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Two-phonon polaron resonances in self-assembled quantum dots

Piotr Kaczmarkiewicz™ and Pawet Machnikowski'
Institute of Physics, Wroctaw University of Technology, 50-370 Wroctaw, Poland
(Received 30 December 2009; revised manuscript received 19 February 2010; published 15 March 2010)

We study the second-order polaronic resonance between two-LO-phonon states and p-shell electron states in
a quantum dot. We show that the spectrum in the resonance area can be quantitatively reproduced by a
theoretical model. We present also a perturbative approach to the problem based on a quasidegenerate pertur-
bation theory. This method not only considerably reduces the numerical complexity without considerable loss
of accuracy but also gives some insight into the structure and origin of the resonance spectrum.
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I. INTRODUCTION

Carrier-phonon interaction is one of the major factors that
determine the optical and transport properties of semicon-
ductors. In semiconductor quantum dots (QDs), phonon-
related effects manifest themselves in a special way due to
the discrete spectrum of carriers confined in these structures.
On the one hand, such a discrete density of states may slow
down carrier relaxation.'~> On the other hand, coupling of a
confined charge system to the nearly dispersionless (thus,
also spectrally discrete) system of longitudinal optical (LO)
phonons leads to the formation of correlated carrier-phonon
states*> and to a reconstruction of the system spectrum, as
observed, e.g., in intraband absorption experiments.*® This
effect is a generalized form of a polaron, known from bulk
systems.

Apart from the (immeasurable) energy shifts accompany-
ing the polaron formation, this effect manifests itself by the
appearance of polaritonlike resonances (anticrossings) be-
tween the essentially discrete zero-phonon and one- or two-
phonon states whenever the energy difference between two
carrier states matches the energy of one or two LO phonons.®
The two-phonon resonance is of particular interest since the
two-LO-phonon energy of about 70 meV falls into the range
of typical separations between electron energy levels in self-
assembled structures.

Understanding such coherent effects in the carrier-phonon
coupling in quantum dots is essential not only for the correct
description of the system spectrum but also for the discus-
sion of relaxation properties. In particular, the strong cou-
pling between the confined carriers and LO phonons pre-
cludes purely LO-phonon-mediated relaxation but opens new
channels of efficient two-phonon (acoustic+optical)
emission,”” which may explain efficient carrier relaxation
observed in some experiments.!*-12

Far from the degeneracy (resonance) point, the coupling
to LO phonons may be treated perturbatively. Also a first-
order polaronic resonance does not present serious difficul-
ties as it involves only a zero-phonon state and a one-phonon
state. These two states are directly coupled by the Frohlich
interaction Hamiltonian and the resulting resonant anticross-
ing can be treated, e.g., by a second-order Wigner-Brillouin
perturbation theory.'>!# In contrast, the second-order reso-
nance, involving a zero-phonon state and a two-phonon state
is more complex, since the observed anticrossing is due to
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higher-order indirect couplings via other states. In this case
one resorts to a numerical treatment.*%!15-17 The latter is fea-
sible due to the discrete (dispersionless) character of the LO
modes, which allows one to describe the LO-phonon sub-
system by a finite set of either orthogonal'” or
nonorthogonal'® collective modes. The numerical approach
to the polaron problem turns out to successfully reproduce
the qualitative features. However, the early attempts to
model the experimental results*® suggested that certain ma-
terial parameters must be adjusted in order to achieve a quan-
titative agreement with the measurement data. This seemed
plausible'® as QDs are inherently inhomogeneous systems
the quantitative properties of which may depend, e.g., on the
size and composition characteristics. Such a viewpoint
would mean, however, that a full understanding and quanti-
tative description of the carrier-LO-phonon interaction in
QDs may not be possible.

The goal of the present paper is twofold. First, we discuss
the spectrum of the electron-LO-phonon system in the vicin-
ity of the two-phonon resonance, including the effects of QD
asymmetry (ellipticity), nonparabolicity of the confinement
potential, as well as the external magnetic field. We show
that the experimentally observed spectrum of the coupled
electron-LO-phonon system can be successfully reproduced
using only standard material constants, without any adjust-
able parameters. In this way we show that the existing
theory®!” does allow us to understand the physics of carrier-
LO-phonon interactions in QDs completely and quantita-
tively. We calculate also the intraband (far infrared) absorp-
tion spectrum of a QD ensemble, where the polaronic
resonance is clearly manifested. Second, we present an ef-
fective Hamiltonian approach, based on the quasidegenerate
perturbation theory which reduces the problem size from a
few thousands of basis states to just a few and provides some
insight into the structure of two-phonon polaron states. This,
in turn, demonstrates that describing the electron-LO-phonon
system does not necessarily have to involve heavy numerics
and may open the way to the efficient description of even
higher-order effects.

The paper is organized as follows. First, in Sec. II, we
recall the model of an electron confined in a QD interacting
with LO phonons. Then in Sec. III, numerical approach is
described. The spectrum of a single QD, as well as absorp-
tion on a QD ensemble and the magnetopolaron spectrum are
presented in Sec. IV. Sections V and VI describe the effec-
tive Hamiltonian approach and present results obtained
within this method.

©2010 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.81.115317

PIOTR KACZMARKIEWICZ AND PAWEL. MACHNIKOWSKI

II. MODEL

We consider a self-assembled quantum dot occupied by a
single electron. The effective confinement potential in the xy
plane is assumed to be almost axially symmetric and para-
bolic, although small corrections accounting for ellipticity
and nonparabolicity will be taken into account. In the z
(growth) direction, the confinement is assumed to be much
stronger, as is typical for these structures. The electron con-
fined in the QD is coupled to the polarization field associated
with the LO phonons. In calculations, GaAs parameters will
be used.

The system is described by the Hamiltonian

H=Hy+H,+ H,,+ Hyy + Hy,, (1)

where H, describes an electron in an isotropic dot, H, and
H,, account for the anisotropy (ellipticity) and nonparabolic-
ity of the confinement potential, respectively, H;,, describes
the electron-phonon coupling, and Hy, is the free LO-phonon
Hamiltonian.

