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The effect of a spatially modulated magnetic field on the weak-localization phenomenon in two-dimensional
electron gas is studied. Both the dephasing time �H and magnetoresistance are shown to reveal a nontrivial
behavior as functions of the characteristics of magnetic field profiles. The magnetic field profiles with rather
small spatial scales d and modulation amplitudes H0 such that H0d2��c /e are characterized by the dephasing
rate �H

−1�H0
2d2. The increase in the flux value H0d2 results in a crossover to a standard linear dependence

�H
−1�H0. Applying an external homogeneous magnetic field H one can vary the local dephasing time in the

system and affect the resulting average transport characteristics. We have investigated the dependence of the
average resistance vs the field H for some generic systems and predicted a possibility to observe a positive
magnetoresistance at not too large H values. The resulting dependence of the resistance vs H should reveal a
peak at the field values H�H0.
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I. INTRODUCTION

The possibility to govern the electronic transport by ap-
plying an inhomogeneous magnetic field has recently at-
tracted considerable interest. In particular, this problem is
intensively studied in the hybrid ferromagnet/superconductor
structures where the inhomogeneous magnetic field induced
by the domain structure in the ferromagnet or a magnetic dot
array is used to control the superconducting order parameter
structure and the transport of Cooper pairs �see, e.g., Refs. 1
and 2 for review�. It is important to note that the typical
values of the fields used in such experiments can be rela-
tively small: H�10–103 Oe. Nevertheless in the vicinity of
the superconducting transition even these field values allow
to destroy the Cooper pairs and, thus, strongly affect the
electronic transport.

Another possibility to change the conductance applying
relatively weak magnetic fields can be realized even in the
normal �i.e., nonsuperconducting� structures provided we
consider the systems with measurable quantum interference
effects, e.g., disordered two-dimensional electron gas
�2DEG� at low temperatures T. In the latter case the electron
conductance is known to be affected by the weak-
localization effects, which are caused by the quantum inter-
ference between the electronic waves propagating along dif-
ferent time-reversed quasiclassical trajectories.3 The weak-
localization correction �g to the Drude conductance gD in
the diffusive limit can be written in the form

�g�r� = −
2e2

��
D�

�

�

W�r,t0�dt0. �1�

Here W�r , t0�dt0 is the probability of electron return to the
point r during the time interval t0	 t	 t0+dt0, � is the elastic
scattering time, and D is the diffusion constant.

In the presence of an external magnetic field the probabil-
ity of return is determined by the Green’s function
C�r f , tf ,ri , ti� satisfying the so-called Cooperon equation,

W�r,t0� = C�r,ti + t0,r,ti� , �2�

� �

�tf
+ D�− i

�

�r f
−

2e

�c
A�r f��2

+
1

�

�C = ��tf − ti���r f − ri� ,

�3�

where A�r� is the vector potential and �
 is the characteristic
dephasing time. In the limit of zero magnetic field the ex-
pression for the weak-localization correction to the conduc-
tance obtained from Eq. �3� takes the form

�g�H = 0� = −
e2

2�2�
ln

�


�
. �4�

The maximal size of closed trajectories contributing to this
value is defined by the characteristic dephasing length L


=	D�
. Applying an external magnetic field perpendicular to
the plane of 2DEG system one destroys the coherence for
closed trajectories which enclose the magnetic flux larger
than the flux quantum �0=��c / 
e
. The resulting dephasing
time �H becomes field dependent and can be obtained by
comparing the flux through the contour of the size 	D�H
with �0: �H

−1�DH /�0. As a consequence, the 2DEG system
has a negative magnetoresistance �see Ref. 3 and references
therein� and the conductance takes the form

�g = −
e2

2�2�
�
�1

2
+

�c

4eHD�
� − 
�1

2
+

�c

4eHD�

�� ,

�5�

where 
 is the digamma function. In the low field limit ��H
��
� expression �5� transforms into the expansion

�g = −
e2

2�2�
�ln

�


�
−

2

3
� eHD�


�c
�2

+ ¯� . �6�

Considering the magnetic fields which are modulated on
microscopic length scales one should modify the above ex-
pressions taking into account the changes in the magnetic
flux enclosed by the interfering trajectories passing through
the regions with a rapidly changing magnetic field. The hy-
brid structures containing the 2DEG systems and certain
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sources of the spatially modulated magnetic fields attracted
recently both the experimental and theoretical interests.4–16

In part, these investigations have been stimulated by the pos-
sible potential of such systems for making detailed studies of
the inhomogeneous magnetic field distributions. The mag-
netic field profiles with microscopic spatial scales can be
induced, e.g., by a vortex lattice in a superconducting
film,4–8 as well as by a ferromagnetic film domain structure
or a magnetic dot array positioned in the vicinity of the
2DEG system. Note also that the problem of the 2DEG con-
ductance in a modulated magnetic field appears to be equiva-
lent to the one of a rough 2DEG layer placed in a parallel
magnetic field.10,11 For the particular case of vortices trapped
in a superconducting film the magnetic field takes the form
of flux tubes. An appropriate theoretical description of the
weak-localization phenomenon for different flux tube radii as
compared to the L
 length has been developed in Ref. 15.
The corresponding contribution to the magnetoconductance
at low average fields H appeared to be proportional to the
vortex concentration, i.e., to the 
H
 value, in contrast to the
H2 behavior in a uniform magnetic field. The numerical
analysis of the conductance corrections for the case of a lat-
tice of magnetic flux tubes for arbitrary relations between the
tube radius and L
 was performed in Ref. 8. Experimentally
these predictions have been confirmed in Refs. 5 and 6 for
GaAs/AlGaAs heterostructures.

