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We formulate a model of the time-resolved Kerr rotation experiment on an ensemble of independent holes
in a semiconductor nanostructure �e.g., confined in a quantum dot or trapped in a quantum well� in a tilted
magnetic field. We use a generic Markovian description of the hole and trion dephasing and focus on the
interpretation of the time-resolved signal in terms of the microscopic evolution of the spin polarization. We
show that the signal in an off-plane field contains components that reveal both the spin relaxation rate and the
spin coherence dephasing rate. We derive analytical formulas for the hole spin polarization, which may be used
to extract the two relevant rates by fitting to the measurement data.
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I. INTRODUCTION

In recent years, considerable experimental progress has
been achieved in the optical control and readout of spin
states of electrons and holes in semiconductor
nanostructures.1–8 Extended life times of spin states in quan-
tum dots �QDs� �Ref. 9� and quantum wells �QWs� �Ref. 10�
seem very promising for applications in spintronics, e.g., in
the form of spin memory,10,11 or in semiconductor spin-based
quantum computing.12,13 Particular expectations are related
to hole spins, since the reduced hyperfine interaction in this
case makes the hole spin decoherence even slower.14,15

In order to design feasible spin-based devices, one obvi-
ously has to understand the properties of spins in confined
semiconductor systems. The most essential parameters that
must be known in order to predict the evolution of a spin in
a real structure are the Landé g tensor, which defines the
unitary evolution of a spin in a magnetic field, and the relax-
ation �dephasing� times, accounting for the impact of the
environment. As the Zeeman shifts can be rather small and,
therefore, hard to resolve spectrally, many experiments rely
on time-resolved methods.16–19 Among those, time-resolved
Faraday5,20–22 or Kerr23–27 rotation measurements have
proven to be very useful. In these experiments, one studies
the rotation of the polarization plane of transmitted or re-
flected radiation �probe pulse� due to spin polarization ex-
cited by a circularly polarized pump pulse. In this way, the
decay of spin polarization and the spin precession around the
quantization axis can be observed as a function of delay time
between the pulses.

The theoretical challenge in the description of confined
hole spin properties is essentially threefold. First, one has to
model the nanostructure in order to find the effective g factor
for holes in a two- or zero-dimensional confinement. This is
usually done using k · p methods18,28,29 and the results are in
reasonable agreement with measurements. Second, one
needs to describe the spin dephasing and relaxation pro-
cesses. Phonon-mediated processes are often invoked for
QDs,30,31 although other channels are also taken into
account.32 In QWs, phonons are expected to dominate for
trapped holes, while scattering due to compositional disorder

is invoked for delocalized ones.33 Another reason for dephas-
ing may be system inhomogeneity, in particular g-factor
fluctuations.34

In the present paper, we deal with the third aspect of the
problem, namely, the microscopic origin of the measured sig-
nal and, more importantly, the relation between the magnetic
�spin� orientation, which is supposed to be studied, and the
optical field, which is experimentally accessible. We analyze
also in what way the optical response �in particular, Kerr
rotation� of the system depends on the parameters character-
izing the system evolution. In the case of a time-resolved
experiment with pulsed excitation, the physical interpretation
of the detected optical response becomes nontrivial and con-
stitutes a subject of study by itself.35,36 This kind of theoret-
ical discussion has been presented for excitons in a QW �Ref.
37� and, on a phenomenological level, for an n-doped QW
system.24 Very recently, a complete analysis of the Kerr and
Faraday response for ensembles of n-doped QDs in an in-
plane magnetic field was presented.36 Here, we focus on
trapped hole states in QWs and on holes confined in QDs.
We discuss the microscopic origin of the time-resolved Kerr
rotation �TRKR� signal in a pump-probe experiment on a
p-doped sample in tilted magnetic field. We perform a com-
plete analysis in the density matrix formalism and describe
hole spin dephasing on a general level, assuming only its
Markovian character. Our description is applicable to various
decoherence processes that have a well-defined Markov
limit, which is applicable under given conditions. Examples
of such processes include phonon-assisted transitions or
Coulomb scattering. We discuss how the “longitudinal” and
“transverse” dephasing rates �defined with respect to the
tilted quantization axis� manifest themselves in the detected
TRKR signal.

As a result of our study, we point out that the optical
signal follows the spin polarization in the limit of strong
dephasing of optical coherences. The same holds true in the
case of long-lived optical coherences if the phase relation
between the pulses can be considered random or, for an ex-
tended system, if the experimental geometry assures that the
coherent part of the signal is emitted in a different direction.
We show that the dephasing of the hole spin precession beats
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is governed by two rates involving a combination of the two
relaxation rates. In a homogeneous system, this may allow
one to extract both rates from a single experiment. In addi-
tion, we study the effect of inhomogeneity of g factors on the
observed TRKR signal.

The paper is organized as follows. In Sec. II, we describe
the system and the experiment to be modeled. The next Sec.
III contains the microscopic derivation of the optical TRKR
signal. In Sec. IV, we study the spin dynamics using a gen-
eral model of Markovian decoherence, including also inho-
mogeneous dephasing. The relation between the optical sig-
nal and the spin polarization is discussed in Sec. V. In Sec.
VI, we present the results of our simulations and discuss the
dependence of the TRKR signal on the off-plane tilt angle of
the magnetic field and on the relative strength of different
contributions to dephasing �longitudinal, transverse, inhomo-
geneous�. These results are discussed in Sec. VII. The Ap-
pendix contains the derivation of the general Lindblad equa-
tion describing Markovian decoherence in the hole-trion spin
system.

II. SYSTEM

We consider the optical response of a system composed of
trapped �localized� holes which may be considered indepen-
dent �noninteracting�. This situation may correspond to a
p-doped quantum well in which holes are localized by some
kind of trapping potentials, e.g., interface fluctuations or
nearby defects. The theory applies also to ensembles of
quantum dots in a remotely p-doped structure. In thermal
equilibrium, each trapping center is assumed to accommo-
date one hole. The area density of such trapped holes is �.
Only heavy hole states are considered, since the heavy-light
hole splitting is usually large in confined systems. The fun-
damental optical transition at each trapping center consists in
an excitation of an electron-hole pair which, together with
the resident hole, forms a bound trion. It is assumed that the
temperature is low and the driving pulses are spectrally nar-
row enough to restrict the description to the lowest hole and
trion states. The system is placed in a magnetic field B ori-
ented at an angle � with respect to the growth axis. The
quantum well or layer of QDs is covered by a capping layer
of thickness D.

