

�2��nx�!�L2M1�1M2�2 + 1�
�1/2

, �25�

cl = ��4G�l/2�� l + 1

2
� �l even�

0 �l odd� ,
� �26�

and

G =
4

L2M1�1M2�2 + 1
− 1. �27�

Here, ��p� is the gamma function.56 The energy eigenvalues
corresponding to Fnx,ny

are

�nx,ny
=

��1

2
+ �nx +

1

2
���2 + �ny +

1

2
���y . �28�

We now apply the limit �z��x, �c, obtaining

�1 = �z +
�c

2

2�z
+ O��z

−3	 , �29�

�2 = �x + O��z
−2	 . �30�

Including the leading-order correction in ��c /�z�, the
quantum-dot energy is then given by

�nx,ny
�

�

2
��z +

�c
2

2�z
� + �nx +

1

2
���x + �ny +

1

2
���y ,

�31�

with the corresponding x-z eigenfunction

fnx
�x,z� � ��mtml�x�z

��2nx�nx�!
�1/2

 exp�−
mt�x

2�
x2 +

i�mtml�c

2�
xz −

ml�z

2�
z2�

 Hnx
��mt�x

�
x� . �32�

Here, we have made use of a Hermite polynomial identity,

2n/2Hn� x + y
�2

� = �
k=0

n
n!

k!�n − k�!
Hk�x�Hn−k�y� . �33�

We find that the main effect of the magnetic field is to intro-
duce a phase factor into the otherwise separable anisotropic
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oscillator solutions. This phase plays no role when it is in-
cluded in valley coupling calculations since it is independent
of nx. The conventional wisdom that quantum-dot wave
functions are separable in the parallel field geometry is there-
fore also valid in the context of valley coupling.

A. Flat quantum well

We now compute the matrix elements �nx�ny�v��H�nxnyv�
for a flat quantum well, treating the valley coupling potential
Vv as a perturbation. When v�=v, only diagonal matrix ele-
ments survive, as explained in Sec. II B. Note that we have
chosen the center of the harmonic oscillator to be at the
origin. Defining the top of the quantum well as z=z0, we
obtain

�nxnyv�H�nxnyv� = �nx,ny
+ vv�0

2�z0� , �34�

with

�0�z0� = �ml�z/���1/4e−�ml�z/2��z0
2
. �35�

This final expression was obtained by treating the vertical
confinement potential as harmonic.

The approximate separability of variables in Eq. �32� sug-
gests that ��z and �0 could be replaced by more physically
motivated quantities, such as eigenstates of a finite triangular
well. Indeed, throughout this work, we will view vv�0

2 as a
scaling factor for the valley coupling, whose value can be
measured experimentally and inserted, phenomenologically,
into the theoretical expressions. When microscopic disorder
is present at the quantum-well interface and significant de-
tails about the valley coupling are not known precisely, such
an approach becomes quite practical. Consistent with this

view, we henceforth drop the argument z0 in �0.
For the off-diagonal matrix elements �nx�ny�v̄�H�nxnyv�, the

orthogonality of the eigenfunctions restricts the off-diagonal
couplings to cases where nx=nx� and ny =ny�, as discussed in
Sec. II B. �Recall that �=0 in this section.� This gives the
trivial result

�nx�ny�v̄�H�nxnyv� = �nx,nx�
�ny,ny�

vv�0
2e2ik0z0v. �36�

The twofold degeneracy of each orbital level is lifted by a
fixed amount, independent of the quantum state. The ground-
state gap for each pair of states is given by Eg=2vv�0

2. This is
the conventional “valley splitting.”

B. Tilted quantum well

We turn to the more realistic case of a quantum well tilted
downwards at an angle �, toward the direction 	 in the x-y
plane, as described in Eq. �7�. When v�=v, as in Eq. �10�,
then to leading order in the small parameter ��c /�z�, the
Hamiltonian matrix elements are real and exclusively diago-
nal. They are identical to their counterparts for a flat quan-
tum well. However when v�= v̄, the valley interaction in-
duces nontrivial couplings between the quantum-dot levels,
leading to new avoided crossings in the energy spectrum, and
to fundamentally new physics.

The coupling matrix elements are solved using an explicit
expansion for the Hermite polynomials,

Hn�x� = �
j=0

�n/2�
�− 1� jn!

j!�n − 2j�!
�2x�n−2j , �37�

where the floor function �m� is defined as the greatest integer
less than or equal to m, and n! is the factorial function with
0! =1. We obtain

�nx�ny�v̄�H�nxnyv� = vv�0
2e2ik0z0v� mt

2�x�y

�2�22nx+nx�+ny+ny��nx�!�nx��!�ny�!�ny��!
�1/2

 �
−�

�

dxdy exp�−
mt�x

�
x2 −

mt�y

�
y2�exp�− 2ik0v�x� cos 	 + y� sin 	�	

 Hnx��mt�x

�
x�Hnx���mt�x

�
x�Hny��mt�y

�
y�Hny���mt�y

�
y� .

=vv�0
2e2ik0z0v��nx�!�nx��!�ny�!�ny��!exp�−

�k0
2�2

mt
� cos2 	

�x
+

sin2 	

�y
��� v

i�2
�nx+nx�+ny+ny�

 �
l=0

�nx/2�

�
l�=0

�nx�/2�

�
j=0

�ny/2�

�
j�=0

�ny�/2�
�l!�l��!�nx − 2l�!�nx� − 2l��!j!�j��!�ny − 2j�!�ny� − 2j��!	−1

 Hnx+nx�−2�l+l���� �

mt�x
k0� cos 	�Hny+ny�−2�j+j���� �

mt�y
k0� sin 	� . �38�
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This result is separable with respect to the x and y indices,

nx ,nx� and 
ny ,ny�, indicating that mixing occurs among x
orbitals or y orbitals, with no x-y cross coupling. At this
point, we invoke our freedom to set z0=0, as discussed in
Sec. II A.