The first term in Eq. (1) is'

1 1 w22 1 # 2
HO=%(p—eA)2+§m WL+ om a

and describes an electron in an axially symmetric harmonic
potential in a magnetic field B oriented along the symmetry
axis, where m*=0.066m, is the effective mass of an electron
in GaAs and r; denotes the in-plane component of the elec-
tron position. The energy fw, is the level spacing for in-
plane excitations in the absence of magnetic fields. We will
refer to this quantity as the characteristic energy of the sys-
tem and use it as a system parameter in the discussion that
follows. This energy parameter is related to the in-plane con-

finement length /y=v#%/(m"w,). The confinement along the z
axis is much stronger than that in the xy plane, that is, w,
> w,. The dynamics along this strongly confined direction is
restricted to the lowest subband, corresponding to the
ground-state wave function

1 202
— —2°121;
(DZ(Z) = \’zﬂ-”“e z,

where I,.=\fi/(m*®,) is the confinement length in this direc-
tion. Since the dots we intend to model have the height to
diameter ratio of about 1/10 (Ref. 6) we choose [.=0.1/,
which will be fixed throughout the paper.

The essential part of H,, accounting for the dynamics in
the xy plane, is the well-known Fock-Darwin Hamiltonian
describing a two-dimensional harmonic oscillator in a per-
pendicular magnetic field. We choose the symmetric gauge,
A:%(—By,Bx,O), where B is the magnetic field, and use the
basis of eigenstates of this Hamiltonian (Fock-Darwin
states'?), denoted as |nm), where n=0,1,... and m=...,
—-1,0,1,... are the radial and angular-momentum quantum
numbers, respectively (that is, Zim is the projection of the
angular momentum on the symmetry axis z). The corre-
sponding wave functions are
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\I,nm(rl) = <rJ_|nm>

F m 2
_ E n’ (r_l> e—ri/zlzB,Clm(r_l> ,
Iy N (n+|m)!\ Iy "\

where E!lm‘(s) is a Laguerre polynomial. Here Iy

=\fi/(m"wg) is the in-plane confinement width in the
magnetic field, where w3=wj+w?/4 and w,=eB/m" is the
cyclotron frequency in the magnetic field B. In the Fock-

Darwin basis, the Hamiltonian is

HO = 2 Enm|nm><nm B
nm
where

1
€um = th(zn + |m| + 1) - Eﬁwcm.

The second term in Eq. (1) describes a weak anisotropy
(ellipticity) of the confinement potential and has the form?

B . Bhoy -~
Ha: Sm (‘l)O(x2 _y2) =5 E V(mn)(n’m’)|nm><n m,
2 2 “B nmn'm'

where B is a dimensionless parameter and the nonvanishing
matrix elements in the basis of Fock-Darwin states are
2

Voo =7 Viean =12 Vonen =1,

with the symmetries V17 m" = V' m
and throughout the paper, a bar over a number denotes a
minus sign. This anisotropy term leads to the splitting of the
p-shell states (in zero magnetic field) given by AE,=Bhw,
which can be read off the spectral position of the p-shell
states.

The third part in Eq. (1) accounts for nonparabolicity of
the confining potential

1 r 4
anz__ﬁwOX P )

where [, is the in-plane confinement length in the absence of
magnetic field and y<<1 is a positive parameter defining the
strength of nonparabolicity.

In the basis of Fock-Darwin states, the nonparabolicity
term reads as

Nnm) = V(mﬁ)(nr,;r). Here

2 V(nm)(n'm’)|nm><nlm/

(n,m)(n"m")

an =- tho

s

where nonvanishing matrix elements are

Viooyoo) =4
Voo = V0,0 =8>
Vionon = Vionon = 12,

Vi) 02) = Vioz)02) = 24,
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TABLE L. Functions f(,,,,(x'm(¢) used in the definition of the
coupling constants. Functions not listed here can be found using Eq.

(2).

nm 00 01 10 02

00 1 -ig — -*I\2
01 -ig - i(4°~q) i I\2

01 —iq 1-¢ i(q°-q) i(4°~29)/\2
10 -4 i(g*~q) 1-2¢%+¢*  (¢*-2¢»)/\2
02 -¢*/\2 ig*\2 (¢*~2¢>)/\2 q*r2

02 @2 i@-290\2  (@*-2¢)\2  1-2¢>+¢*/2

V(IO)(IO) = 28

The electron-phonon coupling Hamiltonian has the form?°
Him: 2 |nm><n,m,|2 F(nm)(n’m’)(k)bk+H'Cs
nmn'm' k

where

/ 2 -
F(nm)(n’m (k) 5 f(nm)(n’m’)(q)e q ¢ 1(m m)¢

Here we  write the wave vector as k
=(k, cos ¢,k sin ¢ ~) and introduce the short-hand nota-
tion g=k  lz/2, é=k_1./2; ) is the frequency of LO phonons
at k=0 (hQ2=36.7 meV) v is the normalization volume for

the phonon modes, g, is the vacuum permittivity, and &

=(1/e,—1/g)7'=70.3 is the effective dielectric constant
(again, the values correspond to GaAs). Note that the Gauss-
ian cutoff at k~1/ly restricts the coupling only to long-
wavelength modes, so the frequency of LO phonons can be
replaced by its value at the center of the Brillouin zone (dis-
persionless approximation). The coupling functions have the
general symmetry

k
F(nm)(n’WL’)(k) = F(n’m’)(nm)(_ k),
while the f functions for our choice of basis states satisfy

f(nm)(n’m')(q) =f(n’m’)(nm)(q) =f(n’ni’)(ntﬁ)(Q)' (2)

The functions f(,,,,m")(q) are listed in Table 1. It may be
interesting to note that the functions F are not linearly inde-
pendent. This follows, e.g., from the linear dependence of the
subset of f functions {f(00)00)>f01)01)-f(10)(00)}> all of which
correspond to m'—m=0. The lack of linear independence
reduces the number of collective modes needed to represent
the system.
The last contribution to the Hamiltonian,

th = ﬁQE bltbk
k

describes free dispersionless LO phonons.
III. NUMERICAL APPROACH

In this section, we describe the general framework for the
numerical diagonalization of the carrier-phonon Hamil-
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TABLE II. Functions ¢;,(g) used in the definition of collective
modes.