One can expect that standard expressions �5� and �6� for
local conductance should hold even for the spatially modu-
lated magnetic fields provided the characteristic spatial scale
d of such modulation is much larger than the size of the
closed trajectories contributing to the conductance correc-
tions. For a rather strong value of the z component of the
local field B�r� the latter size can be defined as a minimum
of two lengths: �i� the dephasing length in the absence of the
field L
=	D�
 and �ii� the length LB=	D�B=	�c /eB�r�
which formally coincides with the textbook definition of the
magnetic length. Here we denote the magnetic field compo-
nent along the direction perpendicular to the plane of a
2DEG system as B�r�=H+�H�r�, where H is the average
field value. Thus, considering rather strong fields and/or not
very low temperatures one can use the above expressions for
local conductance substituting the function B�r� instead of
the homogeneous field H. This adiabatic picture obviously
breaks down when the closed interfering trajectories pass
through the regions with rapidly changing magnetic field
which happens either near the zeros of magnetic field or in
the limit d�min
L
 ,LB�. The dephasing length and time in
this case are no longer determined by the local field value
and their dependence on the field modulation amplitude H0
can become rather unusual. In particular, for the magnetic
fields with zero spatial average the dephasing time is propor-
tional to the square of the field amplitude ��B

−1�H0
2� which is

in sharp contrast to the linear in H behavior of the dephasing
rate for homogeneous fields. For some model, one-
dimensional field profiles, such unusual field dependence of
the dephasing rate has been previously predicted in Ref. 9.
Experimentally this behavior �B

−1�H0
2 has been observed in

Ref. 10 for random magnetic field profiles.
One of the goals of the present work is to suggest an

analytical description of the weak-localization phenomenon

in inhomogeneous magnetic field for a wide class of the field
profiles. In Sec. II we consider different regimes of the weak
localization which are realized in different regions of mag-
netic field parameters. Also in this section we demonstrate
that in strong magnetic fields and/or at not very low tempera-
tures the local approximation is applicable for calculation of
the quantum correction to the conductance. In Sec. III we
consider the regimes corresponding to the weak amplitude of
magnetic field. In particular, in Sec. III A we present the
calculations of a natural measurable quantity, i.e., the con-
ductance averaged over the system area. As a next step, we
proceed with the description of the dephasing rate behavior
vs characteristics of the modulated magnetic field for a wide
class of the periodic field profiles �see Sec. III B�. In Sec. IV
we consider the case of strong magnetic fields and show that
the dependence of the magnetoresistance vs the average field
value appears to reveal an unusual peak structure. An obvi-
ous reason for the nonmonotonous behavior of the resistance
vs the average field is associated with partial field compen-
sation effect which occurs in the regions where the z com-
ponents of the average and local fields have the opposite
signs. Thus, applying the external magnetic field to the sys-
tem placed in a modulated field with zero average one can
stimulate the interference effects in some regions of the
sample. Depending on the particular shape of the field profile
this effect can result in the negative or positive magnetore-
sistance of the sample. In other words, the 2DEG samples
coupled with the subsystems inducing the inhomogeneous
magnetic field can reveal a so-called “antilocalization” �see,
e.g., Refs. 17 and 18� phenomenon when we apply an exter-
nal magnetic field H. The results and suggestions for pos-
sible experiments are summarized in Sec. V.

Hereafter we focus on the case of classically weak mag-
netic fields 
eB�r�� /mc�1�. Such fields weakly affect the
Drude conductance: the corresponding corrections are pro-
portional to the factor ��c��2 
�c=eB�r� /mc is the cyclotron
frequency�. Indeed the diffusive approximation for the elec-
tron motion is applicable when B��0 / l2. At such fields
�c� �� /�F��1 /��1 /� ��F is the Fermi energy�. Thus, these
magnetic fields affect only the interference corrections to the
transport characteristics, and we disregard the inhomoge-
neous field effect on the Drude-type contribution to the con-
ductance which has been previously studied in Refs. 19–22.

Note that all results obtained in this paper are valid not
only for ideal 2DEG with zero thickness but also for quasi-
two-dimensional electron systems with finite thickness a,
which has to satisfy the condition a�L
. In this case one can
define the field range, in which longitudinal components do
not affect the weak-localization correction to the conduc-
tance, while the transverse component does. Indeed, the
effect of a weak longitudinal component of magnetic field H�

can be described by the renormalization of the characteristic
dephasing time: the value �


−1 has to be replaced by �

−1

+�H�

−1 �see, e.g., Ref. 3�, where

1

�H�

=
1

3
� eH�a

�c
�2

D .

Thus, the influence of the longitudinal component becomes
noticeable only for H� �H�

���0 /aL
. This value is much
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larger than the characteristic value H�
� ��0 /L


2 of transverse
component, which can strongly affect the weak-localization
correction. Hereafter we assume H� �H�

� and neglect the ef-
fect of longitudinal magnetic field components.

II. DIFFERENT REGIMES OF WEAK LOCALIZATION
AND POSSIBLE APPROXIMATE APPROACHES

In this section we outline the approximate approaches
which are used for describing dephasing regimes in different
regions of the system’s parameters.

In the presence of an inhomogeneous magnetic field the
weak-localization correction to the conductance of 2DEG is
determined by the interplay of three length scales: �i� dephas-
ing length L
, which at low temperatures grows as T−1/2 �see
Ref. 24�, �ii� the scale of the magnetic field inhomogeneity d,
and �iii� the magnetic length LH0

=	�0 /H0, where H0 is the
amplitude of the periodic magnetic field. The ratios of these
lengths define the behavior of the weak-localization correc-
tion to the conductance. For the analysis of the behavior of
quantum correction to the conductance it is convenient to use
the diagram shown in Fig. 1. We choose the parameter d /L


to describe the temperature dependence of weak-localization
correction to the conductance and the parameter d2 /LH0

2 to
consider the influence of modulated magnetic field. Note that
for a two-dimensional lattice with translational vectors Rn
=n1d1a1+n2d2a2 �a1, a2 are unit vectors and n1, n2 are inte-
gers� the value d is the absolute value of the smallest vector
Rn�d=min
d1 ,d2��.