The couplings appearing in Eq. �38� suggest a rather com-
plicated dependence of the valley splitting on the tilt angle �.
The energy spectrum for typical dot parameters is shown in
Fig. 1. The different asymptotic behaviors can be understood
as follows. In the limit �→0, rotational symmetry is recov-
ered �see Sec. II B�, and valley coupling does not mix the
orbital levels. In this case, the valley states in each orbital
level are split by the same amount. However, for realistic
quantum-dot diameters ��50–100 nm�, the orbital spacing
can be smaller than the single-particle valley splitting
��0.3–0.5 meV�, as in Fig. 1. In this case, pairs of states
with the same orbital quantum numbers are difficult to iden-
tify, due to the presence of valleys.

When ��0, valley-orbit coupling mixes the unperturbed
orbitals, leading to avoided crossings. The degree of mixing
affects the valley scattering. We can quantify this effect by
defining the mixing fraction Fñ=0, which describes the pro-
jection of the perturbed ground state �ñ=0� onto the unper-
turbed excited states �n�0�,

Fñ = �
n�0,v=�1

��ñ,n,v�2. �39�

Some typical results for the mixing fraction are shown in
Fig. 2. We see that Fñ=0 vanishes when �→0, as explained
above, and goes through a maximum value. In the limit �
�1, the valley coupling is suppressed for all orbital states.
�See Fig. 1.� This is a consequence of destructive valley in-
terference caused by multiple step coverage.31,37 The mixing
fraction is also suppressed for the same reason. In Secs.

III C–III E, we will obtain analytical expressions for the
valley-orbit coupling and the ground-state gap, for certain
quantum-dot geometries.

The first excited state experiences stronger valley-orbit
coupling than the ground state because of its proximity to
other nearby energy levels. This is demonstrated vividly in
Fig. 1. In the two limits �=0 and ��1, the orbital quantum
numbers nx,y are good quantum numbers. When �=0, the
valley splitting is larger than the orbital spacing, so ny will
typically vary on successive energy levels �in this case, ny
=0,1 ,0 , . . ., from bottom to top�. However, when ��1, the
lowest pair of eigenstates becomes nearly degenerate, with
the same quantum number, ny =0. Thus, the orbital character
of the first excited state changes completely, from ny =1 to 0,
as a result of valley-orbit coupling. In the intermediate re-
gion, ��1, valley-orbit coupling causes a complete mixing
of the unperturbed orbitals. The orbital crossover can also be
observed in the inset of Fig. 2, which shows the mixing
fraction for the first excited state. Clearly we cannot obtain
exact expressions for the ground-state gap or the mixing
fraction. However, approximations are available in certain
limiting cases, as described in the following sections.

C. Limit: Small quantum dots

This limit corresponds to the case where orbital splittings
are much larger than the valley coupling, leading to particu-
larly simple approximations for the ground-state gap. To
leading order, we can treat the ground state by simply ignor-
ing interorbital valley couplings. The quantum numbers nx
=ny =0 then remain good quantum numbers, even after ap-
plying the perturbation.
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FIG. 1. �Color online� Energy levels for an elliptical quantum
dot in the parallel field geometry, including valley coupling. Dot
parameters are appropriate for a single-electron spin qubit: ��x

=1.5 meV, ��y =0.75 meV, and vv�0
2=0.5 meV. Uniform, lateral

step orientation is set to 	=� /4. Blue dot-dashed lines show the
analytical approximation, obtained by restricting the analysis to the
lowest two orbital levels in Eq. �46�. The subband energy shift �a
constant� has been dropped here for simplicity.
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FIG. 2. �Color online� Mixing fraction, Eq. �39�, due to interor-
bital valley coupling. Results are shown for the same quantum-dot
parameters used in Fig. 1. The solid black line is the projection of
the perturbed ground state �ñ=0� onto the unperturbed excited
states �n�0�. The red dashed line shows the main contribution to
Fñ=0 coming from just the first excited orbital �n=1�. Blue dot-
dashed line shows the corresponding analytical result of Eq. �50�, as
obtained within a restricted subspace. Inset: the projection of the
first excited state �ñ=1� onto the unperturbed excited states �n
�0�.
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We can express the Hamiltonian in the restricted manifold

�00+� , �00−�, where + and − refer to the unperturbed valley
quantum numbers. From Eq. �38� and Sec. II B, we obtain

H � ��0 + �0 �0�

�0� �0 + �0
� , �40�

where we define

�0 = ���x + �y�/2, �41�

�0 = vv�0
2, �42�

� = exp�−
�k0

2�2

mt
� cos2 	

�x
+

sin2 	

�y
�� . �43�

Note that the vertical confinement energy �� /2���z
+�c

2 /2�z� is a constant here; we set it to zero for simplicity.
Diagonalization immediately gives the ground-state gap,

Eg � 2�0� = 2vv�0
2 exp�−

�k0
2�2

mt
� cos2 	

�x
+

sin2 	

�y
�� .

�44�

The quantity 2�0 can be recognized as the theoretical maxi-
mum of the valley splitting, while 2�0� corresponds to the
renormalized or suppressed valley splitting, which takes into
account the steps at the interface.