A single trapped hole-trion system is described by the
Hamiltonian

H0 = −
1

2
�BBĝh�h −

1

2
gt�BB · �t, �1�

where �B is the Bohr magneton, ĝh is the hole Landé tensor,
gt is the Landé factor of the trion �i.e., essentially, of the
electron�, which we assume isotropic, and �h and �t are the
vectors of Pauli matrices corresponding to the hole and trion
spin, respectively �the hole is treated as a pseudospin-1/2
system�. Here and in the following, we describe the system
in a reference frame rotating with the zero-field hole-trion
transition frequency �.

The spin states of each hole or trion can be described in
terms of the “spin-up” and “spin-down” states, that is, the
basis states with definite projections on the growth axis �nor-

mal to the QW or to the plane of QDs�, �↑ � , �↓ � �for a hole�
and �T↑� , �T↓� �for a trion�. For the magnetically isotropic
trion, we define the two Zeeman eigenstates

�T+� = cos
�

2
�T↑� + sin

�

2
�T↓� ,

�T−� = − sin
�

2
�T↑� + cos

�

2
�T↓� .

In the case of the hole, the quantization axis does not neces-
sarily coincide with the field orientation. The hole spin
eigenstates can be written as

�+ � = cos
�

2
�↑� + sin

�

2
�↓� ,

�− � = − sin
�

2
�↑� + cos

�

2
�↓� ,

where � is a certain angle depending on the structure of the
hole Landé tensor. In our simulations, the latter will be as-
sumed isotropic in the structure plane, so that

� = arctan�gh�

gh�

tan �� , �2�

where gh� and gh� are the in-plane and axial components of
ĝ. The Zeeman energy splitting for the hole is then ��h

=�g�
2 sin2 �+g�

2 cos2 ��BB, Note, however, that the actual
structure of the Landé tensor enters the theory only via the
angle � and the Zeeman energy ��h which can easily be
found also for structures with a more complicated form of
the Landé tensor.38

A laser tuned to the trion line excites the system by two
pulses �pump-probe configuration�. The pulses propagate
nearly perpendicular to the structure plane �a small deviation
of the probe beam from the perpendicular axis is needed to
separate the contributions to the third order response, as dis-
cussed in Sec. V�. The first pulse arrives at t=0 and is cir-
cularly polarized ��+�. The second, linearly �X� polarized
one arrives at t=	. The amplitudes of the electric field in the
two pulses �outside the semiconductor� are Ei= �Ei�e−i
i, i
=1,2. The electric field couples to the interband transitions
via a dipole moment d. The pulse shape is described by a
function ��s�, which is of the order of unity. The pulse length
will be denoted by 	p. The reflection amplitude at the
semiconductor-vacuum interface is r= �1−n� / �1+n�, where
n is the refractive index of the capping layer. The relevant
Hamiltonian in the rotating wave approximation is then

Hlas =
A1

2
�	 t

	p

ei
1�↑��T↑� +

A2

2�2
�	 t − 	

	p



�ei
2��↑��T↑� + �↓��T↓�� + H.c., �3�

where Ai=d�Ei��1+r� are the effective amplitudes of the two
pulses inside the material. For the pulse shapes we will as-
sume Gaussians, ��s�=exp�−�1 /2�s2
.

In addition to the evolution governed by the Hamiltonian
H=H0+Hlas, the system undergoes dissipative dynamics due
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to the interaction with its environment. As long as this deco-
herence can be described in the Markov limit �which is rea-
sonable in view of the relatively long time scales involved�,
its effect on the hole spin can be described by the universal
Lindblad superoperator �see Appendix�. In this limit, the
open system evolution is described by three dephasing rates:

� describe the longitudinal decoherence, that is, spin relax-
ation between the Zeeman eigenstates for a given field ori-
entation, while 
0 accounts for additional pure dephasing
processes. The two spin-flip rates 
� are related by


− = 
+ exp�−
��h

kBT
� ,

which guarantees the detailed balance condition at equilib-
rium. Here, 
+ is the transition rate for a “down-flip” �from
the upper to the lower Zeeman state�, and 
− is the rate for an
“up-flip.” Note that, apart from this relation, in a specific
model of hole-reservoir interaction, the rates 
� will depend
on the Zeeman splitting and temperature via the spectral den-
sity of the relevant reservoir �see Eq. �A6�
. However, in our
general discussion, we treat one of them �or their sum� as a
parameter of the model.

The Lindblad dissipator describing the hole decoherence
has the form

Lh��
 = 
+��−
�h���+

�h� −
1

2
��+

�h��−
�h�,��+�

+ 
−��+
�h���−

�h� −
1

2
��−

�h��+
�h�,��+�

+
1

2

0��0

�h���0
�h� −

1

2
��0

�h��0
�h�,��+� , �4�

where

�+
�h� = ��−

�h�
† = �+ ��− �, �0
�h� = �+ ��+ � − �− ��− � .

An analogous dissipator describes the spin dephasing of the
trion. However, since the trion spin coherence time is much
longer than its lifetime, the decay of spin coherence will be
governed by the latter and the trion spin dephasing can be
neglected. Note that the spin dephasing in the Markov limit
is necessarily described in the eigenbasis �+� , �−� defined by
the field orientation, which differs from the “spin-up” and
“spin-down” basis defined by the structure symmetry and by
the optical selection rules.

The last part of the model is the radiative decay of the
trion, which is accounted for by the Lindblad superoperator

Lrad��
 = �1��−
�↑���+

�↑� −
1

2
��+

�↑��−
�↑�,��+ + �−

�↓���+
�↓�

−
1

2
��+

�↓��+
�↓�,��+� +

1

2
�0��0��0 −

1

2
��0

2,��+� ,

�5�

where �1 is the radiative decay rate, �0 is the additional pure
dephasing rate, and the transition operators are

�+
�↑� = ��−

�↑�
† = �↑��T↑�, �+
�↓� = ��−

�↓�
† = �↓��T↓� ,

�0 = �T↑��T↑� + �T↓��T↓� − �↑��↑� − �↓��↓� .

Note that the distinction between the trion recombination and
pure dephasing is essential here not only because of the pres-
ence of various pure dephasing mechanisms in real
systems39–42 but, much more importantly, because of the dif-
ferent effect these processes have on the spin-dependent op-
tical response: both of them contribute to the decay of the
optical polarization but pure dephasing, contrary to recombi-
nation, does not affect the trion spin occupations. In an en-
semble of emitters, the dephasing of trion coherences can be
in fact dominated by inhomogeneous effects �distribution of
the trion transition frequencies�. This would result in a dif-
ferent form of the coherence decay. However, from the point
of view of the present study, this difference is of minor im-
portance and only the characteristic time of the coherence
decay is essential. Therefore, we simplify the discussion by
neglecting this kind of inhomogeneity and using only the
pure dephasing rate �0 to characterize the optical dephasing.