M a=A a=B a=C
0 _ 2/ \‘J’x_ xaq'=xeq? (1 —a 2+a 4)/ \‘J;
q 4 —\s‘xsxx—mg 24 49
, — i(X2q°~x49)
*1 iq/ “'x —
g\ VXX3—X3x,
— x4q*-x6q*
=2 —-q*/\x _—
g /X \XFrg—x,4X7
+ iq”/\xg
+4 q*/\xg

tonian. Then, in Sec. IV we present the results for a few
classes of systems.

Our approach to the diagonalization of Hamiltonian (1) is
based on the collective-mode representation of the LO
phonons.!” We use the basis of the electron subsystem com-
posed of up to six lowest Fock-Darwin states (three lowest
energy shells, 2n+|m|+1=3). For this truncated basis, we
define 14 collective phonon modes which are needed to ex-
actly represent the carrier-phonon coupling in the dispersion-
less approximation,

l 1 2 2,
BMa = ;BE ;¢Ma(q)e_q ¢ +1M¢bk7 (3)
k

where a=A, B, C labels different modes with the same angu-
lar momentum M and the functions ¢u,(¢g) are listed in
Table II. For an axially symmetric dot, the appropriate func-
tions are expressed in terms of the shape-dependent param-
eters (defined for / even)

12
X = 47#er3q—zexp|: 2( l2 qz):|

We define also

2
_ XoXgXg — XyXg
=73 2 o
x4x8 - .X4.X6

XoXy4Xg — xi

ag = N
.xix8 - )C4.Xé

C=Xo—2ayxy + 2a4%, + a§x4 —2aa4x6 + aix6.

The numbers x; can be found exactly in the limit of a strong
vertical confinement, /,./l5—0,

(I- 1)

X1 Sl

27

These limiting values are collected in Table III and compared
with those for [,/lg=0.1. The leading-order correction is
O(L/13).
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TABLE III. Comparison between numbers x; calculated for
strong confinement limit /,/lg—0 and for a realistic value [/l
=0.1 at B=0.

1,/15=0 1,/15=0.1
X To5=~0.0249 0.0221
x4 Z5=~0.0187 0.0159
Xg See5=~0.0234 0.0193
Xg 5= ~0.0409 0.0329

With definition (3), the collective operators BMD[,BL sat-
isfy the usual bosonic commutation relations, [BMQ,B;/I,Q,]
=0y Oaw (that is, we follow the standard approach of or-
thogonalized modes,'” although an alternative approach is
also possible'®). In terms of the collective modes, the inter-
action Hamiltonian reads as

1Qe?

2 nEnE 2 E |nm><n,m,|7(nm)(n’m’)aBtn’—m,a
B€0

Hint =

nmn'm' &

+H.c.,

where the coupling constants ¥(,)'m’)e are collected in
Table IV. The mode By couples only to the unit operator on
the restricted electron subspace, 1=3,,,|mn){(mn|, and can be
discarded from the discussion.!”

Hamiltonian (1) is then diagonalized numerically, includ-
ing states with up to three phonons, which yields a compu-
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tational basis of 4080 states. The relevance of four-phonon
states is discussed in the Appendix.

IV. NUMERICAL RESULTS

In this section, we present the results of a numerical in-
vestigation on the second-order resonant polarons. First, we
study the system in the absence of a magnetic field. We cal-
culate the system spectrum as a function of the separation
between the unperturbed electron energy levels (that is, indi-
rectly, on the QD size). We model also the intraband absorp-
tion spectrum of an inhomogeneously broadened ensemble
of QDs, where the polaron resonance is clearly manifested.
Next, we calculate the spectrum of a single QD with a fixed
size as a function of an external axial magnetic field and
compare the results to the existing experimental data.

When plotting the obtained polaron spectra, we present
only the states with a sufficient transition probability, so that
spurious uncoupled states (for the truncation at the three-
phonon level) are not included. Since we focus on the
second-order resonance, all important couplings are con-
tained in the model.

A. Size-dependent polaron spectrum

We first consider the system without a magnetic field and
focus on the resonance between the unperturbed excited elec-
tronic states |0 = 1) and a set of two-phonon states [00,2ph).
Here and throughout the paper notation of this form stands
for all two-phonon states with the electronic part in the
ground state: |00). ® (B}, QBL,Q,|O>ph). Any other group of
states with different number of phonons is denoted in a simi-
lar way. The quantities of interest in the present calculation
are energies of the system eigenstates and the photon absorp-

TABLE IV. Coupling constants ()’ m’)e for the collective LO modes. Definitions as in Table II. The
values not listed in the table can be reproduced form the relation V(. m) ' in')ya= Yium)(n'm’)a-

nm « 00 01 10 02
00 A (a4x6—a2x4)/ \x—4 —\x_z \x_4 \X4/2
2
B —ay\NxXg—Xg/ X4
c Ve
B \e”xﬁ—xi/xz
01 A —\““‘Xz a4x6/ \;1— (a2+ 1) \““‘.X4 )C4/ \““‘Xz— \“‘“Xz .X4/ \““‘2)(2— \’2_)52
B —ag\Nxg—xg/ x4 xg—x2/%, X/ 2—x3/2x,
C Ve
10 A \,X_4 X4/ \““‘Xz— \““‘Xz (2-&2) \/X_4+ ((14— 1)X6/ \Z \\““2}(4—)(6/ \2X4
/ 2 f 2 f 2