The previous approximation is most appropriate for ultr-
asmall quantum dots in a 2DEG with radii �20 nm. Al-
though such devices are challenging to fabricate at the
present time, the main result of this section, Eq. �44�, is more
broadly applicable. This is particularly true when � is so
large that the valley coupling is strongly suppressed. We can
use Eq. �44� to determine the crossover angle �s, above
which the valley coupling is exponentially suppressed,

�s � �mt�/�k0
2. �45�

For a typical quantum-dot energy of ��=0.75 meV�see Fig.
1�, this corresponds to a crossover angle �s=0.26°. Taking
into account the simple harmonic oscillator radius, R
=�� /2mt�, we obtain a relation between R and �s, as shown
in Fig. 3.

D. Limit: High aspect ratio

We now consider slightly larger quantum dots of interest
for quantum computing. In this regime, the orbital and valley
splittings are similar in magnitude. We further assume that
one principle axis of the elliptical potential is much larger
than the other ��x��y�. Interorbital couplings to the ground
state are then dominated by a single excited state, ny =1. We
find that this approximation is applicable over a fairly wide
range. For example, Fig. 2 corresponds to a moderate aspect
ratio of �x /�y =2. The red dashed line shows results ob-
tained by solving the Hamiltonian with many orbital states
but including just the contribution from the first excited state.
The results are satisfactory, indicating the accuracy of the
approximation.

For the analytical treatment described above, we consider
the ordered manifold 
�00+� , �00−� , �01+� , �01−�, obtaining

H ��
�0 + �0 �0� 0 i�0�q

�0� �0 + �0 − i�0�q 0

0 i�0�q �1 + �0 �0��1 − q2�
− i�0�q 0 �0��1 − q2� �1 + �0

� .

�46�

Here, we use the previous definitions for �0, �0, and �, and
we further define

�1 = ���x + 3�y�/2, �47�

q = �k0� sin 	��2�/mt�y . �48�

As before, the vertical confinement energy is a constant, and
we set it to zero.

Diagonalizing H gives the energy spectrum in this re-
stricted manifold. Figure 1 shows two lowest energy levels
obtained by this procedure �blue dot-dashed line�. The results
are satisfactory, even though the high aspect ratio limit is not
well satisfied. In particular, the ground-state gap is found to
be quite accurate.

One main advantage of considering restricted manifolds is
that they allow analytic results. Thus, the ground-state gap
can be computed, giving

Eg � �0�q2 +
1

2
����y + �0��2 − q2�	2 + �2�0��2q2

−
1

2
����y − �0��2 − q2�	2 + �2�0��2q2. �49�

We can also compute the mixing fraction defined in Eq. �39�,
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FIG. 3. Crossover radius for the suppression of valley coupling
caused by a tilted interface. For a quantum dot lying below the
curve, valley splitting is weakly suppressed or unsuppressed. Above
the curve, valley splitting is strongly suppressed.
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Fñ=0 =
2��0��2q2

���y + �0��2 − q2�	2 + �2�0��2q2 + ���y + �0��2 − q2�	����y + �0��2 − q2�	2 + �2�0��2q2
. �50�

In Fig. 2, we compare this analytical theory �dotted line�
with the full numerical calculation. Again, we find that the
restricted manifold provides a very reasonable approxima-
tion.

E. Limit: Circular dot

Circular quantum dots are of interest for their symmetry
properties. We therefore introduce the angular momentum
quantum numbers, n and l. In principle, a parallel magnetic
field will break the x-y rotational symmetry. However, for
typical laboratory fields, we have shown that the only effect
of a parallel field is to add a phase factor to the wave func-
tion. The phase factor does not appear in the Hamiltonian
matrix elements. With this caveat, we can ignore the parallel
magnetic field in the present analysis, and consider the wave
function to be symmetric with respect to x and y.

In Sec. IV A, below, we solve the circular quantum-dot
geometry in a perpendicular magnetic field. According to the
previous discussion, we can obtain results appropriate for a
parallel field from that analysis, by taking the limit B→0.
This amounts to making the substitution

b/lB
2 → 2�0mt/� �51�

in Eqs. �60�–�63�. The corresponding energy levels are given
by

�nl =
��z

2
+

��c
2

4�z
+ ��0�2n + �l� + 1� �parallel B field� .

�52�

Here, we have also included the leading contribution to the
magnetic confinement energy, in analogy with Eq. �31�.

The energy spectrum of a circular quantum dot is qualita-
tively similar to an elliptical dot and we do not show any
plots here. However, some limiting behaviors are of interest.
In the small dot limit, we evaluate the perturbation Hamil-
tonian in the restricted manifold 
�n , l ,v�= 
�0,0 ,+� , �0,0 ,
−�, similar to Sec. III C. We obtain the ground-state gap

Eg � 2�0� , �53�

where �0 is the same as before, and we now define

� = e−q2
with q = k0���/�0mt. �54�

The result is equivalent to Eq. �44� in the isotropic limit �x
=�y =�0, where we set 	=0.

We can also obtain analytical approximations for the cir-
cular quantum-dot geometry when the orbital and valley
splittings are similar in magnitude. We consider the manifold
consisting of the ground state and the lowest excited orbitals.
From Eq. �52�, we note that �l states are degenerate. The
manifold of interest is therefore six dimensional, with the
quantum numbers n=0, l=0, �1, and v= �1. In the
ordered basis 
�0,0 ,+� , �0,0 ,−� , �0,1 ,+� , �0,1 ,−� , �0,−1,+� ,
�0,−1,−�, we obtain

H ��
�0,0 + �0 �0� 0 i�0�q 0 i�0�q

�0� �0,0 + �0 − i�0�q 0 − i�0�q 0

0 i�0�q �0,1 + �0 �0��1 − q2� 0 − �0�q2

− i�0�q 0 �0��1 − q2� �0,1 + �0 − �0�q2 0

0 i�0�q 0 − �0�q2 �0,1 + �0 �0��1 − q2�
− i�0�q 0 − �0�q2 0 �0��1 − q2� �0,1 + �0