III. TRKR RESPONSE

In this Section, we define the measured TRKR signal and
clarify its relation to the microscopic variables �elements of
the density matrix� defining the state of the carriers in a
nanostructure at the moment when the probe pulse arrives.
We show how the phenomenology of Kerr rotation emerges
in the homodyne detection process from the interference of
the macroscopic optical field reflected from the system sur-
face with the radiation due to the interband optical polariza-
tion in the nanostructure. Finally, we relate the latter to the
spin polarization.

The experimentally measured effect is a rotation of the
polarization plane of the probe beam reflected from the
sample. The total field is projected onto the two axes x and y,
oriented at 45° with respect to the polarization of the probe
beam. The rotation of the polarization axis is given by the
difference of intensity between the corresponding two com-
ponents of the field,24,36

�I =
1

�0c
��Ey

2�t�� − �Ex
2�t��
 =

1

�0c
Im�E+E−

�� , �6�

where E+ and E− denote the �complex� amplitudes of the
circularly right- and left-polarized components of the total
field and � · � denotes time averaging over the period of the
electromagnetic field.

On the microscopic level, the observed reflected field is a
sum of the beam reflected at the surface of the capping layer
�this process will be treated on the usual, macroscopic level�
and the field emitted by the nanostructure. Thus, the two
circular polarization components of the total field incident at
the detector are

E� = ER� + ES�, �7�

where ER� is the field reflected from the surface of the cap-
ping layer and ES� is the field emitted by the carries trapped
in the nanostructures. For pulsed excitation, slow evolution
of the field amplitudes has to be taken into account. The field
reflected at the surface simply follows the pulse envelope
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and the amplitudes of its �+ and �− components at the
sample surface are both equal to

ER��t� � ER�t� =
1
�2

rE2�	 t − 	

	p

 . �8�

The optical signal emitted from the structure originates
from the interband polarization. If ��t� denotes the density
matrix representing the system state then each trapped hole-
trion superposition contributes a �+ component of the dipole
moment �+=d�T↑���t��↑ �e−i�t+c.c. and a �− component
�−=d�T↓���t��↓ �e−i�t+c.c.. This results in the polarization
current

J+ = − i��d�T↑���t��↑�e−i�t + c.c.

�and analogous for J−� and the amplitudes of the correspond-
ing two components of the radiation emitted from the struc-
ture �at the sample surface� are

	ES+�t�
ES−�t�


 =
i

2
�0c�d�	�T↑���t��↑�

�T↓���t��↓�

e−i�, �9�

where �=2D�n /c is the phase shift �with respect to the field
ER� due to propagation through the capping layer.

Note that if the two components have equal phases �as is
indeed the case, see below� then the radiation emitted from
the nanostructure is, in general, elliptical but its polarization
axis is not rotated. Moreover, the intensity of this signal is
weak. What one really measures in the homodyne detection
scheme is, however, the signal coherently superposed on the
much stronger field reflected from the surface of the sample.
Substituting Eqs. �8� and �9� into Eq. �7� and then into Eq.
�6� and retaining only terms of the first order in the nano-
structure response ES� one finds the TRKR signal

�I�t� =
1

�0c
Im�ER

� �t�ES+�t� + ER�t�ES−
� �t�


=
1

2
��d Re�ER

� �t��T↑���t��↑�e−i�

− ER�t��T↓���t��↓��ei�
 . �10�

In the above discussion, we have assumed that all the hole-
trion systems evolve under the same conditions. The effect of
inhomogeneity will be treated in Sec. IV B. Equation �10�
describes the measured signal in terms of the quantum state
of a nanostructure. This equation can be used to find the
system response without any further simplifying assumptions
based on a numerical simulation of the open system evolu-
tion.

The next step is to derive the relation between the ele-
ments of the density matrix and the spin polarization before
the arrival of the probe pulse. This relation can be expressed
in an analytical form36 under the assumption that the probe
pulse is much shorter than any relevant time scale of the
system dynamics �consistent with the idea that it is supposed
to probe the instantaneous state of the system�. One has to
assume also that the dephasing times of interband coherences
are longer than the pulse duration.

In order to relate the Kerr response to the density matrix
formalism, we note that the system state ��t�, which gives
rise to the measured polarization, is prepared by the probe
pulse from the state just before this pulse, ��	−�, where 	−

denotes the time instant just before the arrival of the probe
pulse. Under conditions stated above, we can completely ne-
glect the system evolution during the pulse. Then, the system
density matrix is transformed according to ��t�
=W�t���	−�W†�t�, with the unitary operator

W�t� = cos
�2�t�

2
I − i sin

�2�t�
2

���↑��T↑� + �↓��T↓��ei
2 + H.c.
 ,

where

�2�t� =
A2

�2�
�

−�

t

ds�	 s − 	

	p

 .

With this time evolution operator, one finds for the inter-
band matrix elements �for �= ↑ ,↓�

�T����t���� = cos2�2�t�
2

�T����	−���� +
i

2
sin �2�t�

���T����	−��T�� − �����	−����
e−i
2

+ sin2�2�t�
2

�����	−��T��e−2i
2. �11�

Let us first assume that the delay time between the pump and
the probe pulse is much longer than the interband dephasing
time. �We will come back to the case when this is not ful-
filled in Sec. V�. In this case, the interband matrix elements
at time 	− are negligible and we only have the contributions
proportional to sin �2�t�, i.e., the terms involving the occu-
pation differences between trion and hole states. Substituting
this into Eq. �10� and using expression �8� for the reflected
field we find for the TRKR signal

�I =
1

4�2
rE2�	 t − 	

	p

��d sin � sin �2�t�

� ��t�	−� − �h�	−�
 , �12�

where

�t�t� = �T↑���t��T↑� − �T↓���t��T↓� , �13a�

�h�t� = �↑���t��↑� − �↓���t��↓� �13b�

are trion and hole spin polarizations, respectively.
We neglect here the delay between the field envelopes due

to propagation through the capping layer, which is of the
order of 1 fs, that is, much shorter than the picosecond pulse
duration. The signal described by Eq. �12� is proportional to
the difference of hole and trion spin polarizations just before
the probe pulse. In this way, the TRKR measurement gives
access to the evolution of the spin polarizations in the sys-
tem.

For a pulsed excitation, �I depends on time. We define
the time-integrated �TI� TRKR signal as
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�ITI = �
−�

�

dt�I�t� . �14�

This quantity is a function of the time delay 	 between the
pump and probe pulses. Since the homodyne response is pro-
portional to the envelope of the probe pulse, the integration
in the above equation is done over the duration of the probe
pulse.