Depending on the ratios d /LH0
and d /L
 there exist two

qualitatively different mechanisms of the electron dephasing
caused by the inhomogeneous field. Provided d /LH0

	1 and
simultaneously the d length scale is smaller than L
 �white
square in Fig. 1� the dephasing scenario in a modulated field
with zero average can be explained by the following quali-
tative arguments. Let us consider a certain quasiclassical tra-
jectory of the length L=	D�B which encloses many primitive
cells of the periodic field profile. The magnetic flux coming

from the cells which are positioned inside the contour ap-
pears to be averaged to zero. The only residual flux is asso-
ciated with the cells which are crossed by the quasiclassical
trajectory and give a flux contribution which strongly fluctu-
ates with the increase in the area enclosed by the trajectory.
The characteristic amplitude of these flux fluctuations can be
estimated as the number of the elementary cells crossed by
the trajectory �L /d� multiplied by the typical flux value
H0d2: ���LdH0. Comparing this fluctuating flux with the
flux quantum �0 we find the length of the dephasing L
��0 /dH0�LH0

2 /d and corresponding dephasing rate �B
−1

�Dd2H0
2 /�0

2. These qualitative arguments are in beautiful
agreement with the quantitative consideration in Sec. III B
carried out on the basis of the “nearly free electron” approxi-
mation. In the opposite limit d /LH0

�1 or d /L
�1 the
dephasing is controlled by the local magnetic field value �this
regime corresponds to the gray region in Fig. 1�.

Of course, the magnetic field provides a dominating
dephasing mechanism only at low temperatures. For rather
high temperatures when L
	max
LH0

,LH0

2 /d� �the region
above the solid curve in Fig. 1� the dephasing occurs at the
length L
 and one can analyze the magnetic field effect on
the weak-localization correction to the conductance perturba-
tively �see Sec. III A�. Defining the range of parameters
where the perturbative description is applicable one should
compare the dephasing length L
 with the scale LH0

for d
�LH0

and the scale LH0

2 /d for d	LH0
.

Now let us focus on the gray region in Fig. 1 �d�LH0
or

d�L
�. In this region the weak-localization correction to the
conductance can be obtained within the local approximation.
This means that the conductivity at each point of the sample
depends on the local magnetic field. The validity of the local
approximation in this regime can be shown directly from Eq.
�3�. Let us introduce the vectors

R =
r f + ri

2
, r = r f − ri.

An electron is dephased at the length scale which is the
minimum of the scales L
 and LH0

; i.e., only the region 
r

	min
L
 ,LH0

� makes the contribution to the weak-
localization correction to the conductance. Therefore in the
limit d�min
L
 ,LH0

� it is necessary to find the solution of
Eq. �3� only in the case when 
r
�d. In this case we can
expand the vector potential A�r f�,

A�r f� = A�R +
r

2
� � A�R� +

1

2
�r,

�

�R
�A�R� .

Then after introducing a modified Green’s function

C̃�R,r� = C�R,r�exp�−
2ie

�c

A�R�,r��

one can obtain the following equation:

FIG. 1. The diagram of different weak-localization regimes in
the plane of key parameters. In the gray region the scale of the
magnetic field inhomogeneity d is large enough so that the dephas-
ing is controlled by the local magnetic field. In the white square the
magnetic field is weak but its inhomogeneity reveals in the renor-
malization of the effective electron dephasing time. Above the solid
curve the dephasing occurs at the dephasing length L
 and the in-
fluence of magnetic filed reveals in a small additional correction to
the conductivity.
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� �

�tf
+ D�− i

�

�r
−

i

2

�

�R
−

2e

�c
Ã�R,r��2

+
1

�

�C̃

= exp�−
2ie

�c

A�R�,r����r���tf − ti� , �7�

where

Ã�R,r� =
1

2

H̃�R�,r�, H̃�R� = � �

�R
,A�R�� .

The right part of Eq. �7� contains ��r�, so we can set r=0 in
the exponential prefactor.

Note that in Eq. �7� one can neglect the term containing
the derivative � /�R. Indeed, it has the order d−1 whereas the

value Ã�R ,r� and the term containing the derivative � /�r
have the order 1 /min
L
 ,LH0

�, so the terms containing � /�R
are negligible. In this case Eq. �7� takes the form

� �

�tf
+ D�− i

�

�r
−

2e

�c
Ã�R,r��2

+
1

�

�C̃ = ��tf − ti���r� .

�8�

Equation �8� formally coincides with Eq. �3� for the case

of homogeneous magnetic field H̃�R�, which depends on the
variable R as a parameter. Thus, in the gray region in Fig. 1
one can use the local approximation to calculate the weak-
localization correction to the conductance. In what follows
we show that in this case the spatially modulated magnetic
field with zero average can cause the effect of positive mag-
netoresistance of 2DEG in the external homogeneous mag-
netic field.

Note that the local approximation breaks down at the
points where the magnetic field is changing rapidly, i.e., near
the zeros of the magnetic field. Nevertheless considering the
spatially averaged conductance one can neglect the correc-
tion coming from these regions which appears to be small in
the limit L
 /d�1.

III. WEAK MAGNETIC FIELDS: NEGATIVE
MAGNETORESISTANCE

A. Magnetoresistance of 2DEG: Second-order
perturbation theory

1. Quantum correction to the conductance in the field
with arbitrary spatial configuration

Let us consider the case of magnetic field with arbitrary
spatial configuration but with zero spatial average. In this
section we find an analytical solution of Eq. �3� in the ex-
treme case of low magnetic field. This means that the mag-
netic flux through any closed contour of the size
min
L
 ,	L
d� is mush less than �0. In this case the mag-
netic field weakly affects the weak-localization correction to
the conductance, and Eq. �3� can be solved within the frames
of the perturbation theory with a small parameter propor-
tional to the value of magnetic field.