� , �55�

where we have used previous definitions, including Eq. �54�.
Diagonalizing H gives the effective energy spectrum, and the resulting ground-state gap,

Eg � 2�0�q2 +
1

2
�����0 + 2�0��1 − q2�	2 + 2�2�0�q�2 − ����0 − 2�0��1 − q2�	2 + 2�2�0�q�2	 . �56�

We can also compute the mixing fraction,

Fñ=0 �
�2�0�q�2

���0 + 2�0��1 − q2�	2 + 2�2�0�q�2 + ���0 + 2�0��1 − q2�	����0 + 2�0��1 − q2�	2 + 2�2�0�q�2
. �57�

These results can be compared to an elliptical dot in the high aspect ratio limit �Sec. III D�. Making the substitutions �y
→�0 and 	→� /2 in Eqs. �49� and �50�, consistent with our choice of �x��y, we obtain identical results for Eg and Fñ=0, up
to leading order. Details of the energy spectrum begin to differ only for higher energy levels.
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IV. PERPENDICULAR FIELD GEOMETRY

A. Circular dot

In contrast with the previous section, the magnetic field
plays a nontrivial role for valley coupling in the perpendicu-
lar field geometry. Here, we consider a single electron in a
circularly symmetric parabolic confinement potential, in a
perpendicular magnetic field, B=Bẑ. �We continue to use
unprimed coordinate notation.� The unperturbed Hamiltonian
is given by

H0 = �
j=x,y,z

1

2mj
�− i�

�

�rj
+ eAj�r��2

+ VQW�z� +
1

2
mt�0

2�x2 + y2� , �58�

where �0 characterizes the parabolic potential. We adopt
the symmetric gauge for the vector potential: A�r�
= �−By ,Bx ,0�. In this case, the eigenfunction is separable,

F�r� = f�x,y���z� . �59�

Appropriate solutions for the quantum-well envelope func-
tion, ��z�, are discussed elsewhere.55,58 As before, we adopt
the lowest subband approximation. We also choose the posi-
tion of the interface, z0=0, to simplify our calculations.

The lateral eigenstates f�x ,y� are known as Fock-Darwin
states.59,60 The properly normalized Fock-Darwin functions
can be expressed in terms of radial coordinates,
�r cos � ,r sin ��= �x ,y�, as follows:

fnl�r,�� =� n!b

2�lB
22�l��n + �l��!

 eil�e−br2/4lB
2�br2

lB
2 ��l�/2

Ln
�l��br2

2lB
2 � . �60�

Here, n and l are the orbital and angular momentum quantum
numbers, respectively. n and l are both integers with n�0.
Additionally, lB=�� / �eB� is the quantum magnetic length
scale and Ln

l �x� is a generalized Laguerre polynomial.56 The
quantity b=�1+ �2�0 /�c�2 is defined in terms of the cyclo-
tron and confinement frequencies. As a consequence of the
circular symmetry, we can choose the step direction to lie
along x̂ without loss of generality, so that 	=0. The Fock-
Darwin energy levels are then given by

�nl =
��z

2
+

��c

2
�b�2n + �l� + 1� + l	

�perpendicular B field� , �61�

where we have included the subband energy for complete-
ness, although it will be ignored in the following calcula-
tions.

Consistent with previous sections, the intravalley pertur-
bation matrix elements are given by

�n�,l�,v�H�n,l,v� = �n,n��l,l���nl + �0� �62�

while the intervalley matrix elements are given by

�n�,l�, v̄�Vv�n,l,v� = vv�0
2 b

2�lB
2� n!�n��!

2�l�+�l���n + �l��!�n� + �l���!

 �
0

2�

d��
0

�

rdrei�l−l���−2ik0v�r cos �−br2/2lB
2�br2

lB
2 ���l�+�l���/2

Ln
�l��br2

2lB
2 �Ln�

�l���br2

2lB
2 �

= �− ik0vlB��2/b��l−l��vv�0
2�n!�n��!�n + �l��!�n� + �l���!e−2�k0lB��2/b

 �
�=0

n

�
��=0

n�
p!�− 1��+��Lp

�l−l���2k0
2lB

2�2/b�
�n − ��!�n� − ���!��l� + ��!��l�� + ���!�!��!

. �63�

Here, we have defined 2p= �l�+ �l��− �l− l��+2�+2�� and
made use of the series expansion for the Laguerre
polynomial.56

The Hamiltonian matrix elements, Eqs. �62� and �63�, can
be solved numerically. We obtain a quantum-dot energy
spectrum for typical experimental conditions, as shown in
Fig. 4. The device parameters are similar to those used in
Fig. 1. Note that we have limited the analysis to orbitals in
the range �2n+ �l���5. The different types of behavior ob-
served in Fig. 4 are easily understood. In �c�, the interface tilt
is large, causing a strong suppression of the valley coupling.

Indeed, every energy level is doubly degenerate. The appar-
ent energy spectrum is equivalent to a circular dot in a
single-valley material. In �b�, a smaller, but physically real-
istic, interfacial tilt lifts the orbital and valley degeneracies,
and causes a broadening of the high-field energy “bands.” In
this case, the tilt angle is still large enough that the valley
splitting is smaller than the orbital splitting at zero field. We
observe a complex assortment of level crossings and anti-
crossings. In �a�, the interfacial tilt is small enough that the
valley splitting is larger than the orbital splitting at zero field.
At high fields, the levels separate into two distinct subbands.
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The emergence of well-defined valley states is not ubiq-
uitous in Fig. 4. By “well defined” here, we mean that sev-
eral states have identical valley characteristics, so that the
valley index remains a good quantum number, even after the
perturbation. Well-defined valley states are uncommon be-
cause valley-orbit coupling mixes the unperturbed orbitals
differently for each eigenstate. However, when interorbital
valley coupling is weak, well-defined valley characteristics
can emerge.

