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An exact analytical theory is developed for calculating the diffusion coefficient of charge carriers in strongly
anisotropic disordered solids with one-dimensional hopping transport mode for any dependence of the hopping
rates on space and energy. So far, such a theory existed only for calculating the carrier mobility. The depen-
dence of the diffusion coefficient on the electric field evidences a linear, nonanalytic behavior at low fields for
all considered models of disorder. The mobility, on the contrary, demonstrates a parabolic, analytic field
dependence for a random-barrier model, being linear, nonanalytic for a random-energy model. For both mod-
els, the Einstein relation between the diffusion coefficient and mobility is proven to be violated at any finite
electric field. The question on whether these nonanalytic field dependences of the transport coefficients and the
concomitant violation of the Einstein’s formula are due to the dimensionality of space or due to the considered
models of disorder is resolved in the following paper �A. V. Nenashev, F. Jansson, S. D. Baranovskii, R.
Österbacka, A. V. Dvurechenskii, and F. Gebhard, Phys. Rev. B 81, 115204 �2010��, where analytical calcu-
lations and computer simulations are carried out for two- and three-dimensional systems.
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I. INTRODUCTION

Charge carrier transport in disordered materials—
inorganic, organic, and biological systems—has been in the
focus of intensive experimental and theoretical studies for
several decades due to various current and potential applica-
tions of such materials in modern electronic devices �see, for
instance, Ref. 1 and references therein�. An essential part of
the research is dedicated to studying the mobility of the
charge carriers, �, and their diffusion coefficient, D, as the
decisive transport coefficients responsible for the perfor-
mance of most devices. Among other features, the relation
between these two transport coefficients is the subject of in-
tensive research, since this relation �called the “Einstein re-
lation”� often provides significant information on the under-
lying transport mechanism.1 In numerous experimental
studies on organic disordered materials, essential deviations
from the conventional form

� =
e

kT
D �1�

of this relation have been recognized.2–8 In Eq. �1�, e is the
elementary charge, T is temperature, and k is the Boltzmann
constant. Einstein derived this relation between � and D for
the case of thermal equilibrium in a nondegenerate system of
charge carriers. Deviations from Eq. �1� were predicted theo-
retically for nonequilibrium transport at low temperatures9–11

and also for equilibrium transport in degenerate systems if
the density of states �DOS�, which can be used by the charge
carriers, strongly depends on energy, for instance,
exponentially12 or according to a Gaussian distribution.13

Usually, the former DOS is assumed for inorganic amor-
phous semiconductors, while the latter one is assumed for
disordered organic materials, such as molecularly doped and

conjugated polymers.14–19 In this paper and in the following
one �Ref. 20�, we derive general equations for calculating the
diffusion coefficient and the mobility of charge carriers and
apply them to systems with the Gaussian DOS, since most of
the experimental evidences for the violation of Eq. �1� have
been reported for organic disordered materials. The DOS is
taken as

g��� =
N

��2�
exp�−

�2

2�2� , �2�

where N is the spatial concentration of conducting states and
� is the energy scale of the DOS distribution.

Remarkably, experiments on disordered organic materials
evidence that at relatively low electric fields, at which the
carrier mobility � is field independent and hence the carrier
transport can be treated as Ohmic one �low-field regime�, the
diffusion coefficient D of charge carriers and concomitantly
the relation between � and D become essentially dependent
on the magnitude of the applied electric field F.2,4–6 Our aim
in this paper and in the following one20 is to provide an
analytical theory for the field-dependent diffusion coefficient
and mobility of charge carriers. The theory will be checked
by computer simulations.

Charge transport in disordered organic materials is domi-
nated by incoherent hopping of electrons and holes via local-
ized states randomly distributed in space, with the DOS de-
scribed by Eq. �2�.14–19 The transition rate between an
occupied state i and an empty state j, separated by the dis-
tance rij, is described by the Miller-Abrahams expression21

�ij = �0e−2rij/a�e−��ij/kT, ��ij � 0

1, ��ij 	 0,
	 �3�

where �0 is the attempt-to-escape frequency. The energy dif-
ference between the sites is
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��ij = � j − �i − Fe�xj − xi� , �4�

where the electric field F is assumed to be directed along the
x direction. The localization length of the charge carriers
in the states contributing to hopping transport is a. We
assume the latter quantity to be independent of energy and
we will neglect correlations between the energies of the
localized states, following the Gaussian-disorder-model of
Bässler.17–19

The challenging problem arises of how to describe theo-
retically the field-dependent diffusion of charge carriers in
the hopping regime within the Gaussian DOS. This very
problem was addressed in the numerical simulations by
Richert et al.22 Using a Monte Carlo algorithm with a ran-
domly distributed parameter a �the so-called off-diagonal
disorder�, it was shown that the diffusion coefficient for hop-
ping transport in the Gaussian DOS depends essentially on
the field strength at such low electric fields that the mobility
of charge carriers remains field independent.22 This result
was interpreted in analytical calculations by Bouchaud and
Georges,23 who considered a hopping process in a one-
dimensional �1D� system of equidistant localized states with
transition rates essentially different from those given by Eq.
�3�. In the calculations of Bouchaud and Georges,23 the tran-
sition rates between the neighboring sites were taken as