Let us introduce the Fourier transform of the magnetic
field,

Hz�r� = �
−�

� �
−�

�

Hkeikrd2k . �9�

Here r is a vector in the plane of 2DEG. We assume all
spatial harmonics Hk of magnetic field to be small.

The corresponding vector potential can be chosen in the
form

A�r� = �
−�

� �
−�

�

Akeikrd2k , �10�

where

Ak =
i
k,z0�

k2 Hk. �11�

In the zero order of the small parameter we considered the
Green’s function as the one without magnetic field,

C0 =
1

4�Dt0
exp�−

r0
2

4Dt0
−

t0

�

� .

Here r0=r f −ri, t0= tf − ti. Further we represent the operator

in the left part of Eq. �3� as a sum of operators F̂= F̂0+ F̂1

+ F̂2 where

F̂0 = � �

�tf
− D

�2

�r f
2 +

1

�

� ,

F̂1 =
4eD

�c
�

−�

� �
−�

�

d2kHkeikrf�k,
�

�r f
� ,

F̂2 =
4e2D

�2c2 ��
−�

� �
−�

�

d2k
i
k,z0�

k2 Hkeikr�2

.

In the first order of perturbation theory the correction to the
Green’s function can be written as

C1�r f,tf,ri,ti,� = − �
ti

tf �
−�

+� �
−�

+�

C0�r f,tf,r�,t��

�F̂1C0�r�,t�,ri,ti�dr�dt�.

If �xf ,yf�→ �xi ,yi� then C1=0. This reflects the fact that the
quantum correction does not depend on the sign of applied
magnetic field. The second-order correction to the Green’s
function is defined by the expression

C2 = − �
ti

tf �
−�

+� �
−�

+�

C0�r f,tf,r�,t��

�
F̂1C1�r�,t�,ri,ti� + F̂2C0�r�,t�,ri,ti��dr�dt�.

�12�

Let us introduce the value �gH,

�gH = �g�B� − �g�0� , �13�

where the �g�B� is the weak-localization correction to the
conductance in the inhomogeneous magnetic field B�r�.
Then the value �gH is determined by the second-order cor-
rection C2�r , t0�,

MEL’NIKOV, MIRONOV, AND SHAROV PHYSICAL REVIEW B 81, 115308 �2010�

115308-4



�gH�r� = −
2e2D

��
�

0

�

C2�r,t0�dt0. �14�

In expression �14� we set the lower integration limit equal to
zero because of the absence of the small t0 divergence in the
integrand. Thus, we neglect the correction of the order � /�
.

As we are interested only in spatially averaged correction
to the conductance expression �14� should be integrated over
r. Performing the integration in expression �12� we obtain
the averaged correction to the conductance ��gH�,

��gH� =
8e4D

�3c2S
�

0

�

dt0e−t0/�
�
−�

� �
−�

�

d2k
HkH−k

k2

��1 −
2

k	Dt0

e−k2Dt0/4�� k	Dt0

2
�� , �15�

where S is the area of the sample and ����=�0
�et2dt. Since

we neglect the corrections proportional to � /�
 the integra-
tion in expression �15� should be performed over 
k

	 �D��−1/2.

Note that H−k=Hk
� and for ��1

�
0

�

e−�x2
��x�dx =

1

4	�
ln�	� + 1

	� − 1
� . �16�

Then expression �15� can be rewritten in the form

��gH� =
2e4D2�


2

�3c2S
�

−�

� �
−�

�

d2k
Hk
2F� k2D�


4
� , �17�

where

F�z� =
1

z �1 −
1

	z�z + 1�
ln�	z + 1 + 	z�� . �18�

With the increase in the z coordinate the function F�z� is
monotonically decreasing from the value 2/3 at z=0 to zero
at z=� decaying as z−1 at large z values �see Fig. 2�. There-
fore, the spatial harmonics of magnetic field with 
k
�L


−1

make the main contribution to the weak-localization correc-
tion. In particular, for the case of magnetic field with narrow
spectrum in the momentum space �the value Hk is nonzero
only in the spectral region 
k
�L


−1� the value ��gH� is de-
fined by the expression

��gH� =
4e4D2�


2

3�3c2S
�

−�

� �
−�

�


Hk
2d2k . �19�

Using the properties of Fourier transformation, we can re-
write expression �19� in the form

��gH� =
e4D2�


2

3�2�3c2S
�

S0

Hz
2d2r . �20�

It is seen from Eq. �20� that in the case of weak nonhomo-
geneous field with spatial scale larger than L
 the averaged

correction to conductance is defined only by the square of
magnetic field averaged over the sample. This result corre-
sponds to the local approximation.

Note that expression �15� is correct also in the case of
magnetic field with nonzero spatial average H which satisfies
the condition HL


2 ��0. In this case the expression for the
spatially averaged weak-localization correction to the con-
ductance has the form

�g�H�� = gD −
e2

2�2�
ln

�


�
+ ��gH� +

e2

3�2�
� eHD�


�c
�2

,

�21�

where ��gH� is defined by expression �17� for magnetic field
with zero average. Thus the homogeneous component of the
magnetic field makes small additional contribution to the av-
eraged correction.

Expression �14� for the local conductance value can be
further simplified for the particular case of one-dimensional
field which depends on the x coordinate. In this case the
magnetic field can be written in the form

Hz = �
−�

�

Hke
ikxdk ,

where k is the scalar Fourier variable. Performing integration
in Eq. �12� we obtain an analytical expression for the Green’s
function C2�r�,

C2 =
4e2e−t0/�


��2c2�Dt0�3/2�
−�

�

dk�
−�

�

dq
HkHq

k2q2�k + q�
ei�k+q�x

� �e−�q + k�2Dt0/4�� �k + q�	Dt0

2
�

− e−Dk2t0/4�� k	Dt0

2
� − e−q2Dt0/4��q	Dt0

2
�

+
kqDt0

2
e−�k + q�2Dt0/4�� �k + q�	Dt0

2
�� . �22�

This expression can be made even more transparent in
the special case of the magnetic field with the sinusoidal
profile.