We note that

�
−�

�

dt�	 t − 	

	p

sin �2�t� =

�2�

A2
�1 − cos �2
 ,

where

�2 =
A2

�2�
�

−�

�

dt�	 t − 	

	p



is the area of the probe pulse. Hence, the integrated detection
signal is �see also Ref. 36�

�ITI = ���
r sin �

4�1 + r�
�1 − cos �2���t�	−� − �h�	−�
 . �15�

In the weak pulse limit, the spin polarizations are propor-
tional to the intensity of the pump pulse, hence the signal is
also proportional to this intensity. Moreover, it follows di-
rectly from Eq. �15� that in this limit the response is also
proportional to the intensity of the probe pulse.

The quantity ��� sets the natural energy scale for the
emitted radiation and is equal to the energy the system would
emit per unit area if each hole-trion system generated one
photon. Thus, �ITI / �����, which is the quantity to be plotted
based on the results of simulations in Secs. V and VI, corre-
sponds to the average number of photons per one hole-trion
emitter and one repetition of the experiment.

IV. HOLE AND TRION SPIN DECOHERENCE

In this section, we present a detailed analysis of the spin
dynamics based on an analytical solution of the equation of
motion for the density matrix in an idealized situation of
coherent optical driving and fast dephasing of optical coher-
ences. The validity of these assumptions and the relation
between the quantities calculated here and the actual signal
are discussed in Sec. V. We begin with a discussion of
dephasing of a single system. Then we study the effect of
inhomogeneity of g factors across the ensemble.

A. Homogeneous dephasing

The set of dynamical variables describing the evolution of
the system consists of the trion and hole populations

Nt�t� = �T↑���t��T↑� + �T↓���t��T↓�, Nh�t� = 1 − Nt�t� ,

the trion and hole spin polarizations defined in Eqs. �13a�
and �13b�, as well as trion and hole spin coherences,

Xt�t� = �T↑���t��T↓� + �T↓���t��T↑� ,

Yt�t� = i��T↑���t��T↓� − �T↓���t��T↑�� ,

Xh�t� = �↑���t��↓� + �↓���t��↑� ,

Yh�t� = i��↑���t��↓� − �↓���t��↑�� .

Initially, all trion variables are zero. The spin of the
trapped hole is in the thermal equilibrium state, which, in the
basis of the hole spin eigenstates, is characterized by a spin
polarization

p = �+ ��eq�+ � − �− ��eq�− � = tanh	 ��h

2kBT

 ,

where �eq is the density matrix for the system state at equi-
librium. This corresponds to the following initial values for
the dynamical variables of the holes:

Nh�t�0 = 1, �h�t�0 = p cos � ,

Xh�t�0 = p sin �, Yh�t�0 = 0.

In the present discussion, we assume that the pulse dura-
tions are much shorter than any characteristic time scale of
the spin dynamics and their action may be approximately
treated as instantaneous. This means that the excitation is
coherent �the case of dephasing times comparable with pulse
durations is discussed in Sec. V�. We assume also that it is
resonant �effects of detuning for the case of n-doped struc-
tures and exact Voigt geometry have been studied in Ref.
36�. Then, the effect of the pump pulse is to perform the
rotation �→V�V†, where

V = �↓��↓� + �T↓��T↓� + cos
�1

2
��↑��↑� + �T↑��T↑��

− i sin
�1

2
��↑��T↑�ei
1 + �T↑��↑�e−i
1� ,

and

�1 =
	pA1

�
�

−�

�

ds��s�

is the pulse area. The pulse generates the trion population
and depletes the hole population accordingly,

Nt�0� = sin2�1

2

p cos � + 1

2
, Nh�0� = 1 − Nt�0� ,

generates the hole and trion polarization,

�h�0� =
	1 + cos2�1

2

p cos � − sin2�1

2

2
,

�t�0� = sin2�1

2

p cos � + 1

2
,

and reduces the hole spin coherence which exists at thermal
equilibrium in a tilted magnetic field

Xh�0� = cos
�1

2
p sin � .

The other dynamical variables remain zero.
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The subsequent dynamics of the system is generated by
the Zeeman Hamiltonian H0 and by the dissipators Lh and
Lrad,

�̇ = −
i

�
�H0,�
 + Lh��
 + Lr��
 . �16�

For the occupation, this yields a single decay equation with
the obvious solution

Nt = Nt�0�e−�1t, Nh = 1 − Nt.

When the trion spin dephasing is neglected the trion vari-
ables evolve according to a closed set of three equations,

�̇t = − �1�t − �t sin �Yt,

Ẋt = − �1Xt + �t cos �Yt,

Ẏt = − �1Yt − �t cos �Xt + �t sin ��t,

where �t=gt�BB /� is the trion Larmor frequency. The solu-
tion for the trion spin polarization is easily found to be

�t�t� = �t�0�e−�1t�cos2 � + cos �tt sin2 �
 . �17�

For the hole variables, the equation of motion �16� leads
to the system of equations with Nh and �t acting as source
terms,

�̇h = − 	
0 sin2 � + 
1
1 + cos2 �

2

�̃h +

1

2
	
0 −


1

2

sin 2�X̃h

− �h sin �Yh − 
� cos �Nh + �1�t,

Ẋh = − 	
0 cos2 � −

1

2
cos 2�
X̃h + �h cos �Yh

+
1

2
	
0 −


1

2

sin 2��̃h −

1

2

� sin 2�Nh,

Ẏh = − �
0 +

1

2
�Yh − �h cos �X̃h + �h sin ��̃h,

where 
1=
++
−, 
�=
+−
−, and

�̃h = �h − p cos �, X̃h = Xh − p sin �

�the equilibrium values are subtracted�. By the Laplace trans-
form technique, one finds the solution for the hole spin po-
larization in the form

�h�t� = �
k=1

5

Cke
�kt + c.c. �18�

The exponents �k can be found exactly in a simple form,
while the expressions for the amplitudes Ck are rather
lengthy, therefore we use the fact that the hole dephasing
rates 
�,0 are much smaller than all the other rates and fre-
quencies and give the formulas for Ck in the leading order,
that is, neglecting terms O�
�,0�. The result is

�1 = − �1,

C1 = −
1

2

�h
2 cos2 � + �1

2

�h
2 + �1

2 cos2 ��t�0� ,

�2 = − i�t − �1,

C2 = −
1

2

�1

�1 + i�t

�h
2 cos2 � + ��1 + i�t�2

�h
2 + ��1 + i�t�2 sin2 ��t�0� ,

�3 = − 
1,

C3 = −
1

2

�t
2

�t
2 + �1

2cos2 � sin2 ��t�0� +
1

4
sin 2�X̃h�0� ,

�4 = − i�h − 
0 −

1

2
,

C4 =
1

2

�1

�1 − i�h

�t
2 cos2 � + ��1 − i�h�2

�t
2 + ��1 − i�h�2 sin2 ��t�0�

+
1

2
sin2 ��̃h�0� −

1

4
sin 2�X̃h�0� ,

�5 = 0,

C5 = p cos � .