�i,i
1 = �0 exp
�i
1,i 
 eFd

2kT
� , �5�

with �i,i+1=�i+1,i distributed according to g��ij� given by
Eq. �2�. We will call this model the random-barrier model
�RBM� in contrast to the model described by Eqs. �2� and
�3�, which we call the random-energy model �REM�.
Bouchaud and Georges23 suggested for the field-dependent
part of the diffusion coefficient in the RBM the expression
D�F�−D�0��F exp�3�2 /8�kT�2�, which they claimed to be
precisely the dependence found in Ref. 22. Later, the authors
of Ref. 22 studied the quantity D�F�−D�0� by computer
simulations in more details24 and found a quadratic depen-
dence of D�F�−D�0� on F at low fields and no turnover to a
linear field dependence as suggested by Bouchaud and
Georges.23 The question arises then on whether this discrep-
ancy in the field dependences of the diffusion constant be-
tween the computer simulations24 and analytical
calculations23 is due to different models �RBM �Ref. 23�
against REM �Ref. 24�� or it is due to different dimension-
alities considered in these two approaches �1D in analytical
calculations23 against three dimensions �3D� in computer
simulations24�. The only way to answer this question is to
obtain exact results for the REM in 1D and to compare them
to the results for the RBM in 1D on one hand and to the
results for the REM in 3D on the other hand. This task de-
mands developing a new analytical method for calculating
drift and diffusion in 1D systems for the hopping transport
mode. In Sec. II, we present such method. We also present in
Sec. III the exact result for the field-dependent diffusion in
the RBM, which differs from the one given by Bouchaud and
Georges.23 Section IV is devoted to analytical results on the
field-dependent diffusion coefficient and mobility in the
REM in the 1D case. The exact results for both RBM and

REM give a linear field dependence of the diffusion coeffi-
cient at low fields. In Sec. V, we present the results obtained
by computer simulations in 1D systems. Concluding remarks
are gathered in Sec. VI.

The following paper20 is devoted to diffusion in 3D sys-
tems. The results in the 3D case clearly demonstrate a qua-
dratic field dependence of the diffusion coefficient at low
fields. One should then conclude that the discrepancy be-
tween the linear23 and the quadratic24 field dependences of
the diffusion constant reported in the literature is due to the
different space dimensionalities considered in the two ap-
proaches. One should note that the differences between 1D
systems and 3D systems with respect to the field-dependent
diffusion coefficient have been reported in the literature, al-
beit for systems with essential correlations between energies
and spatial positions of localized states involved into the
hopping transport. Relying essentially on such correlations,
Parris et al.25 obtained an exact result for the field-dependent
diffusion coefficient in 1D systems, which was not confirmed
in computer simulations carried out on 3D correlated
systems.26 Our study leads to a similar conclusion for the
Gaussian-disorder model without space-energy correlations.
This study was necessary, since the theory from Ref. 25 can-
not be applied to the case of uncorrelated disorder.

II. ANALYTICAL METHOD

This section is devoted to one-dimensional hopping in the
presence of an electric field. The considered system consists
of a chain of sites separated by a constant distance d. Each
site is either empty or occupied by a carrier. We consider the
limit of small carrier concentration, therefore the probability
for the ith site to be occupied, pi, is small for each i. The
time evolution of probabilities pi is described by equation

�pi

�t
= �i−1,ipi−1 + �i+1,ipi+1 − ��i,i−1 + �i,i+1�pi, �6�

where �ij is the rate of transition from site i to site j. Tran-
sition rates �ij are assumed to be time independent, to be
nonzero only for nearest neighbors ��ij�0⇔ �i− j�=1�, and
to obey the principle of detailed balance

�i,i+1

�i+1,i
= exp

�i − �i+1 + eFd

kT
, �7�

where �i is the energy of a carrier on the ith site without the
electric field and F is the electric field strength.

Our aim is to obtain analytical expressions for diffusion
coefficients with transition rates �ij chosen according to ei-
ther RBM or REM. A similar problem was considered by
Derrida27 who obtained exact results for diffusion coefficient
in finite systems with arbitrarily chosen transition rates. But,
in the limit of an infinite system, his expression �Eq. �47� of
Ref. 27� contains an uncertainty of type “�−�” and resolv-
ing this uncertainty is a nontrivial task. Derrida considered
an infinite system only for the case if �ij are random inde-
pendent variables, except that only �ij and � ji may be corre-
lated. This condition is fulfilled for the RBM, but not for the
REM, in which �ij and � jk are correlated due to the common
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site j. Therefore Derrida’s approach can hardly be general-
ized to for the REM. Here we propose another analytical
approach for evaluating the diffusion coefficient in the infi-
nite disordered one-dimensional systems. Derrida’s method
uses a definition of the diffusion coefficient D related to
random walks

D =
1

2
lim
t→�

d

dt
�
x2�t�� − 
x�t��2� , �8�

where x�t� is the position of the particle at time t. On the
contrary, our method is based on the macroscopic definition
of D as the ratio of the diffusion current jD and the long-scale
gradient of the concentration n of particles

D = −
jD�x�

dn�x�/dx
. �9�

We believe that both methods give the same results, though
our method has an advantage of providing an explicit expres-
sion for D in the general case of the infinite one-dimensional
system �see Eqs. �27�, �29�, and �38� below�. This expression
can be straightforwardly applied to the particular cases of the
RBM and REM.

We start by considering the continuous-medium approxi-
mation. This approximation deals with the carrier concentra-
tion n�x , t� averaged upon a sufficiently large spatial scale.
The time evolution of this concentration obeys the Fokker-
Planck equation

�n

�t
= − v

�n

�x
+ D

�2n

�x2 , �10�

provided that n varies in space sufficiently slowly �that is, the
characteristic scale of spatial variation is large as compared
to the scale of averaging�. Here, v is the drift velocity and D
is the diffusion coefficient. Let us consider the initial concen-
tration n�x ,0� in the form

n�x,0� = n0 exp�
x� , �11�

with an infinitely small factor 
. The solution of Eq. �10�
with the initial condition �11� reads

n�x,t� = n0 exp�
x − �t� , �12�

where

� = v
 − D
2. �13�

Since both � and 
 are infinitely small, one can resolve Eq.
�13� with respect to 
 in the following way:


 =
1

v
� +

D

v3�2 + O��3� . �14�

We will use Eq. �14� for calculating the drift velocity v and
the diffusion coefficient D. For this aim, we need a micro-
scopic definition of the coefficients � and 
 expressed in
terms of occupation probabilities pi rather than in terms of
the concentration n.