FIG. 2. The function F�z� defined by expression �18�.
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2. Quantum correction to the conductance
in low sinusoidal magnetic field

Let the magnetic field has the form

Hz�x� = H0 cos�kx� . �23�

Then for the value �gH we obtain the following expression:

�gH =
2e4H0

2

�2�3c2k4�
0

�

e−�2/k2D�
�� − 2e−�2/4���

2
�

+ cos�2kx�
e−�2

�2 �4e�3/4��2
���

2
� − ��2 + 2�������d� .

�24�

One can see that the only dimensionless parameter �
=k	D�
=�L
 /d defines the value of the integral in expres-
sion �24�.

It is interesting to consider the dependence of the value
�gH on the period of magnetic field d. The dependencies of
the value �gH on the parameter �=�L
 /d for two interesting
cases x=0 and x=d /2 are shown in Fig. 3, where we intro-
duced the value

gH0
=

2e2

�
�H0D�


�0
�2

.

Note that the value �gH�r� is defined by the module of the
averaged magnetic flux through all possible closed trajecto-
ries of the size L
 which are passing through the point r. In
the maxima of the magnetic field �x=nd; n is an integer� the
averaged flux is decreasing with d decreasing �increasing ��
and this leads to the decrease in the �gH value. At the zeros
of the magnetic field �x=d /2+nd� when the scales d and L


are comparable one can observe a maximum in the depen-
dence �gH vs � 
see curve �b� in Fig. 3�. In this case the
averaged module of the magnetic flux through the closed
trajectories is maximal.

The analysis of the expression for �gH shows that in the
limit of d�L
 the value �gH is proportional to d2,

�gH �
e2

�2�� L


LH0

�4� d

L

�2

,

where LH0
=	�0 /H0.

In case of smooth field variation �d�L
, but H0dL


��0� keeping the corrections ��2 we find

�gH =
e2L


4

6�LH0

4 ��1 + cos 2kx� −
�2

5
�1 + 7 cos 2kx�� .

�25�

Expression �25� differs strongly from the correspondent ex-
pression for the case of homogeneous field since even at the
points of zero magnetic field the value �gH is positive. This
fact is quite natural since the averaged module of the flux
through the closed trajectories does not vanish even at these
points.

B. Dephasing time in spatially periodic magnetic fields

Expressions �17� and �21� obtained within the perturba-
tion theory diverge at low temperatures as the dephasing
time �
 tends to infinity. Thus, to describe the behavior of the
conductance at low temperatures one should take account of
the renormalization of the dephasing time caused by the
magnetic field.

In this section we consider such renormalization proce-
dure for a periodic magnetic field

Hz�r + Rn� = Hz�r� , �26�

where Rn are translational vectors which generate a two-
dimensional lattice.

The expression for the electron probability of return ob-
tained from the solution of Eq. �3� can be written in the
following form:

W�r,t0� = e−t0/�
�
j



 j�r�
2e−�jDt0. �27�

Here � j and 
 j�r� are the eigenvalues and normalized eigen-
functions of the operator

Ĥ�r� = �− i � −
2e

�c
A�r��2

, �28�

Ĥ�r�
 j�r� = � j
 j�r� ,

�
−�

+� �
−�

+�


 j�r�
 j�
� �r�d2r = � j,j�. �29�

Substituting expression �27� into Eq. �1� we find the quantum
correction to the conductance

�g�r� = −
2e2

��
�

j



 j�r�
2

� j +
1

D�


e−D���j+1/D�
�. �30�

Thus, the correction to the conductance is defined only by
the spectrum and by the set of eigenfunctions of the operator

Ĥ�r�. Further we will be interested only in spatially averaged
quantum correction to the conductance which defines the
voltage between the sample contacts. Then taking into

FIG. 3. The dependence of the value �gH vs parameter � for �a�
x=d /2 and �b� x=d /2.
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account the normalization condition for eigenfunctions we
obtain

��g� = −
2e2

��
�

j

e−D���j+1/D�
�

� j +
1

D�


. �31�

To calculate the spectrum of the operator Ĥ�r� let us expand
the magnetic field into the Fourier series

Bz�r� = H + �
bn�0

Hneibnr. �32�

We start our analysis from the case of magnetic field with
zero spatial average, i.e., we set H=0. The corresponding
vector potential can also be written in the form of Fourier
series

A�r� = �
bn�0

Aneibnr. �33�

Choosing the vector potential in the Lorentz gauge div A
=0 so that

An = i

bn,Hn�

bn
2 , �34�

we obtain the following expression for the operator Ĥ�r�:

Ĥ�r� = − �2 −
4e

�c
�

bn�0
Hneibnr�n� +

4e2

�2c2 �
bn�0

Qneibnr

+
4e2

�2c2 �
bn�0


Hn
2

bn
2 , �35�

where

�n =

bn,z0�

bn
2 , �36�

Qn = �
m�0,m�n

HmHn−m

�bn − bm�2�1 −
�bn,bm�

bm
2 � . �37�

The Hamiltonian is translationally invariant 
Ĥ�r+Rn�
= Ĥ�r�� and its eigenfunctions satisfy the Bloch theorem,


k�r� = �
bn

unei�k+bn�r. �38�

Substituting expression �38� into Eq. �29� and introducing
the value

�� = � −
4e2

�2c2 �
bn�0


Hn
2

bn
2 , �39�

we find the following equation for the amplitudes un:


�k + bn�2 − ���un +
4e2

�2c2 �
bm�0

Qmun−m

−
4ie

�c
�

bm�0
un−mHm�m�k + bn − bm� = 0. �40�

In the absence of the magnetic field only the amplitude un
corresponding to n=0 is nonzero �un=0�0 and un�0=0�.
Therefore, in this case the spectrum has the form ��k�=k2.