The values of the amplitudes Ci as a function of the orienta-
tion of the magnetic field for the parameters assumed in this
paper �Table I� are plotted in Fig. 1.

According to Eqs. �17� and �18�, there are three kinds of
contributions to the total spin polarization �h−�t. The con-
stant one, �C5 ,�5�, corresponds to the equilibrium spin po-
larization. Exponentially decaying contributions, given by
the first term in Eq. �17� and by the first and third term in Eq.
�18�, originate from the decay of the spin population with
respect to the respective quantization axes. Since we as-
sumed that the trion spin lifetime is limited by the recombi-

TABLE I. System parameters that are fixed throughout the pa-
per. The hole g factors are taken as for a 6 nm thick quantum well
�Refs. 18 and 43�. Parameters correspond to an AlGaAs structure
�Ref. 25�.

Electron g factor ge=0.26

Hole g factor

Axial g� =0.6

In plane g�=0.04

Trion recombination time 1 /�1=50 ps

Refractive index n=3.44

Pulse duration �pump and probe� 	p=1 ps

Pulse amplitude

Pump dE1=0.5 meV

Probe dE2=0.1 meV

Temperature T=1.6 K

Magnetic field B=7 T
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nation time, the trion spin population decays with the recom-
bination rate �1. The hole population decays with the spin
relaxation rate 
1. Since only spin polarization along the
growth axis is relevant in the optical measurement, these
contributions vanish when the spin quantization axis is per-
pendicular to the structure symmetry axis, that is, cos �=0
and cos �=0 for the hole and trion contributions, respec-
tively. It should be noted that due to the strong anisotropy of
the hole g factor, the out-of-plane component of the hole spin
is large already in a slightly tilted magnetic field. Therefore,
the occupations of the Zeeman levels and their thermaliza-
tion affect the optical response already in slightly tilted
fields. The second term in Eq. �17� and the 2nd and 4th terms
in Eq. �18� reflect the spin precession around the quantiza-
tion axis. This precession affects the optically detected spin
polarization only if the quantization axis is tilted with respect
to the structure axis, that is, sin ��0 and sin ��0.

B. Inhomogeneous effects

If the measured signal originates form an ensemble of
emitters, it becomes dephased due to variation in system pa-
rameters across the ensemble. In our case, nonuniformity of
g factors makes the individual spins precess with various
rates, which destroys the overall spin polarization.

We assume that the number of systems in the ensemble is
sufficient to describe the distribution of g factors by a con-
tinuous distribution function. We neglect possible variation
in the quantization axis. It is convenient to describe the in-
homogeneity in terms of the trion and hole precession fre-
quencies �t and �h, for which we assume Gaussian distribu-
tions

f i��̃i� =
1

�2��i

e−��̃i − �i�
2/2�i

2
, i = t,h , �19�

where �t, �h now become the central frequencies of the cor-
responding distributions. We assume that �i��i, so that a
variation in the amplitudes Ck in Eq. �18� can be neglected.
Then, upon averaging with the distribution functions �19�,
the trion and hole spin polarizations �Eqs. �17� and �18�

become

�t�t� = �t�0�e−�1t�cos2 � + e−�t
2t2/2 cos �tt sin2 �
 , �20�

�h�t� = �
k=1

5

Cke
fk�t� + c.c., �21�

where the amplitudes Ck are the same as in Eq. �18�,
fk�t�=�kt for k=1,3 ,5, f2�t�=−i�tt−�1t−�t

2t2 /2, and f4�t�
=−i�ht− �
0+
1 /2�t−�h

2t2 /2. As usual, the exponential de-
cay of a single system is replaced by a Gaussian one if the
dispersion of frequencies is larger than the homogeneous
dephasing rates.

V. SPIN POLARIZATION AND TRKR RESPONSE

The discussion presented in the previous sections was
based on some simplifying assumptions. On the one hand, in
our discussion of the TRKR response in Sec. III, we concen-
trated on delay times longer than the interband dephasing
time. Therefore we did not discuss the contributions to the
interband polarization resulting from the interband coher-
ences created by the pump pulse. In quantum wells, such
interband coherences vanish very quickly but in self-
assembled quantum dots their lifetime may be limited only
by the recombination time, which is of the order of a
nanosecond.44,45 On the other hand, the derivation of the ana-
lytical formulas in Sec. IV, as well as of the relation between
the spin polarization and the TRKR signal, is based on the
assumption of coherent excitation. This, in turn, requires the
coherence time to be long enough and the coherence assump-
tion breaks if dephasing of the optical coherences is fast. In
this section, we will deal with these issues.

In order to model the full optical response of the system
we will numerically solve the evolution equation

�̇ = −
i

�
�H0 + Hlas,�
 + Lh��
 + Lrad��
 , �22�

calculate the optical signal according to Eq. �10�, and inte-
grate the result according to Eq. �14�. Some of the param-
eters will be kept constant for all the results presented in this
paper. The values of these fixed parameters �roughly corre-
sponding to an AlGaAs QW system similar to that studied in
Ref. 25� are collected in Table I. The trion Larmor frequency
is �t=0.16 ps−1. The pulse amplitudes chosen here corre-
spond to the pulse areas �1=0.12� and �2=0.016� for the
pump and probe pulse, respectively. These values assure that
the optical excitation is well in the linear regime, so that
varying the pulse areas leads only to uniform rescaling of the
signal intensity proportionally to the pulse intensities, that is,
to �1

2 and �2
2.