To obtain an exponential time dependence of the con-
centration, n�exp�−�t�, we can simply postulate that

each probability pi depends on time in the same way, pi
�exp�−�t�. Therefore, �pi /�t=−�pi and Eq. �6� can be writ-
ten as

− �pi = �i−1,ipi−1 + �i+1,ipi+1 − ��i,i−1 + �i,i+1�pi. �15�

This is the way of introducing � on a microscopic scale.
For the spatial dependence of probabilities, one cannot

expect an analogous form, pi�exp�
di�, if the system has
spatial disorder, i.e., no translation symmetry. Instead, we
expect that

pi = p0Ci exp�
di� , �16�

where the coefficients Ci does not exponentially grow or
decay when i tends to infinity. Consequently,

log
pi

p0
= 
di + O�1� , �17�

which gives


 = lim
i→
�

1

di
log

pi

p0
�18�

or, equivalently,


 =
1

d
�log

pi+1

pi
� , �19�

where angle brackets denote averaging over the site number
i.

Equation �19� can serve as the microscopic definition of

. However, it is more convenient for our aim to define 
 in
another way


 =
1

d
�log

ji,i+1

ji−1,i
� , �20�

where ji,i+1 is the flow of carriers from site i to site i+1,

ji,i+1 = �i,i+1pi − �i+1,ipi+1. �21�

It is easy to show that Eqs. �19� and �20� give equal values of

. Indeed, in a macroscopic consideration, the flow of par-
ticles j�x , t� is connected to the concentration n�x , t� as

j = vn − D � n/�x . �22�

Therefore, if n�exp�
x�, then j�exp�
x�. Going to a mi-
croscopic picture, one can get Eq. �19� from n�exp�
x� and
Eq. �20� from j�exp�
x�. Consequently, the value of 

should be the same in all these equations.

Let us now obtain v and D from Eq. �20�. For this pur-
pose, we rewrite Eq. �15� taking into account Eq. �21�,

− �pi = ji−1,i − ji,i+1, �23�

which gives

ji,i+1

ji−1,i
= 1 + �

pi

ji−1,i
. �24�

The ratio pi / ji−1,i is a function of � since the probability pi
and the carrier flow ji−1,i are defined by a �-dependent equa-
tion �15�. We expand this ratio in a Taylor series
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pi

ji−1,i
= ai + �bi + O��2� . �25�

�Our coefficients ai are the same as Derrida’s rn in Ref. 27.�
Substitution of Eqs. �24� and �25� into Eq. �20� gives


 =
1

d
�log�1 + �

pi

ji−1,i
��

=
1

d

log�1 + �ai + �2bi + O��3���

=
�

d

ai� +

�2

d
�
bi� − 
ai

2�/2� + O��3� . �26�

Comparing the latter equation to Eq. �14�, one obtains v
and D,

v =
d


ai�
, D = d2 
bi� − 
ai

2�/2

ai�3 . �27�

The expression for v coincides with that obtained by Derrida
�Eq. �63� of Ref. 27�, whereas the expression for D is a new
result.

In the rest of this section, we obtain explicit expressions
for the quantities ai and bi. The mean values 
ai�, 
ai

2�, and

bi� will be evaluated in Sec. III for the RBM and in Sec. IV
for the REM leading to the analytical expressions for the
diffusion coefficient D in the RBM and in the REM.

In order to find the coefficients ai, we set � to zero in Eq.
�25�. As it is seen from Eq. �23�, the carrier flow ji,i+1 does
not depend on i in the case of �=0. Dividing Eq. �21� by the
carrier flow, one obtains a set of equations for coefficients ai,

∀i �i,i+1ai − �i+1,iai+1 = 1. �28�

The solution of Eq. �28� can be presented as an infinite series

ai =
1

�i,i+1
+

�i+1,i

�i,i+1�i+1,i+2
+

�i+1,i�i+2,i+1

�i,i+1�i+1,i+2�i+2,i+3
+ ¯ ,

�29�

which can be checked directly by substituting Eq. �29� into
Eq. �28�. To prove the convergence of the series �29�, let us
rewrite it using the condition of detailed balance, Eq. �7�,

ai = �i,i+1
−1 + B−1 exp��i+1 − �i

kT
��i+1,i+2

−1

+ B−2 exp��i+2 − �i

kT
��i+2,i+3

−1 + ¯ , �30�

where B=exp�eFd /kT�. For any physically reasonable sys-
tem, the quantities exp���i+k−�i� /kT��i+k,i+k+1

−1 can be re-
garded as having an upper boundary. Denoting this boundary
as C, we get an upper estimate for ai,

ai � C + B−1C + B−2C + ¯ =
C

1 − B−1 , �31�

which proves convergence of the series �29� under the con-
dition B�1, i.e., eF�0.

In order to obtain bi, we need a set of equations connect-
ing bi to bi+1 in analogy with Eq. �28� that connects ai to ai+1.

We will derive the necessary equations using Eqs. �21� and
�24� and the Taylor expansion �25�. Let us first divide Eq.
�21� by ji,i+1 and slightly rearrange it

�i,i+1
ji−1,i

ji,i+1

pi

ji−1,i
− �i+1,i

pi+1

ji,i+1
= 1. �32�

Let us now use the expansion �25� for quantities pi / ji−1,i,

�i,i+1
ji−1,i

ji,i+1
�ai + �bi� − �i+1,i�ai+1 + �bi+1� = 1 + O��2� .

�33�

The latter equation contains the ratio ji−1,i / ji,i+1. We derive
this ratio from Eq. �24� using also the expansion �25�,

ji−1,i

ji,i+1
=

1

1 + �pi/ji−1,i
=

1

1 + �ai + O��2�
= 1 − �ai + O��2� .