B \xg—x5/ Xy (1—ay)/xq\Nxg—xg/ x4 \xg/2—xg/2xy
C Ve
02 A Vxa/2 Vxe/2 V24— xg/ 23y Vxg/2
B V’x8/2—xg/ 2xy
02 A Vxy /2 x4/\52x2—\52—)c2 \ETM_X()/ V2x, (2_02)\““‘)(4"‘(614—%))66/\3’;‘

[ 23 [ A 2/ 2 1
B \xg/2—x3/2x, \xg/2—xg/2xy Xg=Xg/X4(3—a4)/ x4
c Ve
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FIG. 1. (Color online) (a) and (c) Dependence of the unper-
turbed eigenenergies (without electron-phonon coupling) on charac-
teristic energy of the QD. (b) and (d) The QD energy spectrum with
electron-phonon interaction included. Panels (a) and (b) refer to a
cylindrically symmetric dot, while (c) and (d) present the spectra
for an elliptical dot. In (b) and (d) the line thickness is proportional
to the intraband transition probability |u|%, the lines are labeled by
the polarization of the exciting light. Only states for which | />
>0.1 are plotted.

tion probability for an intraband transition between the
ground state and a given excited state. The former are ob-
tained directly for the numerical diagonalization, while the
latter, for an excited state |K>, is calculated according to

? (4)

where W, denotes the numerically calculated ground state

| = (ldy W)

and ﬁg\') is the negative frequency part of the dipole moment
operator, which depends on the polarization \ of the optical
wave exciting the system. For the o circular polarizations
one has (upon truncation to our computational space)

dS) o (|01)(00] +2|02)01] + [10)0T| + [01)(10]
+12(01)(02] + |00)(0T]) ® L,
and
d9) o (|01)(00] + v2|02)(0T] + |10)(01] + |0T)(10|
+12[01)02] +[00)(01]) ® Ly,

where I, is the identity operator on the phonon subsystem.
For the linear polarization along the x and y axes, the dipole
moment operator is

30 wcd 4dD, 30 xdD - a0,

We investigate two cases: an isotropic QD and an anisotropic
one (Fig. 1). In Figs. 1(a) and 1(c), we have presented states
from the p shell without phonons as well as one-phonon and
two-phonon states with the electronic part in the ground state
(|00, 1ph), [00,2ph)). The energies are shown relative to the
system ground state. All the other unperturbed states lie in a
higher energy range. In the case of an isotropic dot, in the
absence of the electron-phonon coupling, for a certain value
of the electron level spacing [shaded area in Fig. 1(a)],
p-shell states (|0=1)) intersect with the group of two-
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phonon states with the electron in its ground state (|00,2ph)).

When the electron-phonon coupling is included, this in-
tersection turns into an avoided crossing pattern, as shown
for an isotropic dot in Fig. 1(b). Importantly, there are no
direct matrix elements coupling those states and the coupling
between the p-shell zero-phonon states and the two-phonon
states is mediated through one-phonon states. Even though
this coupling is of the second order the anticrossing is quite
strong and its width is 1.75 meV.

If anisotropy is included, the degeneracy of states |01) and

|01_) is lifted and two lines in the polaron spectrum are ob-
served for different linear polarizations of the incident light.
As can be seen on Figs. 1(c) and 1(d), there are two inter-
sections [Fig. 1(c)] resulting in two anticrossings [Fig. 1(d)]
which become visible in the absorption spectrum depending
on the polarization.

In the low-energy range [36 meV, Figs. 1(b) and 1(d)]
states with small but noticeable transition probability can be
observed. Their existence is due to the first-order coupling
leading to some transfer of the oscillator strength from the
p-shell states to one-phonon states [00, 1ph).

The position of the resonance in Figs. 1(b) and 1(d) is
shifted with respect to the intersection of decoupled states
[Figs. 1(a) and 1(c)]. The center of the resonance for the
interacting case is located at a lower QD energy spacing (71
meV) than the intersection point between noninteracting
states |00,2ph) and |0 = 1) (73.4 meV). Such a behavior re-
sults from the presence of other states directly coupled to
zero- and two-phonon lines. The most important states influ-
encing the position of the resonance are three-phonon states
|00,3ph) which are relatively close to the |00,2ph) states and
effectively reduce their energy.

Since the second-order resonance is relatively strong it
should also be visible in the absorption spectra of inhomo-
geneously broadened ensembles. This is discussed in Sec.
IV B. More insight to the structure of the second-order reso-
nant polarons can be obtained using the effective Hamil-
tonian approach which is presented in Sec. VI.

B. Polaron resonance in the ensemble absorption

In this section, intraband absorption spectra of an inhomo-
geneously broadened QD ensemble are calculated. QD sizes
in self-assembled QD ensembles are always given by some
distribution. We take this inhomogeneity of sizes into ac-
count and theoretically investigate the ensemble intraband
absorption spectrum in the area of the two-phonon reso-
nance.

The QDs are parametrized by their energy spacing ﬁw(()i),
where i labels dots in the ensemble. The distribution of QD
energies is assumed to be described by a Gaussian function

feolhof) = Le‘(ﬁ“’g) -
’ o\2m

where €=fiw, and o are the mean transition energy and its
standard deviation, respectively. Those parameters will be
chosen in such a way that the second-order resonance is lo-
cated in the high-energy tail of the QD size distribution.
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FIG. 2. (Color online) Absorption spectra for two different lin-
ear polarizations (oy, oy) with anisotropy and without nonparabolic
corrections. Distribution of characteristic energies ha)((f) is also pre-
sented. The mean energy and its standard deviation are taken, re-
spectively, as fiwy=57 meV and 0=6 meV. Labels denote features
discussed in the text. The dotted vertical line marks the two-LO-
phonon energy. The right part of the plot is scaled up, as marked.

In order to construct high quality absorption spectra, we
calculate the polaronic states for up to N=10° QDs with the
transition energies ﬁwg) uniformly distributed over a suffi-
ciently broad range. From these numerical results, the ab-
sorption spectrum for the requested polarization is calculated
according to

N Ngy

(i) = 32 3 8w~ &l fep o).

i=1 k=1

where fiw is the energy of the absorbed photon, N and N,,
are the number of QDs used in calculations and the number
of eigenvalues for ith QD, respectively, &;, stands for xth
eigenenergy of ith quantum dot and |u, | is given by Eq. (4).