Weak interorbital valley coupling typically occurs in two
ways. First, it can occur when the valley splitting is inher-
ently small compared to the orbital splitting, for example,
when the interface tilt is large. In this case, the intraorbital
valley coupling �i.e., between states with the same orbital
quantum numbers� is small, and the interorbital valley cou-
pling is much smaller. The valley potential then produces
weak pairwise couplings between states with the same or-

bital quantum numbers, as in Fig. 4�c�. In this case, the val-
ley splitting is different for each pair of states. For example,
in the n=0 manifold �the lowest “band” in the high-field
regime�, we find that

Eg � 2�0�L�l��q2� , �64�

which depends on the quantum number l. Here, �0 is the
same as before, but

q = k0�lB
�2/b , �65�

� = e−q2
, �66�

and Ln�x��Ln
0�x� is an ordinary Laguerre polynomial. The

valley eigenstates have an identical character for all orbital
states, however, and can be classified as either “even” or
“odd.” Similar behavior is observed for large interfacial tilt
angles in Fig. 1. When valley and orbital splittings are com-
parable in size, as in Figs. 4�a� and 4�b�, the interorbital
coupling competes with the intraorbital coupling, leading to
a more complicated valley-orbit mixing.

Well-defined valley states also emerge in the high-field
limit, as observed in Fig. 4�a�. Within a given band, we find
that valley coupling occurs primarily between states with the
same angular momentum quantum number, and that the val-
ley splitting is identical for all such pairs. For states with
different l, Eq. �63� shows that the valley coupling is propor-
tional to �lB /�b��l−l��, which vanishes at high fields. Thus, in
the n=0 manifold, we observe pairs of states with the energy
splitting 2�0�, with many intervening states between them.
In other words, two subbands emerge, with a uniform split-
ting. The ground-state gap between the two lowest levels is
then determined by orbital effects, rather than the valley cou-
pling. Within a given subband, the eigenstates all have an
identical valley character: one subband is even, the other is
odd.

In spite of the rather complicated behavior observed in
Figs. 4�a�–4�c�, a simple expression can be given for the
splitting between the two lowest energy levels. We first note
that the two lowest states in Fig. 4�c� are nearly degenerate
with orbital quantum numbers n= l=0. In Fig. 4�b�, the low-
lying states both have an n= l=0 character at low fields.
However, the higher state crosses over to an n=0, l=−1
character at high fields. In Fig. 4�a�, the first excited state has
an n=0, l=−1 character over the entire field range. From
such considerations, we see that the ground-state gap should
be well characterized within the manifold spanned by quan-
tum numbers n=0, l= 
−1,0, and v= �1. Evaluating the
perturbation Hamiltonian in this manifold again leads to Eq.
�46�, where we now use the definitions, Eqs. �61�, �65�, and
�66�. The results for the ground-state gap, Eq. �49�, and the
mixing fraction, Eq. �50�, then apply, if we make the replace-
ment

��y → ���c/2��b − 1� . �67�

We emphasize that these results correctly interpolate be-
tween orbital and valley dominated behavior over the entire
field range.
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FIG. 4. Energy levels for a circular quantum dot in a perpen-
dicular field geometry, including valley coupling. Dot parameters
are appropriate for a single-electron spin qubit: ��0=0.75 meV
and vv�0

2=0.5 meV. Uniform step orientation is set to 	=� /4. The
effective miscut tilt angles are given by �a� �=0.03°, �b� �=0.3°,
and �c� �=3°. �b� is probably closest to experimental conditions. In
�c�, each curve is doubly degenerate.
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B. Elliptical dot

To close this section, we investigate an elliptical quantum
dot in a perpendicular magnetic field. We cannot directly
apply the results of Sec. III. However, the problem is still
separable with respect to the z� coordinate, as in Eq. �59�.

The magnetic field now couples the two transverse direc-
tions, x̂� and ŷ�, in a fundamental way. The transverse effec-
tive mass is nearly isotropic when the interfacial tilt angle �
is small:36 mx�my �mt. So it is unnecessary to rescale the
length axes. Dropping the prime notation, the transverse en-
velope function is given by

fnx,ny
�x,y� = Nnx,ny

exp� iJxy

�
−

M1�1x2 + 2iLM1�1M2�2xy + M2�2y2

2��L2M1�1M2�2 + 1� �
 �

k=0

nx

�
l=0

ny ck,l

k!l!�nx − k�!�ny − l�!
Hnx−k��2M1�1/��x + iLM2�2y�

L2M1�1M2�2 + 1
�Hny−l��2M2�2/��LM1�1x − iy�

L2M1�1M2�2 + 1
� , �68�

where, now,

J = −
mt

2
��x

2 − �y
2

�c
� +

mt

2�c

���x
2 + �y

2 + �c
2�2 − 4�x

2�y
2, �69�

L =
�c

mt
���x

2 + �y
2 + �c

2�2 − 4�x
2�y

2
, �70�

M1,2 =
2mt

���x
2 + �y

2 + �c
2�2 − 4�x

2�y
2

��x
2 − �y

2 � �c
2� + ���x

2 + �y
2 + �c

2�2 − 4�x
2�y

2
, �71�

�1,2 =
1
�2

��x
2 + �y

2 + �c
2 � ���x

2 + �y
2 + �c

2�2 − 4�x
2�y

2	1/2, �72�

Nnx,ny
=

�− i�ny�3/4�1/4

2nx+ny
� �nx�!�ny�!�M1�1M2�2

��L2M1�1M2�2 + 1�
�1/2

, �73�

ck,l = ��− 1�−l/212�l+k�/4�3 − 4D2G2��l−k−1�/4�1 − 2D2��k−l�/2P�k−l−1�/2
�k+l+1�/2�� 4D2G2

4D2G2 − 3
� �k + l even�

0 �k + l odd� ,
� �74�

D =
2L2M1�1M2�2

L2M1�1M2�2 + 1
, �75�

G = −
2

L2M1�1M2�2 + 1
. �76�

Note that nx and ny are non-negative integers, P�
��z� is an associated Legendre function,56 and we have assumed �x��y.