�34�

Finally, let us substitute Eq. �34� into Eq. �33�,

�i,i+1�1 − �ai��ai + �bi� − �i+1,i�ai+1 + �bi+1� = 1 + O��2� ,

�35�

and collect separately terms which do not contain � and
those proportional to �. The former terms lead to Eq. �28�,
while the latter ones give the equation

�i,i+1��bi − �ai
2� − �i+1,i�bi+1 = 0. �36�

Equation �36� provides a desired set of equations for coeffi-
cients bi,

∀ i �i,i+1bi − �i+1,ibi+1 = �i,i+1ai
2. �37�

The solution of Eq. �37� can be found as an infinite series

bi = ai
2 +

�i+1,i

�i,i+1
ai+1

2 +
�i+1,i�i+2,i+1

�i,i+1�i+1,i+2
ai+2

2 + ¯ �38�

that can be checked by substitution into Eq. �37�. Like Eq.
�29�, the series �38� converges provided the product eF is
positive. To prove it, we substitute the condition of detailed
balance, Eq. �7�, into this series

bi = ai
2 + B−1 exp��i+1 − �i

kT
�ai+1

2 + B−2 exp��i+2 − �i

kT
�ai+2

2

+ ¯ . �39�

In any real system, we find an upper limit for the quantities

exp���i+k−�i� /kT�ai+k
2 . Setting this limit equal to C̃, we ob-

tain an upper estimate for bi,

bi � C̃ + B−1C̃ + B−2C̃ + ¯ =
C̃

1 − B−1 . �40�

Therefore, the series �38� converges if B�1, i.e., if eF�0.
As a result, we have obtained an analytical expression

�27� for the diffusion coefficient D in a one-dimensional hop-
ping system. For coefficients ai and bi that contribute into
Eq. �27�, we have found series representations �29� and �38�
in the case eF�0. It is easy to write down analogous series
for ai and bi in the opposite case, eF�0.
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III. RANDOM-BARRIER MODEL: EXACT RESULTS

Let us now apply Eqs. �27�, �29�, and �38� to the random-
barrier model described by Eqs. �2� and �5�. In this model,
any two transition rates �ij and �kl are statistically indepen-
dent if �ij� and �kl� are different pairs of sites. The rates �i,i+1
and �i+1,i, related to the same pair, are connected to each
other. As a result, all statistical properties of the random-
barrier model are defined by mean values 
�i,i+1

m �i+1,i
n � with

different m’s and n’s. We introduce the following notations
for these mean values:

m1 = 
�i+1,i/�i,i+1� ,

m2 = 
�i+1,i
2 /�i,i+1

2 � ,

m3 = 
1/�i,i+1� ,

m4 = 
1/�i,i+1
2 � ,

m5 = 
�i+1,i/�i,i+1
2 � . �41�

In order to obtain the drift velocity v and the diffusion
coefficient D from Eq. �27�, one should calculate the mean
values 
ai�, 
ai

2�, and 
bi�. We start with calculating 
ai�. Let
us denote successive terms in the expansion �29� as
a�0� ,a�1� ,a�2� , . . . Then,


a�0�� = � 1

�i,i+1
� = m3,


a�1�� = ��i+1,i

�i,i+1
�� 1

�i+1,i+2
� = m1m3,


a�2�� = ��i+1,i

�i,i+1
���i+2,i+1

�i+1,i+2
�� 1

�i+2,i+3
� = m1

2m3,

. . .


a�k�� = m1
km3. �42�

Consequently,


ai� = 
a�0�� + 
a�1�� + 
a�2�� + ¯ = m3�1 + m1 + m1
2 + ¯�

= m3/�1 − m1� . �43�

The mean value 
ai
2� can be represented as a sum of val-

ues 
a�k�a�l�� over all pairs k , l,


ai
2� = �

k=0

�

�
l=0

�


a�k�a�l�� . �44�

It is easy to check that


a�k�a�l�� = �m1
l−k−1m2

km3m5, if k � l

m2
km4, if k = l

m1
k−l−1m2

l m3m5, if k � l .
� �45�

Then, presenting Eq. �44� in the form


ai
2� = �

k=0

�


�a�k��2� + 2�
k�l


a�k�a�l�� , �46�

using Eq. �45�, and introducing the notation p= l−k−1, we
obtain


ai
2� = �

k=0

�

m2
km4 + 2�

k=0

�

�
l=k+1

�

m1
l−k−1m2

km3m5

=
m4

1 − m2
+ 2m3m5�

k=0

�

m2
k�

p=0

�

m1
p

=
m4

1 − m2
+

2m3m5

�1 − m1��1 − m2�
. �47�

In an analogous way, we denote successive terms of the
series �38� as b�0� ,b�1� ,b�2� , . . .. The mean values of these
quantities are


b�0�� = 
ai
2� ,


b�1�� = ��i+1,i

�i,i+1
ai+1

2 � = m1
ai
2� ,


b�2�� = ��i+1,i�i+2,i+1

�i,i+1�i+1,i+2
ai+2

2 � = m1
2
ai

2� ,

. . .