The absorption spectrum in the case of a polaron in an
anisotropic, parabolic confinement potential is presented in
Fig. 2. The polaronic feature is clearly manifested for ener-
gies close to the energy of two LO phonons (feature B in the
plot). Additionally, a phonon replica (C) of the main absorp-
tion peak is visible for higher energies, including the reso-
nance feature (D). The latter is slightly broadened and con-
sists of two peaks (D). It is worth mentioning that the main
absorption feature (A), the resonant feature (B), as well as
the phonon replica (C) are reproduced correctly in a diago-
nalization with up to three-phonon states included. On the
other hand, the replica of the resonant feature (D) is modeled
correctly only if four-phonon states are taken into account
(see the Appendix). The absorption features for the oy and
oy polarizations are not related by symmetry with respect to
the average QD energy (€). This effect is due to coupling to
a lower lying group of one-phonon states, which moves the
relevant eigenvalues to higher energies.

The position of the second-order polaronic feature is
slightly lower than the energy of two LO phonons 24{). This
is mostly due to the interaction with a group of three-phonon
states |00,3ph) which effectively reduces the energy of the
two-phonon line. Also the position of the polaronic feature
varies slightly with the average value fw, of the QD energy
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FIG. 3. (Color online) Absorption spectra on ensembles of iso-
tropic QDs for different nonparabolic corrections. Standard devia-
tion o=6 meV, the mean energy fiw,=62, 67.1 and 72.8 meV re-
spectively for ascending values of y.

distribution. For the average energies higher than the energy
of two LO phonons the resonance position may shift towards
lower energies. However such a shift is rather small and does
not exceed 1 meV. The position of the second-order resonant
feature in the ensemble absorption is thus not fixed and may
vary with distribution of QDs in an ensemble.

Although the potential confining electrons in a QD is of-
ten considered parabolic, more realistic modeling must take
into account its nonparabolicity. For the sake of simplicity,
calculations for a nonparabolic confining potential are per-
formed for isotropic QDs, that is, the case where the aniso-
tropic term H, in Eq. (1) is discarded. In Fig. 3, we present
absorption spectra for different strengths of nonparabolicity
x- Distribution of the QD characteristic energies is tuned so
that the main absorption peak has the same position. Since in
a nonparabolic dot higher levels are closer to the resonant
group of states we expected that the resonance may be
shifted down by coupling to these states. However, nothing
like this is observed: Even for a strong nonparabolicity, only
a negligible change in the position of the second-order reso-
nance is observed.

C. Magnetopolaron resonances

In this section, we investigate a single QD in a magnetic
field. We consider a magnetopolaron resonance, that is, the
case of bringing the state [01) to resonance with two-phonon
states |00,2ph) using energy-level shifts in an external mag-
netic field. In Figs. 4(a) and 4(c), we present the spectrum of
a single isotropic QD without electron-phonon coupling in a
perpendicular magnetic field, for two different characteristic
energies fiwy. In both Figs. 4(a) and 4(c) there are several

intersections. The first one, between the state |01_> and a
group of one-phonon states, corresponds to the first-order
resonance. States intersecting in the upper part of the charts
are the purely electronic excited state |01), two-phonon states
with the electronic part in the ground state |00,2ph), and

one-phonon states with an excited electronic part |01, 1ph).
Depending on the size of the QD, those intersections may
appear at different magnitudes of the magnetic field and in
different order.
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FIG. 4. (Color online) (a) and (c) Dependence of the unper-
turbed eigenenergies (without electron-phonon coupling) on mag-
netic field. (b) and (d) The QD energy spectrum in magnetic field
with electron-phonon interaction included. Results obtained with
numerical diagonalization of full Hamiltonian (lines) compared
with experimental results taken from Refs. 4 and 6 (points).

For the present discussion, the intersection between the
purely electronic state [01) and a group of two-phonon states
|00,2ph) is of interest [shaded area in Fig. 4(a)]. In a strong
magnetic field, one group of states mediating the interaction

(|01, 1ph)) between zero- and two-phonon states is much

closer to the resonance than at B=0. States |01, 1ph) are
directly coupled to both relevant groups of states. Since the
direct interaction is much stronger than indirect one, the
resonance between zero-phonon and two-phonon states can
be strongly intermixed with one-phonon states. This is espe-
cially the case for QD sizes in between those in Figs. 4(a)
and 4(c).

We compare the results of numerical diagonalization with
experimental ones*% obtained for two samples differing in
QDs sizes. The diagrams presented in Figs. 4(b) and 4(d)
consist of several lines that represent transitions to different
excited states. The splitting of the p-shell states allows one to
uniquely determine the anisotropy parameter (3, while the
confinement energy % w, can be directly read off the spectral
position of these p-shell states. For low magnetic fields, two
lines with an opposite Zeeman shift emerge. At high mag-
netic fields, the lower lying line strongly interacts with one-
phonon states |OO, Iph), that is, a strong shift towards higher
energies is observed. For smaller QDs (and thus higher en-
ergy spacing fiw,), for a magnetic field in the range 10-15 T,
a clean second-order resonance between |01) and |00,2ph)
states can be observed [Fig. 4(b)]. For a bigger QD [Fig.
4(d)], when the upper line comes close to one- and two-
phonon states, two resonances appear. One may assume that
the first anticrossing in the upper part of this chart is due to

the direct interaction between the states |01, 1ph) and |01)
whereas the second one is a second-order resonance between
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TABLE V. Properties of the resonance area for different trunca-
tions of the computational basis, compared to experimental results
(Ref. 4).