The energy eigenvalues are given by

�nx,ny
=

��z

2
+ �nx +

1

2
���1 + �ny +

1

2
���2. �77�

As before, we have adopted the lowest subband approximation.
We can compute the valley coupling matrix elements. The intravalley terms are given by

�nx�ny�v�H�nxnyv� = �nx,nx�
�ny,ny�

��nx,ny
+ vv�0

2	 , �78�

as in Eq. �10�. The intervalley terms are given by
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�nx�ny�v̄�H�nxnyv� = vv�0
2e2ik0z0v�

2
�v

2
�nx+nx�+ny+ny��3�nx�!�nx��!�ny�!�ny��!exp�− �k0

2�2�Q + 1�� cos2 	

M1�1
+

sin2 	

M2�2
��

�
k=0

nx

�
l=0

ny

�
k�=0

nx�

�
l�=0

ny�

�
m=0

nx−k

�
q=0

ny−l

�
m�=0

nx�−k�

�
q�=0

ny�−l�

�
p=0

�m/2�

�
r=0

�q/2�

�
p�=0

�m�/2�

�
r�=0

�q�/2� �ck,lck�,l��i�
−ny+ny�+q−q�−m+m��− 1�nx+ny�+k+l�Qu/2� 2

Q + 1
�t/2

 Hs�k0� cos 	���Q + 1�/M1�1�Ht−s�k0� sin 	���Q + 1�/M2�2��
��k�!�k��!�l�!�l��!�p�!�p��!�r�!�r��!�m − 2p�!�m� − 2p��!�q − 2r�!�q� − 2r��!

 �nx − k − m�!�nx� − k� − m��!�ny − l − q�!�ny� − l� − q��!	−1, �79�

where we have defined

s = m + m� + q + q� − 2�p + p� + r + r�� , �80�

t = nx + nx� + ny + ny� − k − k� − l − l� − 2�p + p� + r + r�� ,

�81�

u = nx + nx� − k − k� − m − m� + q + q� − 2�r + r�� , �82�

and

Q =
�c

2M1�1M2�2/mt
2

��x
2 + �y

2 + �c
2�2 − 4�x

2�y
2 , �83�

and we have made use of the series expansion for Hermite
polynomials.56

The valley coupling for an elliptical quantum dot in a
perpendicular field geometry, Eq. �79�, is the most general
solution obtained in this paper. The resulting energy spectra
are qualitatively similar to the geometries studied above and
we do not plot them here.

We consider two limiting cases. In the small dot limit, the
ground state can be treated using the same perturbation

Hamiltonian as Eq. �40�. However, �0 now corresponds to
�0,0 in Eq. �77�, and

� = exp�− �k0
2�2�Q + 1�� cos2 	

M1�1
+

sin2 	

M2�2
�� , �84�

while �0 is unchanged. The ground-state gap is then given
by

Eg � 2�0� . �85�

In the further limit of �x=�y, we recover the equivalent re-
sult for the circular quantum dot in a perpendicular field
geometry,

Eg = 2vv�0
2 exp�− 2�k0lB��2/b	 . �86�

Alternatively, keeping �x��y, but taking the limit B→0,
we recover Eq. �44�, corresponding to a small elliptical quan-
tum dot in the parallel field geometry.

We also consider the important case where the valley cou-
pling is of the same order as the lowest orbital splitting
��0����y ���x�. Analogous to Sec. III D, we compute the
Hamiltonian in the manifold spanned by the ordered basis

�00+� , �00−� , �01+� , �01−�, obtaining

H ��
�0,0 + �0 �0� 0 �0��− r + iq�

�0� �0,0 + �0 �0��r − iq� 0

0 �0��r + iq� �0,1 + �0 �0��1 − r2 − q2�
�0��− r − iq� 0 �0��1 − r2 − q2� �0,1 + �0

� , �87�

where the various parameters are defined above, except

q = �k0� sin 	��2�/M2�2, �88�

r = �k0� cos 	��2�Q/M1�1. �89�

We can diagonalize the Hamiltonian and compute the ground-state gap and the mixing fraction as before. This yields identical
results to Eqs. �49� and �50�, if we replace q2→ �q2+r2�, and use the parameter definitions given above. In the further limit
B→0, we find that r=0, and the parameters defined in this section reduce to those of Sec. III D. The results are then
equivalent.
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V. DISCUSSION AND CONCLUSIONS

The term valley splitting is widely used in the literature of
indirect gap semiconductors. However, its meaning is not
precise. As demonstrated above, valley-orbit coupling can
lead to a complete mixing of orbital wave functions in the
regime of interest for quantum computing, so that pure val-
ley and orbital quantum number are no longer good quantum
numbers. When atomic steps are present at the quantum well
interface, many different “valley splittings” can be observed
in the energy spectrum, none of which are universal.