First, we will discuss the additional contributions in the
case of delay times shorter or of the same order as the inter-
band dephasing time. In this case, also the interband terms at
time 	− in Eq. �11� contribute to the total interband matrix
elements at time t and thus to the emitted radiation. How-
ever, we notice that the phase of the second pulse 
2 enters
differently in the three terms. Keeping in mind that the inter-
band coherences created by the first pulse carry a phase fac-
tor e−i
1 �in the case of �T↑���	−��↑ �� and ei
1 �in the case of
�↑ ���	−��T↑��, the total phases are 
1 for the first term, 
2 for
the second term, and 2
2−
1 for the third term. Hence, only
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FIG. 1. �Color online� The amplitudes of the contributions to the
TRKR signal �Eqs. �17� and �18�
 as a function of the tilt angle of
the magnetic field. The amplitudes C1 and C2 include both the hole
contributions �Eq. �18�
 and the corresponding trion contributions
from Eq. �17� with the same time dependence.
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the second term holds a fixed phase relation with the re-
flected beam and can produce a nonvanishing homodyne sig-
nal if the relative phase between the pulses is random. More-
over, the two exciting laser pulses are usually applied to the
sample at slightly different directions k1 and k2. Then, for an
extended system �ensemble of emitters�, also the emitted ra-
diation originating from the three contributions has different
directions. The first one is emitted in the direction k1 of the
reflected pump pulse, the second one in the direction of the
reflected probe pulse k2 and the third one in the background-
free reflected four-wave mixing direction 2k2−k1. Thus we
find that the interband coherences resulting from the pump
pulse excitation indeed give rise to emitted signals, but they
do not contribute to the TRKR signal �Eq. �10�
. The only
exception would be the case of temporally overlapping pump
and probe pulses, where the actions of pump and probe
pulses cannot be treated separately, and the case of perfectly
aligned, phase-locked pulses where the interference between
the interband coherence from the first pulse and the second
pulse gives rise to strong coherent control oscillations. Both
cases, however, are not relevant for the purpose of this paper.

The numerical solution for the system evolution accord-
ing to Eq. �22� does not involve any simplifying assump-
tions, apart from the resonant excitation condition. However,
in this model, the geometrical relations between various di-
rections in which the signals are emitted are not taken into
account. Moreover, in a single simulation run, the relative
phase between the pulses is fixed. Therefore, the calculated
optical response contains both the TRKR signal and the co-
herent components. A comparison of the simulated signal to
the spin polarization in this case, shown in Fig. 2�a�, reveals
that the former not only differs by orders of magnitude but
also is uncorrelated with the latter. This is the case even for
delay times a few times longer than the trion relaxation time
since the coherent contribution belongs to a lower order of
the optical response and is many orders of magnitude stron-
ger in the weak excitation limit. The coherent artifacts can be
eliminated from the simulation result by simply averaging
the results obtained with opposite signs of the probe ampli-
tude. If this is done, the simulated signal agrees with the
analytical formulas, as expected �see Fig. 2�b�
. This con-
firms that the approximations made in the analytical solution
do not noticeably affect the result.

In the opposite case of strong interband dephasing, the
analytical formulas are no longer valid. In Fig. 3�a�, we com-
pare the analytical result �red solid line� with the simulated
signal for two values of the dephasing rate �0, which de-
scribes additional pure dephasing of the optical coherence
�beyond that associated with the radiative decay the rate of
which, �1 is fixed throughout the paper�. As the dephasing
time becomes comparable with the pulse duration, the signal
is quenched due to the reduced efficiency of optical pumping
and probing. We note, however, that this quenching is uni-
form, that is, it does not modify the shape of the pulse. This
is clear from Fig. 3�b�, where the simulated response for
�0=5 ps−1 has been multiplied by a factor of 16. Upon this
rescaling, the simulated signal matches the analytically cal-
culated one almost exactly.

Thus, we have established the relation between the evo-
lution of spin polarization in the system and the form of the
TRKR response. It turns out that both the simulated �or mea-
sured� signal and the analytical formula can yield consistent,
correct information on the spin evolution. One has to elimi-
nate the coherent polarization contributions from the calcu-
lated optical response in the slow dephasing case and the
analytical formulas uniformly overestimate the signal in the
case of fast optical dephasing.

VI. RESULTS

In this section, we discuss the evolution of the spin polar-
ization, based on the analytical solution to the equations of
motion derived in Sec. IV. In all the simulations presented
below, we set �0=0 �hence, the term “pure dephasing” will
always refer to the pure dephasing of spin states, described
by the parameter 
0�.

In Fig. 4�a�, we show the evolution of the spin polariza-
tion for a certain set of parameters. The signal appears to be
dominated by two oscillating components. As discussed in
Sec. IV A, the short-period one corresponds to the trion pre-
cession with the frequency �t. This contribution is damped
with the rate �1 due to the finite trion life time. The other
oscillating contribution originates from the hole precession
and is damped with the total hole spin dephasing rate 
1 /2
+
0, reflecting the decay of the hole spin coherence �trans-
verse dephasing�. Two other contributions, which are less
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FIG. 2. �Color online� Comparison between the analytical result
for the spin polarization �red solid lines� and the simulated signal
�dashed blue lines� for �=86°, 1 /
1=100 ps, and �0=0 �slow op-
tical dephasing�. In �a�, the hypothetical detection signal corre-
sponding to a fixed phase relation between the pump and probe
pulses is shown; in �b�, the simulated signal has been averaged over
the phase of the probe pulse.
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FIG. 3. �Color online� �a� Comparison between the analytical
result for the spin polarization �red solid lines� and the detection
signal �dashed blue lines� for �=86°, 1 /
1=100 ps, and �0�0, as
shown �fast optical dephasing case�. �b� The simulated signal has
been rescaled up by a factor of 16 to show that its shape exactly
follows the evolution predicted by the analytical formulas.
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evident in the plot, have a nonoscillating character and re-
flect the spin relaxation leading to thermalization between
the Zeeman eigenstates �longitudinal decoherence�. The
presence of these parts of the signal becomes easily visible in
the form of a central line in the Fourier transform of the
TRKR response, shown in Fig. 4�b�. We plot here also the
individual contributions following from Eqs. �17� and �18�.

The two most interesting aspects of the TRKR response
are the dependence of the signal on the tilt angle between the
magnetic field and structure plane and the effect of various
dephasing types �spin relaxation, pure dephasing, inhomoge-
neous dephasing�. In the following sections, we start our
analysis with the angle dependence and later proceed to the
role of various dephasing contributions.

A. Tilt angle dependence

Due to the strong anisotropy of the hole g factor, the
TRKR signal shows a very strong dependence on the angle
at which the magnetic field is tilted off the system plane. The
quantization axis of the hole spin is far from the plane even
for small tilting angles. Therefore, the form of the signal
changes strongly when � is varied in the range of a few
degrees from the in-plane orientation.