Further in this section we consider the solution of Eq. �40�
in the nearly free electron approximation, which means that
we will restrict ourselves to the case of low amplitude of the
magnetic field so that LH0

�d �LH0
=	�0 /H0 and d is the

characteristic scale of the magnetic field inhomogeneity�.
Moreover we will focus mainly in the effect of the weak
periodic magnetic field on the zero-temperature divergence
of the weak-localization correction to the conductance 
see
Eq. �4��. So we will consider the case of low temperatures
when L
�d and will take into account only the corrections
to the argument of the logarithm in expression �4� as these
corrections dominate in the zero-temperature limit. The con-
dition of the nearly free electron approximation applicability
and the assumption of low temperature correspond to the
white square in Fig. 1.

As it is seen from Eq. �31�, the zero-temperature diver-
gence of the conductance correction comes from the region
of low � which corresponds to the region of low 
k
. Taking
into account the condition d�LH0

we will assume that the
region 
k
� 
bn
 gives the main contribution to the low tem-
perature correction. In this case the spectrum of the operator

Ĥ�r� can be calculated in the nearly free electron approxima-
tion.

In the presence of magnetic field the spectrum can be
written in the form ���k�=k2+��1��k�+��2��k�, where ��1� is
proportional to the field amplitude and ��2� is proportional to
the square of the field’s amplitude.

The first-order correction to the zero field spectrum is
equal to the second term in expression �39� but with the
opposite sign. Thus, the correction ��1� in the spectrum �� is
zero. The second-order correction ��2� has the following
form:

��2� = −
16e2

�2c2 �
bn�0


Hn
2��n,k�2

bn
2 . �41�

Thus, the spectrum reads

��k� = k2 −
16e2

�2c2 �
bn�0


Hn
2�k,
bn,z0��2

bn
6 +

4e2

�2c2 �
bn�0


Hn
2

bn
2 .

�42�

The second term in Eq. �42� is of the order of k2�d /LH0
�4

�k2 and leads to renormalization of the “effective mass” in a
quadratic spectrum ��k��k2. This change in the effective
mass does not affect the zero-temperature divergence of the
weak-localization correction to the conductance and further
will be neglected. Thus, the resulting spectrum has the form

��k� = k2 +
4e2

�2c2 �
bn�0


Hn
2

bn
2 . �43�

Note that the second term in Eq. �43� makes an important
contribution to the dephasing time. The effective dephasing
time has the form
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1

�B
=

1

�


+
4e2D

�2c2 �
bn�0


Hn
2

bn
2 . �44�

From expression �44� one can see that for arbitrarily small
magnetic field the low temperature divergence of quantum
correction to the conductance is cut off by the finite effective
dephasing time �B. The corresponding expression for quan-
tum correction to the conductance reads

��g� �
e2

2�2�
ln� �

�


+
4e2D�

�2c2 �
bn�0


Hn
2

bn
2 � . �45�

The logarithmic term dominates in the weak-localization cor-
rection which allows us to consider the contribution of mag-
netic field only in the argument of logarithmic function, and
we neglect small additional corrections to expression �45�,
which are also caused by the magnetic field.

In the limit of zero temperature the value �B
−1 is propor-

tional to the square of amplitude of magnetic field in a sharp
contrast to the case of homogeneous field where tH

−1�H. This
analytical result is in agreement with the qualitative estimate
obtained in Ref. 9.

Now we proceed with the analysis of the case of periodic
magnetic field with nonzero but small spatial average �i.e.,
H�0 and HS0��0, S0 is the area of the unit cell defined by
the basic vectors a1 and a2� at low temperatures when L


�d. As previously we assume here that LH0
�d to use the

nearly free electron approximation. The vector potential is
given by

A�r� =
1

2

H,r� + �

bn�0
Aneibnr, �46�

where H=Hz0. To obtain the spectrum of the operator Ĥ�r�
we can first admit that the vector potential A0�r�= 1

2 
H ,r�
corresponding to the homogeneous component H of mag-
netic field is constant on the characteristic scales of a peri-

odic magnetic field.23 The spectrum of the operator Ĥ�r� has
the following form 
see Eq. �43��:

��k� = �k −
2e

�c
A0�2

+
4e2

�2c2 �
bn�0


Hn
2

bn
2 . �47�

Proceeding with the analysis in the momentum space one
needs to restore the commutation relations for the compo-
nents of quasimomentum k and the components of the radius
vector operator r̂= i� /�k. Then spectrum �47� transforms
into a new effective operator, which can be reduced to the
harmonic oscillator Hamiltonian. The spectrum of this effec-
tive Hamiltonian has the form

�m =
2eH

�c
�2m + 1� +

4e2

�2c2 �
bn�0


Hn
2

bn
2 , �48�

where m is a nonzero integer number. Note that in expression
�48� we neglect the renormalization of the effective mass in a
way similar to the derivation of spectrum �43�.

Finally carrying out the summation over m in Eq. �31� we
obtain

��g� = −
e2

2�2�
�
�1

2
+

�c

4eHD�
� − 
�1

2
+

�c

4eHD�B
�� ,

�49�

where the value �B is defined by expression �44�. Expanding
expression �49� in the limit HD�B /�0�1, we obtain

��g� � −
e2

2�2�
ln� �B

�
� +

e2

3�2�
� eHD�B

�c
�2

. �50�

Expressions �49� and �50� formally coincide with the ones
for the homogeneous field, but in a modulated magnetic field
the dephasing time �B is determined by the amplitude of
modulation.