We propose some formal definitions to help clarify this
situation. First, we define the “characteristic” or theoretical
maximum of the valley splitting, corresponding to 2�0. This
splitting is achieved in a hypothetical flat quantum well and
its value is independent of the quantum-dot shape. Second,
we define a “renormalized” valley splitting, corresponding to
2�0�. This quantity accounts for the suppression caused by a
tilted interface. The renormalization factor � depends on the
dot shape but it does not include the effects of interorbital
valley coupling. Finally, we note that the energy splitting
between the lowest two quantum-dot eigenstates should not,
accurately, be referred to as the valley splitting, since this
usage is only valid in limiting cases. We have identified some
of those cases here �e.g., the small dot limit and the high-
field limit�. More accurately, we should simply refer to the
“ground-state gap,” which is of particular interest for quan-
tum computing and other applications. In this paper, we have
obtained analytical expressions for the ground-state gap and
for the mixing fraction, in several cases of interest.

Our main conclusions for the valley coupling in quantum
dots can be summarized as follows: the shape and the size of
the quantum dot, the number of steps that it covers at the
quantum-well interface, and the nature of the disorder all
affect the suppression of the valley splitting. The trends in
the energy spectrum of Fig. 1 are difficult to characterize in
a simple way. One might expect excited orbitals to exhibit a
larger suppression because of their larger size. However, the
effect is obscured by the nodal structure of the wave func-
tions. The behavior is more plain when we compare ground-
state wave functions of different sizes, as in Fig. 3. In this
case, smaller dots clearly exhibit a larger valley coupling. As
expected, the effect depends sensitively on the tilt angle of
the interface. The dependence of the valley coupling on dot
size is also manifested in Fig. 4�a�, at high fields. Here, the
interface tilt angle is rather small, and the magnetic confine-
ment of the quantum dot is strong, so tilting has little effect
on the energy spectrum. The valley splitting then approaches
its theoretical maximum, regardless of the specific dot shape.

Experiments in Si 2DEGs generally corroborate our re-
sults. Examples include Hall bar measurements, where the
valley splitting grows monotonically with the magnetic
field.29,31,61 This behavior is consistent with the case of small
or vanishing electrostatic confinement in a quantum dot �e.g.,
the case l=0, b�1 in Eq. �64�	. In a quantum point contact,
valley splitting is significantly enhanced due to lateral
confinement.31 In a Si/SiGe two-electron quantum dot, a
large singlet-triplet splitting between 0.1 and 0.3 meV has
been measured at zero field.24 Since the triplet state involves
an excited single-electron orbital, the singlet-triplet splitting

provides a good estimate of the ground-state gap. This soli-
tary data point is therefore consistent with Fig. 4�b�. Due to
valley-orbit coupling, it is not appropriate to identify the
splitting as purely orbital-like or valleylike. However, small
gaps of any type are anathema for qubit operations. The large
value of the measured gap implies an acceptable splitting for
qubit applications.24 In future experiments, it would be de-
sirable to perform excited state spectroscopy in similar dots,
as a function of magnetic field. The present theory would
then allow the valley coupling and other quantum-dot con-
finement parameters to be determined.

In this paper, we have paid special attention to the inter-
orbital valley coupling. The origin of this coupling can be
understood in terms of the dot shape. According to the varia-
tional principle, a quantum dot will minimize its ground-state
energy by maximizing its valley splitting. In our perturbation
theory, the ground state will therefore mix with asymmetric
excited states that allow it to squeeze along the direction of
the step gradient. The mixing occurs only between opposing
valley states, v and v̄, whose coupling is the source of valley
splitting.

The interorbital component of valley coupling has not
been emphasized previously. In quantum information appli-
cations, it leads to a potential source of decoherence for spin
qubits. When phonons are present, valley scattering can oc-
cur in a process analogous to spin-flip transitions.62 Two
separate ingredients are needed to flip a spin by a
phonon:63,64 spin-orbit coupling �to mix spin states via the
excited orbitals� and a magnetic field �to lift the Kramers
degeneracy�. Valley scattering can occur in the presence of
two analogous processes: valley-orbit coupling at a tilted in-
terface �to mix valley states via the excited orbitals� and a
sharp confinement potential �to lift the valley degeneracy�.

In the context of quantum computing, valley scattering
does not directly affect the spin state or lead to spin deco-
herence. However, there is an indirect spin effect, mediated
by the Pauli principle, which depends on the valley coupling.
The predominant two-spin gate interaction is the exchange
coupling,1 which occurs because any two electrons must
have different quantum numbers. When the valley degree of
freedom is introduced, the size of the Hilbert space doubles,
providing an opportunity for an electron to “leak” into a
nonqubit sector via valley scattering. If this happens, the
electron will have a different quantum number, and the ex-
change coupling will be ineffective. The spin state is then
uncontrollable. Aside from this mechanism, a direct spin-
valley coupling has also been predicted for Si 2DEGs, with a
magnitude comparable to the spin-orbit coupling.34,65 We do
not consider this effect here.

Finally, we note that the results obtained in this paper
were obtained by assuming a smooth, uniformly tilted inter-
face. We expect such results to pertain to more general situ-
ations. However, step disorder and discreteness can both
have a quantitative effect on the valley splitting. In Appen-
dix, we discuss several experimental conditions that are in-
consistent with our approximations, including: �i� step dis-
creteness, which becomes important for widely separated
steps; inhomogeneous tilting, which affects �ii� the quantum-
dot confinement potential and �iii� the delicate phenomenon
of destructive interference in the valley coupling; �iv� step
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bunching, which also tends to moderate the destructive inter-
ference. Since all of these phenomena enhance the valley
splitting, we can treat them, phenomenologically, through an
effective tilt angle � that is smaller than the nominal tilt.