b�k�� = m1
k
ai

2� . �48�

Therefore,


bi� = 
b�0�� + 
b�1�� + 
b�2�� + ¯ = 
ai
2��1 + m1 + m1

2 + ¯�

= 
ai
2�/�1 − m1� . �49�

Finally, we substitute Eqs. �43�, �47�, and �49� for the
mean values 
ai�, 
ai

2�, and 
bi� into Eq. �27�. This gives

v = d
1 − m1

m3
, �50�

D = d2 1 − m1
2

2m3
3�1 − m2�

�m4�1 − m1� + 2m3m5� . �51�

Equations �50� and �51� are not new results—they were ob-
tained in Ref. 27 �Eqs. �67� and Eq. �70�, respectively�. Their
derivation in the frame of our method clearly demonstrates
that both methods �Derrida’s and ours� are consistent. In the
rest of this section, we will apply these equations to the case
of Gaussian distribution of barrier heights.
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For the transition rates defined by Eqs. �2� and �5�, the
mean values m1 . . .m5 are easy to evaluate. Setting �0 equal
to unity for the sake of simplicity, we obtain

m1 = exp�−
eFd

kT
� ,

m2 = exp�−
2eFd

kT
� ,

m3 = exp� �2

8�kT�2 −
eFd

2kT
� ,

m4 = exp� �2

2�kT�2 −
eFd

kT
� ,

m5 = exp� �2

8�kT�2 −
3eFd

2kT
� . �52�

From Eq. �50�, one obtains the result for the drift velocity v,

v = 2d exp�−
�2

8�kT�2�sinh� eFd

2kT
� . �53�

Note that we derived the latter equation only for the case
eF�0. However, it is easy to show that Eq. �53� is valid for
any direction of the electric field. Indeed, the right-hand side
of the equation is an odd function of the electric field F. The
left-hand side �drift velocity� should also be odd because the
system is symmetrical with respect to a left-to-right mirror
reflection �x→−x , F→−F , v→−v�. Therefore, if Eq. �53�
is satisfied for positive electric fields, it remains valid for
negative fields and vice versa.

An expression for the diffusion coefficient D as a function
of F can be obtained by substituting the mean values �52�
into Eq. �51�. Strictly speaking, this procedure is valid for D
only in the case eF�0. One can however generalize this
expression for any sign of the electric field using the fact that
�for symmetry reasons� D is an even function of F. One
simply should replace eF by its absolute value �eF� in all
expressions. The result reads

D = d2 exp�−
�2

8�kT�2 −
�eF�d
2kT

�
+ d2 exp� �2

8�kT�2�sinh� �eF�d
2kT

� . �54�

Equation �54� was obtained for nonzero electric fields. How-
ever, one can check that it holds also for F=0. This equation
clearly shows that in case of absence of disorder, �=0, the
diffusion coefficient has an analytic dependence on the elec-
tric field. It is the presence of disorder that converts this
dependence into a nonanalytic one.

Equation �54� differs from the expression given by
Bouchaud and Georges,23 D�F�−D�0��F exp�3�2 /8�kT�2�,
though it is linear in F to first order. Equation �54� is plotted
in Fig. 2 together with numerical results obtained in Sec. V.

IV. RANDOM-ENERGY MODEL: EXACT RESULTS

The random-energy model in one dimension implies the
following definition of transition rates:

�i,i
1 = �0 exp�−
��i,i
1 + ���i,i
1�

2kT
� , �55�

where ��i,i
1=�i
1−�i�eFd is the difference between the
energies of a charge carrier on the final site and on the initial
site, respectively, for each jump. For simplicity, we set the
constant �0��0 exp�−2d /a� to unity.

For the REM, one can use the same way of calculating the
velocity and the diffusion constant as for the RBM. The
REM contains more correlations between transition rates that
the RBM, which leads to more complicated calculations of
the mean values 
ai�, 
ai

2�, and 
bi�. In the REM, each rate �ij
depends on the energies �i and � j, which are independent
random variables. Therefore, the rates �ij and �kl are corre-
lated if the pairs of sites �ij� and �kl� have at least one site in
common.

We will see below that the drift velocity v and the diffu-
sion coefficient D depend on 11 quantities m1 . . .m11 related
to the statistics of site energies and transition rates

m1 = 
e−�i/kT� ,

m2 = 
e−2�i/kT� ,

m3 = 
�i,i+1
−1 � ,

m4 = 
e�i/kT�i,i+1
−1 � ,

m5 = 
e−�i/kT�i,i+1
−1 � ,

m6 = 
�i,i+1
−2 � ,

m7 = 
e�i/kT�i,i+1
−2 � ,

m8 = 
e2�i/kT�i,i+1
−2 � ,

m9 = 
e��i+1−�i�/kT�i,i+1
−1 �i+1,i+2

−1 � ,

m10 = 
e�i+1/kT�i,i+1
−1 �i+1,i+2

−1 � ,

m11 = 
e��i+1+�i�/kT�i,i+1
−1 �i+1,i+2

−1 � . �56�

In the following, we proceed for the REM along the same
steps as for the RBM in the previous section.

A. Calculation of Šai‹

Let us denote successive terms of the expansion �30� as
a�0�, a�1�, a�2�, and so on. Then 
ai�= 
a�0��+ 
a�1��+ 
a�2��+. . ..
The latter quantities can be easily expressed via m1, m3, and
m4,


a�0�� = 
�i,i+1
−1 � = m3,


a�1�� = B−1
e−�i/kT�
e�i+1/kT�i+1,i+2
−1 � = B−1m1m4,
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a�2�� = B−2
e−�i/kT�
e�i+2/kT�i+2,i+3
−1 � = B−2m1m4, �57�

and, generally, 
a�k��=B−km1m4 for any k�0. Then,


ai� = m3 + �B−1 + B−2 + ¯�m1m4 = m3 +
m1m4

B − 1
. �58�

B. Calculation of Šai
2
‹

According to Eq. �44�, the calculation of 
ai
2� is reduced

calculating the mean values 
a�k�a�l�� for all integer k�0 and
l�0. Thus one can reduce the mean values 
a�k�a�l�� to


a�k�a�l�� =�
m6, if k = l = 0

B−1m9, if k = 0, l = 1

B−lm4m5, if k = 0, l � 1

B−2km2m8, if k � 0, l = k

B−2k−1m2m11, if k � 0, l = k + 1

B−k−lm2m4
2, if k � 0, l � k + 1.