Resonance width Resonance position

Computational basis (meV) (T)

Full model 3.00 13.5
Three phonons, two shells 2.10 12.7
Two phonons, three shells 2.98 15.2
Two phonons, two shells 2.80 14.9
Experimental results 2.9 12-14

the states |00,2ph) and |01). However it must be noted that
all these states are relatively close to each other and both,
first and second-order polarons can be strongly intermixed.
Previous studies*®%1820 suggested that the electron-
phonon interaction, measured by the dimensionless Frohlich

constant
&2 m*
ar=—"—\| —=x-,
7 e V2120

needs to be tuned in order to conform with experiment. As a
result, the Frohlich constant, which in principle depends only
on material properties, was used as an adjustable parameter.
Our present results show that such a treatment is not neces-
sary. As can be seen in Figs. 4(b) and 4(d), both resonance
positions and widths are reproduced without the need to en-
hance the Frohlich constant after a sufficient number of elec-
tron shells and phonon modes has been included in the com-
putational basis. For instance, our numerical solution yields
the resonance width of 3.0 meV in the case shown in Fig.
4(b), which compares quite well with the experimental value
of 2.9 meV. By performing the diagonalization in restricted
bases, we have found out that the three-shell, three-phonon
model is actually minimal in the sense that a further reduc-
tion of the basis set leads to incorrect results (Table V). In
particular, leaving out the d-shell states yields a strongly un-
derestimated width of the resonance. On the other hand, not
accounting for three-phonon states moves the resonance to
higher magnetic fields and produces nonexistent polaron
branches in the resonance area (see Ref. 21 for more details).

We have also checked to what extent the numerical results
depend on our choice of the /,/1 ratio. For [,/1,=0.2, that is,
twice larger than used in this paper, only small shift in
eigenenergies is observed (approximately 0.1 meV) and the
resonance width decreases to 2.8 meV, still very close to the
experimental result of 2.9 meV.

V. EFFECTIVE HAMILTONIAN APPROACH

In the effective Hamiltonian approach, one considers the
case of an unperturbed Hamiltonian H, having eigenvalues
E;, grouped into well separated manifolds.?> The states can
be written in the form |ia), where the Latin indices denote
different states within a manifold while Greek indices refer
to different manifolds. The corresponding energies of the un-
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perturbed system are E;,. Grouping into a manifold means
that

|Eiw—Ejol <|Eju—E;g| for a#p,

i.e., the energy separation between states from different
manifolds, is much larger then energy separations within
manifold. Moreover, perturbation-induced coupling between
states from different manifolds should be much smaller than
the energy separation between these states,

|<i’a| V|]5B>| < |Eia - Ejﬁ’| for a# B» (5)

where V is the perturbation.

The eigenvalue problem is treated by a quasidegenerate
perturbation theory. The original Hamiltonian H=Hy+V is
transformed into a new one, H.y, which has no matrix ele-
ments between different groups of states (up to the required
order of approximation), by means of a unitary transforma-
tion T=¢"S. The matrix elements of the operator S and of H.
can be found iteratively.

The expression for the second-order effective Hamil-
tonian has the form??

1
joa)+ = > (i.alV]
2k,y#a

(i|Hegel) = Eio 63 + (i, |V

k,y)

1

1
j @) + . (0)
Eia_Eky Eja_Eky

X(k, YV

The first term in Eq. (6) represents the unperturbed energies,
the second one accounts for direct couplings within a single
manifold, and the last one describes the influence of interme-
diate states from the different manifolds on the effective
Hamiltonian matrix. This last term represents indirect
second-order couplings between the states of the manifold of
interest which result from the couplings to other manifolds
eliminated by the unitary transformation 7.

The effective Hamiltonian method is a powerful tool for
calculations and interpretation of various systems. In the
present case of a two-phonon polaron resonance, it is very
helpful since in the resonance area a purely electronic state
and a group of two-phonon states form a well separated
manifold. The method can be used for a description of both
magnetopolaron resonances and a size-dependent polaron
spectrum, though it is more accurate in the latter case, since
the condition for the appropriate relations between energy
spacings and coupling strengths [Eq. (5)] is fulfilled in this
case with a greater precision.

If one considers the case of the size-dependent spectrum
(without a magnetic field) the energy difference between
states from different manifolds at the point of the resonance
is at least 202=36.7 meV. On the other hand, if the purely
electronic state |01) is brought to resonance with the two-
phonon line |00,2ph) using a magnetic field, the energy
separation is significantly lower. For the cases presented in
Figs. 4(a) and 4(c), it is approximately 15 and 30% smaller,
respectively (assuming that the coupled state |0T,1ph) is

considered as a member of the manifold). If we take into
consideration that the average direct coupling between states
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from different manifolds is about 3 meV, even 30% reduction
in energy separation might impair the applicability condition.

The effective Hamiltonian approach automatically in-
cludes the nested coupling polaron structure'® since from the
whole spectrum of the states it filters out the ones that are
coupled to each other through intermediate states (for a given
truncation of the basis).

VI. RESULTS: EFFECTIVE HAMILTONIAN

In this section, we investigate the second-order resonance
using the effective Hamiltonian approach. We consider the
case of size-dependent spectra as well as a magnetopolaron
resonance.

We apply an appropriate treatment to obtain the effective
Hamiltonian in both cases, although the latter one might be
less applicable in the case of larger QDs (Zeeman tuning
brings one-phonon states close to two-phonon line intermix-
ing first and second-order resonances and thus breaks the
condition for sufficient manifolds separation). Since the en-
ergy separation between different states depends on the size
of the QD each case should be studied individually.

The effective Hamiltonian approach allows us to gain
some information about the second-order polaron structure.
Since we choose relevant indirectly coupled states only we
can get much insight into the mediated interaction between
zero- and two-phonon states. As the effective Hamiltonian
matrix is much smaller than the full Hamiltonian matrix its
diagonalization is much faster and interpretation of the spec-
tra is easier. Contributions from different intermediate states
can easily be separated and studied. In particular, we inves-
tigate the influence of d-shell and three-phonon states on the
polaron spectra and on the coupling strengths appearing in
the effective Hamiltonian. We show that the quasidegenerate
perturbation theory not only allows one to describe the reso-
nance area in detail, but also explains why both d-shell and
three-phonon states have to be used in order to correctly
model second-order polarons.