In the absence of any detailed knowledge of the interfa-
cial disorder, � must remain a phenomenological parameter.
However, the relation between the average tilt and the effec-
tive tilt, and the dependence on different forms of disorder,
remains an important topic for future investigation. For ex-
ample, the energy levels of a Si double quantum dot could
potentially be measured as a function of magnetic field by
the method of Ref. 24. Comparison with the present theory
can then provide information about �. More intriguingly per-
haps, it may be possible to use gating methods to shift the
center of a dot, and thereby map out � as a function of
position.

In conclusion, we have developed a theory of valley cou-
pling in realistic quantum dots. The resulting energy spectra
exhibit crossings and anticrossings, as a function of the in-
terfacial tilt angle and magnetic field. Due to valley-orbit
coupling, the ground-state gap is not strictly orbital-like or
valleylike, except in certain limiting cases. For quantum dots
of interest in quantum computing, we find that intervalley
orbital coupling plays an important role in device operation,
and in determining the ground-state gap.
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APPENDIX: VALIDITY OF APPROXIMATIONS
USED IN THE CALCULATIONS

This appendix addresses the approximations made in the
main text that enable analytic solutions to be obtained and it
discusses the conditions under which they apply. The main
approximations are that: �1� the interfacial tilt can be treated
as continuous and the presence of individual atomic steps
can be ignored and �2� the disorder in the step locations can
be ignored. The first approximation suggests that there will
be no relaxation of the electron wave function to conform to
the pattern of steps at the interface. The second approxima-
tion is equivalent to assuming the interfacial tilt is smooth
and uniform.

1. Step discreteness: Phase relaxation at discrete steps

In this work, we treat the interface as continuous and we
ignore the presence of individual atomic steps. Naively, one

would expect such an approximation to be reasonable be-
cause the step is much smaller than the characteristic size of
the envelope function. For example, the height of a single
atomic step along �001	 is a /4=1.4 Å while a quantum dot
may extend over tens of nanometers.

Energy arguments suggest that such an argument breaks
down when the interface tilt angle is small. In Eq. �9�, we
have taken the complex phase difference between �ñ,n,v and
�ñ,n,v̄ to be a constant, independent of the lateral position.
The global value of the phase difference is determined by
minimizing the ground-state energy for the whole quantum
dot, according to degenerate perturbation theory. Since the
optimal value of the phase difference depends on the inter-
face position z0, it is clear that valley coupling cannot be
optimized simultaneously on both sides of a step while the
phase remains constant. By allowing the phase to vary, we
can reduce this valley coupling energy penalty, but we pay a
price in kinetic energy. Careful energy balance calculations
show that phase relaxation becomes favorable when �

0.1–0.3°. In the present work, phase relaxation would tend
to reduce valley-orbit mixing.

2. Disorder-induced confinement potentials

Step disorder causes nonuniform tilting of the interface
and leads to spatial variations in the valley splitting and the
quantum-dot confinement potential. The position of the elec-
tron will shift when the local curvature of the valley splitting
is larger than the curvature of the electrostatic potential. The
net effect of the shift is to reduce the effective tilt angle.

3. Disorder-induced symmetry reduction

For highly uniform step distributions, the suppression of
the valley coupling by valley phase interference is very ef-
fective. However, this interference effect is somewhat deli-
cate. The reduction in symmetry by step disorder can lead to
an order of magnitude increase in the valley splitting.37 Re-
lated effects are also observed in the presence of alloy dis-
order in the SiGe quantum-well barriers.66 While step disor-
der tends to reduce the effective tilt angle,37 the net effect of
alloy disorder appears to be more complicated.66,67

4. Step bunching

Interfacial steps may become bunched due to randomness
or as a consequence of strained growth.68 The suppression of
valley splitting, as discussed in this paper, is particularly ef-
fective for single-atom steps, as compared to bunched steps.
We can understand this as follows. From Eq. �9� and the
related discussion, the phase difference between the z valleys
for a flat interface is 2k0z0. At a step of height a /4, we see
that z0→z0+a /4, so the phase difference suddenly changes
by 0.82�. Since the two sides of the step are almost fully out
of phase, there is a significant suppression of the total valley
splitting. On the other hand, a twofold bunched step of
height a /2 has a much milder effect on the valley coupling.
In fact, the first step geometry with a stronger effect on the
valley coupling is a sixfold bunched step. In this sense,
single-atom steps are essentially a worst-case scenario, lead-
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ing to maximal suppression of the valley splitting. The de-
pendence of the effective tilt angle on step bunching is there-
fore rather complicated.

5. Summary

To summarize, the assumption that the steps can be
treated as continuous is expected to be valid but valley phase
relaxation and variability in the step density both serve to
modify the effective tilt angle of the interface. Assuming that
an appropriate effective tilt angle is used, we expect our
analytical expressions to provide an accurate depiction of the
valley coupling for typical quantum-dot geometries. Our re-
sults therefore provide a useful first approximation for under-
standing the valley coupling. Several numerical results con-
firm this point of view.37,66,67

To obtain a quantitative estimate for the valley coupling,
one must know the effective interfacial tilt angle �. For the
reasons described above, the effective tilt depends in a non-
trivial way on the average tilt angle, the disorder in the step
configuration, and the materials properties of the interface. A
quantitative calculation of � is particularly challenging,
since the dependence of the valley coupling on the tilt angle
is exponential, so that errors and fluctuations in the tilt angle
are essentially magnified. For example, in Eq. �45�, an expo-
nential suppression of the valley coupling was predicted for
tilt angles larger than 0.26°, based on realistic dot param-
eters. Experimentally, a large valley splitting has been ob-
served for wave functions in a quantum point contact with a
2° miscut31 and in quantum dots in samples with nominal tilt
angles approaching 2° �Ref. 24�, evidence that the effective
tilt in these devices is significantly smaller than the nominal
tilt.
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