IV. STRONG MAGNETIC FIELDS: POSITIVE
MAGNETORESISTANCE

We now proceed with the consideration of the strong field
limit and focus on the possibility to change the sign of mag-
netoresistance of 2DEG in the presence of a modulated mag-
netic field. Specifically, we consider a ferromagnetic film/
2DEG system placed in the external magnetic field
perpendicular to the 2DEG plane. Let the ferromagnetic film
have a periodic stripe domain structure. We will assume that
the film of 2DEG is thin enough to consider only the z com-
ponent Hz of magnetic field depending only on x coordinate
along the sample surface. We will denote the external field as
H and the absolute value of the periodic field of stripe struc-
ture by H0. Further the description of the weak-localization
correction to the conductance will be developed on the basis
of local approximation. This approximation is correct when
the electron dephasing length is less than the characteristic
scale of inhomogeneous magnetic field. These conditions
mean that d�min�L
 ,LB� �the gray region in Fig. 1�.

Note that the effect of positive magnetoresistance can be
observed only in the region of parameters where the local
approximation is applicable. Indeed, Eqs. �21� and �50� show
that in the opposite limit the second derivative ��g�H�� at
H=0 is positive and, as a result, the magnetoresistance is
negative.

The effect of positive magnetoresistance strongly depends
on the magnetic field configuration. We assume for simplic-
ity the thickness of ferromagnetic layer to exceed strongly
the period of stripe structure d. In this case for hybrid
ferromagnetic/2DEG structure the spatial configuration of
magnetic field in the region of 2DEG depends mostly on the
thickness of the spacer between 2DEG and ferromagnetic
film. If the spacer is much thinner than the period of stripe
structure d then the distribution of the z-component Hz�r� of
the magnetic field in 2DEG approximately has the form of
meander �see Fig. 4�. In the opposite case, when the spacer
thickness is much larger than the spatial period of the domain
structure, the magnetic field profile is smeared. On a quali-
tative level one can describe this limit considering a sinu-
soidal field profile.
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A. Periodic magnetic field in the form of meander

The periodic magnetic field in the form of meander

Hz�x� = H0 sgn
cos��x/d��

is the simplest configuration of magnetic field which reveals
the effect of positive magnetoresistance. The external homo-
geneous magnetic field applied to the system leads to the
suppression of weak localization in the regions where the
sign of the external field coincides with the one of the peri-
odic field components. In opposite, the external field results
in the increase of the interference corrections in the domains
where the signs of these field components are different. The
competition between these two effects defines the resulting
dependence of the averaged conductance vs an external ho-
mogeneous field. If the increase in the weak-localization cor-
rection dominates then the resulting dependence of averaged
conductance vs external homogeneous magnetic field is de-
creasing. In this case one can conclude that 2DEG has posi-
tive magnetoresistance.

Let us search for the region of parameters, where the ef-
fect of positive magnetoresistance can be observed. Within
the local approximation the averaged conductance is defined
by the following expression:

�gm�h�� = 1
2 
g�h + h0� + g�h − h0�� , �51�

where h0=4eH0D�
 /�c,

g�H� = gD −
e2

2�2�
�
�1

2
+

�c

4e
H
D�
� − 
�1

2
+

�c

4e
H
D�

�� ,

and gD is the Drude conductance. Introducing dimensionless
variables we obtain

g�h� = gD − g0�
�1

2
+

�


h
� − 
�1

2
+

1


h
�� , �52�

where g0=e2 /2�2�, �=�
 /�, and h=4eHD�
 /�c. Expanding
expression �51� into the Taylor’s series for h�h0 we find

�gm�h�� � g�h0� + 1
2g��h0�h2.

One can see that the positive magnetoresistance is realized
for h0, which satisfies the condition

g��h0� 	 0. �53�

This condition is realized when the amplitude of periodic
magnetic field is larger than some critical value hc, which
depends on the parameter �. The dependence hc��� for the
meander configuration of periodic magnetic field is shown in
Fig. 5�a�. For ��1 the boundary of the positive magnetore-
sistance region is defined by the condition hc�3.

These conclusions are based on Eq. �3� and, thus, are
valid only in the diffusive limit. The domain of applicability
of the diffusive approximation is defined by the condition
LB� l, where l is an elastic scattering length. In the limit
�F�LB� l �where �F is the Fermi wavelength� the weak
localization is fully suppressed and the conductance ap-
proaches the Drude value.

The dependencies of the averaged conductance of 2DEG
vs the external homogeneous field at different amplitudes of
periodic field are shown in Fig. 6�a� for �=100. One can see
that for h0�hc��� these dependencies have the sharp dips
with minima at h=h0. For high modulated amplitude of the
magnetic fields our results should be correct only near the
dips because far from the dips the condition LB� l of the
diffusive limit can be broken.

B. Periodic magnetic field in the form of cosine

As a second example we consider the effect of positive
magnetoresistance in the sinusoidal profile of the z compo-
nent of the magnetic field

Hz�x� = H0 cos��x/d� .

The expression for the averaged conductance does not de-
pend on the period of magnetic field d and has the following
form:

FIG. 4. The profile of the z component of magnetic field in the
form of meander.

(b)(a)

FIG. 5. The dependencies of the critical magnetic field amplitude hc, which separates the regions of positive and negative magnetore-
sistances vs the parameter �=�
 /�: �a� meander field profile; �b� sinusoidal field profile.
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�gc�h�� = gD − g0�
0

1 �
�1

2
+

�


h + h0 cos����
�
− 
�1

2
+

1


h + h0 cos����
��d� . �54�

Here h0=4eH0D�
 /�c. The set of dependencies of �gc�h��
for different magnitudes of amplitude h0 is shown in Fig.
6�b�. From the comparison between Figs. 6�a� and 6�b� one
can see that in periodic magnetic field with sinusoidal profile
the effect of positive magnetoresistance is weaker than in the
case of meander profile. This is caused by the fact that for
the sinusoidal profile the regions where the external and pe-
riodic fields have opposite directions shrink with the external
field increasing.