A. Polaron resonance at B=0

In this section, we consider the effective Hamiltonian ap-
proach to the second-order resonance between states |01) and
|00,2ph) in the absence of a magnetic field. For the sake of
simplicity, we assume that the QD is isotropic (it is always
possible to introduce anisotropy perturbatively).

Although, for our truncated basis, there are 105 two-
phonon states only 6 of them couple indirectly (in the
second-order approximation) to the purely electronic state
|01). There is a small number (12) of intermediate states
which produce nonzero couplings in the effective Hamil-
tonian. Their contribution is presented (grouped by shell and
number of phonons) in Table VI. If the numerical values for
different shells or different phonon numbers sum up to zero
the relevant states are decoupled.

As we can see in Table VI, taking the d shell into account
not only introduces three additional couplings (rows 3-5),
but also changes the strength of existing ones (increase of
over 17% and 11% in rows 1 and 2, respectively). What is
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TABLE VI. Relative influence of different electronic shells and n-phonon states on the effective Hamil-
tonian couplings in the limit /,/lg— 0. In the second line, the contributions from the two shells are taken

together as they partly cancel each other.

Intermediate states

Matrix elements s P d 1ph 3ph
(01|H,00,4241) 0 82.8% 17.2% 1 0
(01|H,5/00,A%41) 88.9% 11.1% 1 0
(01|H,4/00,A°B") 0 0 100% 1 0
(01|H,]00,4342) 0 0 100% 1 0
(01|H,500,A%B1) 0 0 100% 1 0
(01|H 4/00,B°A") 50% -50% 0 1 0
(00,A°AY|H 00, B°A") 100% 0 0 0.5 -0.5

more important is that taking three-phonon states into ac-
count completely decouples the two-phonon state [00,B°A")
as shown in row 7. Here, A! denotes the phonon mode cre-
ated by the collective operator B}, [Eq. (3)], etc. Although
Table VI is constructed for the limiting case of an infinitely
flat QD (I,—0) and at exact resonance (hw,=2%()) this de-
coupling is preserved also for nonflat QDs and is an effect of
equal spacing of the electronic eigenenergies in a parabolic
confining potential.

The properties of indirect couplings via one-phonon and
three-phonon states, revealed by the effective Hamiltonian
structure, allow one to qualitatively understand why a three-
shell, three-phonon model is required for correct modeling of
the resonant polaron spectrum. Leaving out three-phonon
states leads to a reconstruction of the spectrum (additional
lines in the theoretically modeled absorption spectrum are
observed, see Fig. 5) since the coupling between states
|00,B°A") and |00,A°A') in the absence of three-phonon
states is relatively strong. For the case of a flat QD, the
coupling strength factor is 0.0288 which is the strongest cou-
pling comparing to other ones shown in Table VII. However,
if the three-phonon states are included this coupling vanishes
completely. This shows that a truncation of the computa-
tional basis can not only cancel some indirect couplings'® but
can also lead to the appearance of nonexistent ones. This

82 T T T T T T T
full Hamiltonian diagonalisation =~ @
g0 | off all states  ——

H,g without 3-phonon states  ——

78 I

E, - Ey[meV]

QD energy spacing /i@y, [meV]

FIG. 5. (Color online) Comparison between effective Hamil-
tonian approach and full Hamiltonian diagonalization. Influence of
disregarding three-phonon states on resonance area also included.

increases the number of optically active states in the reso-
nance area and affects the spectrum both qualitatively and
quantitatively.

Although the cancellation of an indirect interaction be-
tween certain two-phonon states in the presence of three-
phonon states is quite general and similar cancellation of the
mediated interaction between other n-phonon states (n>0)
can be observed it does not necessarily translate to the re-
duction of the size of the relevant polaronic subspace. In
general, such a decoupling is a quantitative effect and may
depend not only on the structure of the model, but also on the
values of the couplings. For that reason the quasidegenerate
perturbation theory seems to be the right approach, which
takes into account the nested coupling structure,'® as well as
system dependent quantitative effects.

The influence of d-shell and three-phonons states on the
diagonal elements of the effective Hamiltonian is found to be
less than 0.4% and 2.5%, respectively. Coupling with the

two-phonon state [00,A2B") is very weak and it is possible to
discard it from consideration. Such a reduction of the com-
putational basis does not produce any important effects. The
area of the second-order resonant polarons can now be de-
scribed by a Hamiltonian of dimension 5.

The results obtained with the effective Hamiltonian ap-
proach are nearly the same as those obtained with full Hamil-
tonian diagonalization. The largest shift between eigenener-
gies found with those two methods in the range of the QD
energy spacing presented in Fig. 5 is lower than 0.16 meV.

TABLE VII. Indirect coupling strengths in the effective Hamil-
tonian approach. Coupling strength expressed in units of
e/ (21eg8)=32.7 meV.

H ¢ matrix elements Coupling strength

(01|H,00,A4%A4")
(01|H,]00,A%41)
(01|H,00,A°B")
(01|H,500,A342)
(01]H,500,A2B")

29\3/(768\27) ~0.0261
13\3/ (384\_:‘%) ~0.0234

—1/(128V7) = -0.0044
~575/(256727) ~~0.0035

~1/(256\m) =—0.0022

115317-9



PIOTR KACZMARKIEWICZ AND PAWEL. MACHNIKOWSKI

TABLE VIII. Indirect effective Hamiltonian couplings for case
of magnetic field tuning. Values obtained for electron excitation
energy fiwyg=60 meV in a magnetic field of 14.1 T, expressed in
meV.

d-shell influence

Matrix elements Coupling strength (%)
(01|H,00,42A1) 1.786 7
(01|H,/00,A4%4") 0.627 11
(01|H,/00,43B2) -0.157 100
(01|H,/00,A°B") -0.143 100
(01|H,4]00,A2B") ~0.056 100

B. Magnetopolaron resonance

The effective Hamiltonian treatment for a nonzero mag-
netic field differs slightly from the previous case of zero
magnetic field since the paramagnetic term brings the one-

phonon state |01_,A2> close to the second-order resonance.
This additional state couples to the purely electronic state
and to certain two-phonon states and, depending on the QD
size, can be of major importance. Nevertheless, the reso-
nance area can be precisely described using the quasidegen-
erated perturbation theory even in the case of relatively big
QDs. When the previously mentioned one-phonon state is
too close to the energy of two LO phonons it simply needs to
be included as a member of the considered manifold. Since
both samples [Figs. 4(b) and 4(d)] consist of relatively large
QDs this one-phonon state has to be included in the group of
relevant states.