� �59�

The next step is the estimate of the infinite series �44�. It is
convenient to rearrange the summation in Eq. �44�, separat-
ing terms corresponding to different lines of Eq. �59�


ai
2� = 
�a�0��2� + �

k=1

�


�a�k��2� + 2
a�0�a�1�� + 2�
l=2

�


a�0�a�l��

+ 2�
k=1

�


a�k�a�k+1�� + 2�
k=1

�

�
p=2

�


a�k�a�k+p�� , �60�

where p= l−k. Substituting Eq. �59� into this expansion, one
gets


ai
2� = m6 + m2m8�

k=1

�

B−2k + 2B−1m9 + 2m4m5�
l=2

�

B−l

+ 2m2m11�
k=1

�

B−2k−1 + 2m2m4
2�

k=1

�

B−2k�
p=2

�

B−p. �61�

Finally, one can sum up the geometric series. The result
reads


ai
2� = m6 +

2m9

B
+

2m4m5

B�B − 1�
+ m2

Bm8 + 2m11

B�B2 − 1�

+
2m2m4

2

B�B − 1��B2 − 1�
. �62�

C. Calculation of Šbi‹

In an analogous way, 
bi� can be expressed as a sum

b�0��+ 
b�1��+ 
b�2��+¯, where b�0� ,b�1� , . . . ,b�i� , . . . are the
terms of the expansion �39�. Keeping in mind that, according
to Eq. �29�, the values ai+1 ,ai+2 , . . . do not depend on �i, one
can express the mean values b�k� as follows:


b�0�� = 
ai
2� ,


b�1�� = B−1
e−�i/kT�
e�i+1/kTai+1
2 � = B−1m1M , �63�


b�2�� = B−2
e−�i/kT�
e�i+2/kTai+2
2 � = B−2m1M , �64�

and so on for larger i, where M = 
e�i/kTai
2�. Thus,


bi� = 
ai
2� + �B−1 + B−2 + ¯�m1M �65�

or


bi� = 
ai
2� +

m1

B − 1
M . �66�

In order to find M, one can expand it in series analogous
to Eq. �44�,

M � 
e�i/kTai
2� = �

k=0

�

�
l=0

�


e�i/kTa�k�a�l�� , �67�

and express each term of the expansion via


e�i/kTa�k�a�l�� =�
m7, if k = l = 0

B−1m10, if k = 0, l = 1

B−lm4m3, if k = 0, l � 1

B−2km1m8, if k � 0, l = k

B−2k−1m1m11, if k � 0, l = k + 1

B−k−lm1m4
2, if k � 0, l � k + 1.

�
�68�

The following steps are the same as the ones leading from
Eq. �59� to Eq. �62�. Instead of proceeding in this way, one
can recognize that Eq. �59� transforms to Eq. �68� by the
following replacements:

m6 → m7, m9 → m10, m5 → m3, m2 → m1.

Applying the same replacements to Eq. �62�, we obtain the
result for M,

M = m7 +
2m10

B
+

2m3m4

B�B − 1�
+ m1

Bm8 + 2m11

B�B2 − 1�

+
2m1m4

2

B�B − 1��B2 − 1�
. �69�

Substituting Eqs. �62� and �69� into Eq. �66�, one obtains the
expression for 
bi� in terms of the values m1 . . .m11.

D. Drift velocity and diffusion coefficient

Combining Eqs. �27�, �58�, �62�, �66�, and �69� leads to

v =
d

m3 + m1m4/�B − 1�
, �70�

D =
v3

2d

m6 +

2m9

B
+

2m4m5

B�B − 1�
+ m2

Bm8 + 2m11

B�B2 − 1�

+
2m2m4

2

B�B − 1��B2 − 1�
+

2m1

B − 1
�m7 +

2m10

B
+

2m3m4

B�B − 1�

+ m1
Bm8 + 2m11

B�B2 − 1�
+

2m1m4
2

B�B − 1��B2 − 1�
�� , �71�
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where B=exp�eFd /kT�. Note that we derived these equa-
tions for the case eF�0. One can easily generalize the equa-
tions for the case eF�0, keeping in mind that v is an odd
function of F and D is an even function.

Equation �70� was obtained previously by Cordes et al.28

using Derrida’s method,27 while Eq. �71� is a new result.
Equations �70� and �71� are general for the case of the
REM—their derivation is not restricted by a special choice
of the density of states or by the choice of the relation be-
tween the transition rates �ij and the site energies �i ,� j. We
used only four assumptions: �i� all sites are arranged in the
line with constant distance d between them; �ii� there are
only transitions between nearest neighbors; �iii� transition
rates “forth” and “back” ��i,i+1 and �i+1,i� obey the principle
of detailed balance, Eq. �7�; �iv� energies of different sites
are independent random variables having the same distribu-
tion function.

E. Gaussian density of states

We will now evaluate the quantities m1 . . .m11 assuming a
Gaussian density of states, Eq. �2�, and the Miller-Abrahams
transition rates, Eq. �55�. This evaluation is straightforward,
for example,

m1 = N0
−1� e−�/kTg���d� =

1
�2��

� exp�−
�

kT
−

�2

2�2�d�

= exp� �2

2�kT�2� ,

m3 = N0
−2� � �12

−1g��1�g��2�d�1d�2

=
1

2��2� � exp��2 − �1 − eFd + ��2 − �1 − eFd�
2kT

−
�1

2 + �2
2

2�2 �d�1d�2.

The latter integral can be evaluated by substitution u=�1
+�2, v=�1−�2, and the result is

m3 =
1

2
erfc�−

eFd

2�
� +

1

2
exp� �2

�kT�2 −
eFd

kT
�erfc� eFd

2�
−

�

kT
� ,

�72�

where erfc is the complementary error function, erfc�x�
=2�−1/2�x

�e−t2dt=1−erf�x�.