In Fig. 6�b� the amplitude of the periodic magnetic field is
shown by the vertical dotted line. One can see that for h
�h0 the behavior of �gc�h�� changes qualitatively. Even for
high amplitude of the periodic magnetic field h0 in the region
h	h0 the conductance deviates from the Drude value. This
is caused by the incomplete destruction of the interference
near the field zero points even at rather high h0 values.

Expression �54� allows us to find the condition of positive
magnetoresistance in combined cosinusoidal and homoge-
neous magnetic fields. The magnetoresistance peak appears
provided

� �2gc�h�
�h2 �

h=0
	 0,

which gives us the condition

�
0

1

g��h0��
d�

	1 − �2
	 0. �55�

Here the function g is defined by expression �52�. Condition
�55� is satisfied when the periodic magnetic field amplitude
h0 is larger than the critical value hc���. The dependence
hc��� for sinusoidal profile of periodic magnetic field is
shown in Fig. 5�b�. One can observe a clear difference be-
tween two model profiles: contrary to the meander case the
critical field diverges at large � values.

V. SUMMARY

To sum up, we have investigated the influence of inhomo-
geneous magnetic fields on the weak-localization phenom-
enon in 2DEG systems. In the low field limit we have carried
out a perturbative analysis of the conductance behavior at
high temperatures and developed an analytical procedure to
find a renormalization of the dephasing rate at low tempera-
tures. In the high field limit we have justified the validity of
the local approximation and have used this approach to cal-
culate the averaged conductance for particular model field
profiles. It is found that the systems with modulated mag-
netic field profiles provide a possibility to observe the effect
of positive magnetoresistance. We have showed that the posi-
tive magnetoresistance in ferromagnetic film/2DEG systems
can be observed experimentally provided the amplitude of
the field modulation exceeds a certain critical value depend-
ing on the system parameters.

Finally, we consider some estimates for typical 2DEG
systems and define the regions of parameters in which the
above effects can be observed experimentally.

Speaking about an experimentally realizable source of in-
homogeneous magnetic field we keep in mind plain
multilayer ferromagnetic films with domain structure. In this
case the inhomogeneous distribution of the magnetic field is
caused by the magnetic domains �such systems have been
experimentally created, for example, in Ref. 26�.

Deposition of magnetic stripes is another possibility to
create a periodic magnetic field in 2DEG. Note that such
stripes can induce the modulated electric field which can
change the local carrier density in 2DEG. This fact should
result in the modulation of the diffusive constant D. Apply-
ing our results for the description of the weak-localization
phenomenon in such systems one should generalize the cal-
culations in the spirit of Ref. 27, where the authors theoreti-
cally considered the effect of homogeneous electric field on
the weak localization. Experimentally the effect of electric
field has been observed in Ref. 28.

Considering the effect of positive magnetoresistance one
can see that the conditions of its observation are d�LH0

�d
is the period of the magnetic field and LH0

=	�0 /H0� and

(b)(a)

FIG. 6. The averaged conductance of 2DEG vs the external homogeneous field at different amplitudes of the periodic field h0 and at
�=100: �a� meander field profile; �b� sinusoidal field profile.
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L
�LH0
�for low temperatures when L
� l�. For typical am-

plitudes of the modulated magnetic field H0�10–103 Oe
induced by ferromagnetic multilayer films �see, for example,
Ref. 2� the scale d of the magnetic field should be larger than
102–103 nm. Thus, the above criterion d�LH0

can be easily
fulfilled for domain structures in typical experimental sys-
tems �see Ref. 2�. The scale d for the specific sample can be
experimentally estimated on the basis of the magnetic force
microscopy measurements. To describe the weak-localization
phenomenon in systems with such length scales of the mag-
netic field one can use the local approximation and all results
of Sec. IV should be valid. The criterion L
�LH0

can be
fulfilled at low temperatures �the value L
 also should be
greater than 102–103 nm�. The estimates show that for the
meander distribution of the magnetic field with amplitudes
H0�102–103 Oe the height of the magnetoresistance peak
can reach one half of the weak-localization correction in zero
field.

At low temperatures when LH0

2 /L
	d	LH0
�d

�10 nm,L
�1–10 �m� one can observe the effect of
renormalization of the dephasing time. In this case the con-
ductance of 2DEG is defined by expression �49�.

Note that the diffusive approximation, which has been
always exploited in our calculations, is valid for magnetic
fields B��0 / l2. In thin disordered films of Mg, Cu, Pd, etc.,
the typical value of the elastic length l is of the order l
�1–10 nm �see, for example, Refs. 29–31�, and for such

2DEG systems the diffusive approximation is correct for
magnetic fields, which are less than 105–107 Oe.

For high-mobility samples on the basis of GaAs/AlGaAs
heterostructures �see, for example, Ref. 25� the range of
validity for the diffusive approximation is narrower. In par-
ticular, for the samples with the electron mobility ��
�1 m2 V−1 s−1� the diffusive approximation is valid for
magnetic fields, which are less than 10 Oe. Still even at such
weak magnetic fields the effect of positive magnetoresistance
can be observed. Indeed the height of the magnetoresistance
peak depends on the ratio between the amplitude H0 of the
modulated magnetic field and the value �0 / l2 �the height of
the peak is large when H0��0 / l2�. The inelastic length L


strongly depends on temperature, thus, cooling the sample
one can make the value �0 / l2 much less than 1 Oe �see, for
example, Ref. 25�. Thus even in high-mobility samples the
effect of positive magnetoresistance can be observed.
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