In the construction of the effective Hamiltonian, a set of 6
indirectly coupled states {|01), ]00,A°A'), ]00,A%A"),
|00,A43A2), [00,A°B'), |00,A%B')} is chosen as a basis (de-
coupling of certain two-phonon states, discussed in the pre-
vious section, is already taken into account). At this point,
we are interested in the strengths of indirect coupling medi-
ated by one-phonon states, so we temporarily exclude the

state |Ol_,A2> from the manifold. In this way, the influence of
all intermediate one-phonon states on the second-order reso-
nance can easily be determined. To keep the model reason-
ably accurate in the absence of this state Table VIII is calcu-
lated for a QD with a slightly larger characteristic energy
fiwy, so that the energy separation between the relevant

manifold and the state |01_,A2> is also larger. Indirect cou-
pling strengths for the resonance condition with the influence
of the d-shell are presented in Table VIII. As one can see, in
the case of the magnetopolaron spectrum, the presence of the
d shell increases the coupling strength significantly (rows
1-2) and couples three additional two-phonon states with the
state |01) (rows 3-5). The character of the influence of three-
phonon states is the same as that discussed in Sec. VI A.
As we pointed out earlier, in the case of relatively large
QDs (when the characteristic energy is lower than 60 meV),
additional one-phonon state in the effective Hamiltonian ba-
sis needs to be included. If this is done then both methods:
diagonalization of the full Hamiltonian and quasidegenerated
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FIG. 6. (Color online) Polaron eigenenergies in the resonance
area. Dots: experimental results from Refs. 4 and 6, lines: results
obtained with the effective Hamiltonian approach. Samples and QD
material parameters as in Fig. 4.

perturbation-theory approach produce nearly the same results
in the resonance area with differences in the obtained
eigenenergies and resonance widths smaller than 0.15 and
0.01 meV, respectively. Comparison between the results ob-
tained with the effective Hamiltonian approach and the ex-
perimental ones are presented in Fig. 6. Good agreement
between the theory and experiment can be observed.

VII. CONCLUSIONS

In this paper, we have theoretically studied the resonant
features in the spectrum of an electron confined in a self-
assembled QD and interacting with LO phonons. We have
focused on the second-order resonance induced by the indi-
rect interaction between the first-excited electronic shell (p
shell) and the electronic ground state with two LO phonons.
We have studied this second-order resonant polaron spec-
trum as a function of the dot size (energy-level separation)
and external magnetic field. We have also calculated the ab-
sorption spectra for an inhomogeneous ensemble of QDs and
shown that polaronic feature is clearly manifested in these
spectra. Our results, compared to the existing experimental
data, show that a properly constructed model is able to quan-
titatively reproduce the observed polaron resonance without
any need for free or adjustable parameters describing the
interaction between confined electrons and LO phonons, ex-
cept for shape and size parameters that can uniquely be ex-
tracted from the intraband absorption spectrum.

In order to get more insight into the structure of the po-
laron spectrum in the resonance area, we have developed an
effective Hamiltonian approach based on a quasidegenerate
perturbation theory. We have shown that by tracing the struc-
ture of indirect couplings mediated by one- and three-phonon
states, a very small set of relevant basis states can be identi-
fied which span the space of resonant polaron states.

The presented results show that the spectrum of the
coupled electron-LO-phonon system can be reliably modeled
based on the standard theories and computational techniques
developed for confined systems. Moreover, they demonstrate
that this modeling may be considerably simplified by apply-
ing perturbation-theory methods, without losing the accuracy
of the results.

APPENDIX: INFLUENCE OF FOUR-PHONON STATES ON
THE ENSEMBLE ABSORPTION

Since the four-phonon states do not couple zero- and two-
phonon states, their influence on the two-phonon feature is
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FIG. 7. (Color online) Absorption spectra on ensemble of iso-
tropic QDs obtained with and without four-phonon states. Standard
deviation 6 meV; the mean value Awy=62 meV.

negligible. On the other hand, they are important if one con-
siders one-phonon replica of the second-order polarons. We
compare here the absorption spectra for two computational
bases: one including only states with up to three phonons and
the other one with additional four-phonon states (Fig. 7). For
the sake of simplicity, results were obtained for the case of
an isotropic QD without anharmonicity corrections.

The influence of four-phonon states on the main absorp-
tion peak (A), as well as on two-phonon resonance (B), is
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marginal. On the other hand, four-phonon states are of major
importance for one-phonon-replica features (C and D). Since
those features appear as a result of the interaction between
one-phonon and three-phonon states, four-phonon states
have similar influence on them as three-phonon states had on
the interaction between zero- and two-phonon states (decou-
pling of previously strongly coupled states). As a result of
introducing additional interacting states, a quantitative
change is observed in the intensity of the phonon replica (C)
of the main absorption peak. The most important change in
the ensemble absorption is related to the phonon replica of
the resonant feature (D). If four-phonon states are omitted
this feature is broader and consists of two peaks. On the
other hand, if we include four-phonon states, the replica of
the resonant feature consists of one sharp peak, which is
shifted towards lower energies. The energy shift is mostly
due to presence of directly coupled four-phonon states with
energy 4#) which is higher than the energy of the feature D,
whereas the change in its shape is related to a reconstruction
of the spectrum in the area of the feature D, introduced by
those additional states.
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