The values m9 . . .m11 are triple integrals. They cannot be
expressed in elementary functions, but they can be reduced
�by a substitution u=�1+�2+�3, v=�1−�2, w=�1+�2−2�3�
to a function F�a ,b� defined as

F�a,b� =
1

�
� �

Aa,b

e−�x2+y2�dxdy , �73�

where the area of integration Aa,b is shown in Fig. 1.
The results are collected in Table I. These results obtained

for Miller-Abrahams hopping rates, Eq. �55�, look rather
complicated for analytical estimates. Below in Sec. V, we use
these expressions from Table I for numerical calculations and
present the results for the Miller-Abrahams hopping rates,
Eq. �55�. Here we will proceed with analytical calculations
based on slightly modified expressions for the hopping rates,
which allow straightforward analytical estimates. We suggest
using, instead of Eq. �55�, the following “modified Miller-
Abrahams rates:”

�i,i
1 = �0
1 + exp���i,i
1

kT
��−1

, �74�

where the constant �0 will be set equal to unity for the sake
of simplicity. The difference between Eqs. �55� and �74� be-
comes negligible when ���i,i
1��kT. Therefore, for ��kT,
we expect a good agreement between results obtained with
these two kinds of hopping rates.

Results for the modified Miller-Abrahams rates are also
shown in Table I. Substituting them into Eqs. �70� and �71�,
one can get the explicit expressions for the drift velocity and
the diffusion coefficient30

�v� = d
B − 1

2A + B − 1
, �75�

D = d24A4�B − 1�2 + 16A3�B − 1� + 16A2 + 2A�3B + 1��B2 − 1� + �B − 1�3�B + 1�
2�B + 1��2A + B − 1�3 , �76�

where A=exp��2 / �kT�2� and B=exp��eF�d /kT�.

x

y

2 3

a

60°
,a bA

2

b

FIG. 1. Integration area for the definition of the function
F�a ,b�.
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Now we will consider the mobility ��F�=v�F� /F and the
diffusion coefficient D�F� in the limit of small field. We re-
strict ourselves to the case of modified Miller-Abrahams
rates. For F=0, one can obtain from Eqs. �75� and �76�

D�0� = ��0�
kT

e
=

d2

2
exp�− ��/kT�2� . �77�

For small temperatures, kT��, the mobility and the dif-
fusion coefficient can be approximated by simple expres-
sions

��F� �
ed2

2AkT
+

�Fe�ed3

4A�kT�2 +
F2e3d4

12A�kT�3 , �78�

D�F� �
d2

2A
+

�Fe�d3

2kT
+

F2e2d4A

8�kT�2 +
�Fe�3d5A

16�kT�3 . �79�

These approximations are valid for sufficiently small fields,
�eFd��kT.

From the latter approximated expressions, it is obvious
that there is a cusp at F=0 for both ��F� and D�F�. The
dependence D�F� demonstrates a linear behavior for very
small fields ��eFd��kT /A�, when the first two terms in Eq.
�79� are dominating, and a parabolic behavior for intermedi-

ate fields �kT /A� �eFd��kT�, when the third term is domi-
nating.

V. NUMERICAL RESULTS

In order to verify the analytical results obtained above, we
perform numerical calculations for a one-dimensional chain
of N hopping sites using the equations that give the drift
velocity v and the diffusion coefficient D as a function of all
the hopping rates �i
1,i in the chain27

D =
1

� �
n=1

N

rn�2�v�
n=1

N

un�
i=1

N

irn+i + N�
n=1

N

�n,n+1unrn� − v
N + 2

2
,

�80�

v =
N

�
n=1

N

rn


1 − �
n=1

N ��n+1,n

�n,n+1
�� , �81�

rn =
1

�n,n+1

1 + �

i=1

N−1

�
j=1

i ��n+j,n+j−1

�n+j,n+j+1
�� , �82�

TABLE I. The values of m1 . . .m11 for the random-energy model with Gaussian density of states. “MA” refers to using Miller-Abrahams
hopping rates, Eq. �55�, and “modified MA” to hopping rates defined by Eq. �74�. Other notations: A=exp��2 / �kT�2�, B=exp�eFd /kT�, �
=� /kT, and �=eFd /�; erfc is the complementary error function. The function F�a ,b� is defined by Eq. �73�.