In Fig. 5�a�, we show the TI-TRKR response for three
different tilt angles 90°−� between the magnetic field and
the structure plane. In these calculations, we keep the same
value of 
1 for all angles even though the Zeeman splitting
changes, which is to some extent artificial. A correct depen-
dence would follow from the detailed modeling of a specific
decoherence channel, which is beyond the scope of the
present general description. In all the cases shown in Fig.
5�a�, one can clearly see a similar contribution from the trion
Larmor precession. However, the hole contributions are dif-
ferent. The amplitude of the oscillations decreases as the
field is tilted more off the plane. At 90°−�=10°, the hole
contribution is dominated by a monotonous decay super-
posed on the trion oscillations. The reason for this is clear:
For the 1° tilt, the hole precesses around an almost in-plane
quantization axis �oriented at about 15° off-plane�. Such a
precession leads to a strong variation in the perpendicular
component of the spin, while the thermalization of the spin

occupations is associated mostly with the optically irrelevant
decay of the in-plane component. On the contrary, according
to Eq. �2�, at 90°−�=10° the hole spin quantization axis is
close to perpendicular �90°−�=70°�. The precession then
takes place mostly in the plane, while the spin population
decay affects the perpendicular spin polarization and is vis-
ible in the experiment.

This qualitative difference in the system evolution is vis-
ible even more clearly in Fig. 5�b�, where we plot the real
part of the Fourier transform of the TI-TRKR signals shown
in Fig. 5�a�. Three characteristic features are visible in this
spectrum. Starting from the right, the broad one at �
=0.16 ps−1 corresponds to the trion precession. The orienta-
tion of the magnetic field does not affect the position of this
feature because the trion �electron� g factor is isotropic.
Moreover, for the narrow range of tilt angles considered
here, the effect on the amplitude of the trion oscillations is
very small. Therefore, this feature is almost insensitive to the
orientation of the field in the considered range. The second
feature moves from �=0.025 ps−1 at 90°−�=1° to �
=0.07 ps−1 at 90°−�=10° and loses its amplitude. It corre-
sponds to the hole precession. The frequency shift is obvi-
ously due to the growing contribution of the large axial com-
ponent of the hole g factor as the field is tilted off the plane.
The decrease in amplitude corresponds to the fast reorienta-
tion of the hole spin quantization axis, which leads to re-
duced contribution of the hole precession to the optical sig-
nal. The third feature is the central line, corresponding to the
exponential decay of the hole spin population. As the mag-
netic field is oriented more off-plane, the contribution of this
process to the spin polarization grows and this feature be-
comes stronger.

B. Dephasing

Another interesting feature observed in the simulation is a
different dependence of the decay time of two hole-related
components on the two hole decoherence rates 
0 and 
1.
This is visible in Fig. 6, where we fix the precession damping
rate 
1 /2+
0 and change the relative contributions from the
spin relaxation �
1� and the additional pure dephasing �
0�.
In the time-resolved picture �Fig. 6�a�
, the differences are
not particularly characteristic, except for the long exponen-
tial tail which develops as the spin relaxation becomes very
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FIG. 5. �Color online� �a� The TRKR signal for the three tilt
angles 90°−� as shown, 1 /
1=100 ps and 
0=�h=�t=0. �b� The
real part of the Fourier transform of the three signals �line coding as
in �a�
. Only the positive frequency part of the symmetric spectrum
is shown.
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FIG. 4. �Color online� �a� The TRKR signal for �=87°, 1 /
1

=100 ps, and 
0=�h=�t=0. �b� The real part of the Fourier trans-
form of the signal �red solid line� and the contributions from the
trion precession �green short-dashed line�, hole precession �gray
dotted line� and hole spin relaxation �blue long-dashed line�.
The contribution from the trion spin relaxation is invisible on this
scale.
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slow. Much more pronounced differences can be noticed in
the Fourier transform �Fig. 6�b�
. As the parameter modifi-
cation affects only the hole dynamics, the trion feature re-
mains unchanged. Moreover, since we fixed the total dephas-
ing time of the hole precession, the feature at the hole
Larmor frequency, �=�h, changes very little �only due to the
change in the tails of the neighboring zero-frequency fea-
ture�. On the contrary, the central line changes very strongly.
As the lifetime of the spin population becomes longer, this
line gets narrower, with the line area remaining constant. It
seems, therefore, that the spectral components of the TRKR
signal in a tilted magnetic field carry useful information on
the relative strength of different contributions to spin dephas-
ing.

Another source of damping of the observed spin preces-
sion oscillations in the case of an ensemble measurement is
the inhomogeneity of Larmor frequencies due to a variation
of g factors of the individual emitters in the ensemble. Ob-
viously, only the precession-related contributions are sensi-
tive to the inhomogeneity effects. Indeed, as follows from
Eqs. �20� and �21� inhomogeneity affects the oscillating con-
tributions, while the exponentially decaying ones remain un-
affected. Since the main concern in the present work is the
hole spin evolution, we will restrict the discussion to the case
of �t=0. In Fig. 7, we show the evolution of the TRKR
signal and the corresponding spectrum for a fixed value of
the hole spin relaxation rate 
1 with the dephasing contribu-
tion dominated by the homogeneous pure dephasing �red
solid lines� and by g factor inhomogeneity �blue dashed
lines�. The parameters 
0 and �h are chosen such that the full
width at half maximum of the damping envelope �in the time
domain� is the same in the two cases. Again, there is only a
minor change in the time-resolved signal �Fig. 7�a�
. How-
ever, the shape of the spectral feature corresponding to the
hole spin precession changes from Lorentzian to Gaussian.
This change may be characteristic enough to discriminate the
homogeneous vs. inhomogeneous dephasing in a real mea-
surement data.

VII. DISCUSSION AND CONCLUSION

We have developed a complete theory of the time-
resolved Kerr rotation experiment for a system of trapped
holes in tilted magnetic fields. The theory is applicable to

quantum dots or weak trapping centers in quantum wells. In
our approach, we adopted a general description of hole spin
relaxation and dephasing in the Markov limit, based on the
Lindblad equation for the open system dynamics. Spin
dephasing is a rather slow process so that the Markov ap-
proximation should work well for this problem and our ap-
proach can be expected to cover a wide range of physical
effects in a way which is independent of the exact micro-
scopic mechanisms. One should note, however, that there are
dephasing mechanisms that do not admit a Markov approxi-
mation of this kind. The most important example of this class
is a spin-environment coupling via Heisenberg-like �spin-
spin� interaction Hamiltonian.

Our analysis shows that the hole spin dephasing consists
actually of two processes the relative contribution of which
depends on the tilt angle between the magnetic field and the
structure plane, with an important role played by the strong
anisotropy of the hole g factor. These two processes are re-
laxation between the Zeeman states �occupation thermaliza-
tion�, which dominates the optical response when the quan-
tization axis is close to perpendicular to the plane �aligned
with the structure axis�, and dephasing of coherences be-
tween the spin states, which contributes mostly when the
quantization axis is close to the plane. It should be kept in
mind that the hole spin quantization axis is always much
closer to perpendicular than the magnetic field orientation.

As both these dephasing contributions are marked in the
optical signal for a slightly tilted field �a few degree� a single
set of experimental data conveys, in principle, the full infor-
mation on the spin dephasing. Extracting this information is
not straightforward at least for three reasons. First, the Lar-
mor frequencies are not much higher than dephasing rates
and the spectral features related to these two dynamical con-
tributions overlap rather strongly. Second, the coefficients of
Eq. �18� are complex and the features are not purely Lorent-
zian. Third, in the case of an ensemble experiment, inhomo-
geneous dephasing can dominate the intrinsic one. On the
other hand, Eqs. �17� and �18� provide analytical formulas
for the spin polarization. As we have shown in Sec. III, this
spin polarization is identical with the measured signal �up to
uniform rescaling�. Then, the formulas provided by our
theory can be used to fit the experimental data with just a
few parameters, which might allow one to extract all the
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FIG. 7. �Color online� Comparison of the TRKR response �a�
and its Fourier transform �b� for homogeneous and inhomogeneous
dephasing. Only the frequency range relevant to hole dynamics is
plotted in �b�. Red solid lines: homogeneous pure dephasing, 
0

=3 /400 ps−1 and �h=0. Blue dashed lines: inhomogeneous
dephasing, 
0=0 and �h=0.0147 ps−1. In both cases, 90°−�=3°
and 
1=1 /100 ps−1.
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FIG. 6. �Color online� Comparison of the TRKR response �a�
and its Fourier transform �b� for different contributions from the
pure dephasing as shown �the line coding is the same in both pan-
els�. The value of 
0 is adjusted so that 
1 /2+
0=1 /100 ps−1 in all
three cases. Here, 90°−�=3° and �t=�h=0.
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relevant decoherence rates. Moreover, in the present paper,
we have used parameter values which correspond to a quan-
tum well system, where the dephasing is rather strong. In
quantum dots, where spin coherence times are much longer,
the signal should show much more pronounced and sepa-
rated features, which can make the analysis much easier. Fi-
nally, as shown in Fig. 1, the imaginary parts of the ampli-
tudes are relatively small, so even a rough line width
estimate based on the Fourier spectrum of the time-resolved
signal could yield reasonable information on the decoherence
rates.
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APPENDIX: THE LINDBLAD EQUATION
FOR THE SPIN DEPHASING

In this appendix, we derive the general Lindblad equation
which governs the dissipative evolution of the density matrix
of a trapped hole in the Markov limit �an analogous equation
can be written for the trion spin�.

Any observable related to the two-level spin system can
be written as a combination of Pauli matrices ��,0 acting on
the Hilbert space of hole spin states and written in the basis
of Zeeman eigenstates for a given orientation of the magnetic
field. Therefore, we can write the general Hamiltonian for
the system-reservoir interaction in the form

Hint = �
l=�,0

�lRl, �A1�

where Rl are certain operators on the Hilbert space of the
reservoir and R+=R−

†.
One starts with the exact equation of motion for the re-

duced density matrix �̃ of the hole spin in the interaction
picture

d�̃�t�
dt

= −
1

�2�
t0

t

d	 TrR�Hint�t�,�Hint�	�,�̃�t�
� , �A2�

where �̃�t� is the density matrix of the total system, TrR
denotes partial trace with respect to the reservoir degrees of
freedom, and t0 is the initial time of the evolution.

Let us denote the reservoir memory time by 	mem. The
Markov approximation is based on three assumptions:46 �1�
the time t of interest is much longer than 	mem; �2� the change
of the system state �in the interaction picture� is small over
the time 	mem; �3� the relaxation of the reservoir to its ther-
mal equilibrium is fast compared to the rate with which it is
excited by the system evolution, so that the total density
matrix of the system can be written in a product form, with
the reservoir at equilibrium. Equation �A2� can be then ap-
proximated as

d�̃�t�
dt

= −
1

�2�
0

�

ds TrR�Hint�t�,�Hint�t − s�, �̃�t� � �R
� ,

�A3�

where �R is the thermal equilibrium density matrix of the
reservoir.

In the interaction picture, we denote the reservoir opera-
tors Rl by Rl�t� and write the hole spin Pauli matrices as
�l�t�=�le

−i�lt, where �−=−�+=�h and �0=0. We define the
reservoir spectral densities

Rlj��� =
1

2��2� dtei�t�Rl�t�Rj� , �A4�

where �Rl�t�Rj�=TrR �RRl�t�Rj. With this definitions, trans-
forming Eq. �A1� to the interaction picture and substituting
into Eq. �A3� we get

d�̃

dt
= − �

lj

e−i��l+�j�t� d�Rlj���

� ���l� j�̃ − � j�̃�l��
0

�

dsei��j−��ts

+ ��̃�l� j − � j�̃�l��
0

�

dsei��l+��ts
 .

In the next step, we use the identity

�
0

�

dse�i�s = ����� � iP 1

�
,

where P denotes the principal value. Moreover, we note that
the terms with �l+� j�0 oscillate quickly in time and do not
contribute considerably to the evolution of the density ma-
trix. We can thus write

d�̃�t�
dt

= 2��
lj

�̃ljRlj�� j�	� j�̃�l −
1

2
��l� j, �̃�+
 −

i

�
�h, �̃
 ,

�A5�

where

h = ��
lj

�̃ljP� d�
Rlj���
� j − �

�l� j ,

�̃lj =1 if and only if �l+� j =0, �A ,B�+=AB+BA and �,
 de-
notes the commutator.

The second part of the right-hand side of Eq. �A5�, con-
taining the commutator, is a correction to the unitary evolu-
tion due to environment-induced level shifts. These effects
are very weak and amount only to a small renormalization of
the g factor. We will, therefore, disregard this term. Of inter-
est to us is the first term, describing the dissipative impact of
the environment. It is clear that, irrespective of the nature of
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the reservoir, the dephasing in the Markov limit, in a given
experimental situation, is completely described by three
rates,


� = 2�R����h�, 
0 = 4�R00�0� . �A6�

However, using Eq. �A4�, it can be shown that R−+�−��
=e−��/�kBT�R+−���, where kB is the Boltzmann constant and T

is the temperature. Hence, the number of dephasing param-
eters reduces to two. These two dephasing rates are related to
the longitudinal and transverse dephasing times T1 and T2
�with respect to the quantization axis� by the usual formulas

T1 =
1


+ + 
−
, T2 =

1


0 + 1/�2T1�
.
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