Notation Definition Value �MA� Value �modified MA�

m1 
e−�i/kT� �A �A

m2 
e−2�i/kT� A2 A2

m3 
�i,i+1
−1 � 1

2 �erfc�− �
2 �+AB−1 erfc� �

2 −��� 1+AB−1

m4 
e�i/kT�i,i+1
−1 � 1

2
�A�erfc�− �

2 − �
2 �+B−1 erfc� �

2 − �
2 �� �A�1+B−1�

m5 
e−�i/kT�i,i+1
−1 � 1

2
�A�erfc�− �

2 + �
2 �+A2B−1 erfc� �

2 − 3�
2 �� �A�1+A2B−1�

m6 
�i,i+1
−2 � 1

2 �erfc�− �
2 �+A4B−2 erfc� �

2 −2��� 1+2AB−1+A4B−2

m7 
e�i/kT�i,i+1
−2 � 1

2
�A�erfc�− �

2 − �
2 �+A2B−2 erfc� �

2 − 3�
2 �� �A�1+2B−1+A2B−2�

m8 
e2�i/kT�i,i+1
−2 � 1

2A2�erfc�− �
2 −��+B−2 erfc� �

2 −��� A2�1+B−2�+2AB−1

m9 
e��i+1−�i�/kT�i,i+1
−1 �i+1,i+2

−1 �

AF�− 3�,2� − �� + A3B−2F�3� − 3�,� − 3��

+ AB−1� 1
2erfc��−�

2 � − F�3� − 3�,� − ���
+ A4B−1� 1

2erfc��
2 − 2�� − F�3�,� − 4���

A�1+A2B−2+ �1+A3�B−1�

m10 
e�i+1/kT�i,i+1
−1 �i+1,i+2

−1 �

�AF�− � − 3�,� − �� + A3/2B−2F�3� − 2�,� − 2��

+ �AB−1� 1
2erfc�− �

2 � − F�2� − 3�,− ���
+ A5/2B−1� 1

2erfc��
2 − 3�

2 � − F�� + 3�,� − 3���

�A�1+AB−2+ �1+A2�B−1�

m11 
e��i+1+�i�/kT�i,i+1
−1 �i+1,i+2

−1 �

AF�− 2� − 3�,− ��+ AB−2F�3� − �,� − ��

+ AB−1� 1
2erfc� −�−�

2 � − F�� − 3�,− � − ���
+ A2B−1� 1

2erfc��
2 − �� − F�2� + 3�,� − 2���

A�1+B−2+ �1+A�B−1�
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un =
1

�n,n+1

1 + �

i=1

N−1

�
j=1

i ��n−j+1,n−j

�n−j,n−j+1
�� . �83�

In this section, we follow Ref. 27 and set the distance d
between sites equal to unity for the sake of simplicity.

For both the RBM and the REM, the diffusion coefficient
was obtained for different temperatures and fields, by gener-
ating several chains with random jump rates �according to
the respective model�, evaluating Eq. �80� for each chain and
averaging the results. Long chains �107 and 108 sites� were
needed to obtain a good agreement between different realiza-
tions of the chains.

For chains of this length, a direct evaluation of Eqs.
�80�–�83� is not practical. Below, the equations are rewritten
in a form that can be evaluated in O�N� steps using recursion
relations. Define

gn =
�n,n−1

�n,n+1
and hn =

�n+1,n

�n,n+1
�84�

and further

Gn = 1 + �
i=1

N−1

�
j=1

i

gn+j , �85�

Hn = 1 + �
i=1

N−1

�
j=1

i

hn−j , �86�

so that rn=Gn /�n,n+1 and un=Hn /�n,n+1. All Gn and Hn, and
thus rn and un can now be calculated efficiently from

Gn−1 = gnGn − G + 1, �87�

Hn+1 = hnHn − H + 1, �88�

where G=H=g1g2 . . .gN=h1h2 . . .hN. For the first term in the
brackets in Eq. �80�, define Sn=�i=1

N irn+i and S=�i=1
N rn. Now

Sn+1 = Sn − S + Nrn+1. �89�

These relations are numerically stable if G�1, which is sat-
isfied if the average drift is to the right �toward larger site
indices�. The diffusion coefficient is now given by

D =
1

S2�v�
n=1

N
HnSn

�n,n+1
+ N�

n=1

N
GnHn

�n,n+1
� − v

N + 2

2
. �90�

It seems tempting to write Eq. �87� in the form

Gn = �Gn−1 + G − 1�/gn,

so that all equations could be evaluated starting from n=1,
but this form is too susceptible to numerical errors to be
usable in practice. Thus one has to evaluate all Gn with Eq.
�87� starting from GN and store them in a table. Sn and Hn do
not need to be stored since they can be evaluated while per-
forming the sum in Eq. �90� starting from n=1.

With this method of evaluation, numerical results for the
diffusion coefficient were obtained. The results are shown in
Fig. 2 for the RBM, together with the analytical results, and
in Fig. 3 for the REM. For both models, the diffusion coef-

ficient is linear in the electric field �at low fields� �see the
insets in each figure�.

VI. DISCUSSION AND CONCLUSIONS

Figures 2 and 3 demonstrate a full agreement between
analytical results, Eqs. �54� and �71�, and numerical ones
based on Eq. �80�. This result can be considered as evidence
that the two definitions of the diffusion coefficient D, Eqs.
�8� and �9�, give the same quantity for hopping in one-
dimensional disordered systems. The former definition ex-
presses D via the variance of particle displacement during a
random walk, while the latter one defines D as a ratio be-
tween the particle flow and the gradient of macroscopic con-
centration of particles. Although it seems to be obvious from
a physical point of view that both definitions should give the
same result, no formal proof has yet been known.

Computer simulations evidence that at low temperatures,
the diffusion constant experiences significant fluctuations
from one realization to another, even for systems containing
millions of localized states. The reason of such a large fluc-
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FIG. 2. �Color online� D�F� in the RBM for different tempera-
tures T. Curves show the analytical solution Eq. �54�, while the
symbols show numerical results �Eq. �80�� for chains with N=107

sites. Inset shows the low-field behavior.
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FIG. 3. �Color online� D�F� in the REM for different tempera-
tures T. Curves show the analytical solution �Eq. �71� with
m1 . . .m11 from the MA column in Table I�. Symbols show numeri-
cal results �Eq. �80�� for chains with N=108 sites. Inset shows the
low-field behavior.
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tuation in 1D hopping is essentially the same as in 3D
hopping—it is the sensitivity of the diffusion coefficient to
the very rare sites with low energies. We will discuss this
phenomenon in detail in the following paper.20 We also note
that sample-to-sample fluctuations of mobility for all param-
eters presented in Figs. 2 and 3 are negligible.

The most striking property of the 1D diffusion is its linear
dependence on electric field:

D�F� = D�0� + ��F� + O�F2� , �91�

where ��0. It means that the diffusion coefficient is a
nonanalytic function of electric field. From general physical
arguments, one can hardly expect such a behavior. Instead,
one can expect that, as D�F� is an even function, it can be
expanded in a Taylor series with respect to F2,

D�F� = D�0� + �F2 + O�F4� . �92�

The physical reason of this nonanalyticity is still unclear. As
first steps to acquire an understanding of this phenomenon,
we will try �i� to provide a mathematical explanation of it
and �ii� to find out which systems demonstrate the linear field
dependence of the diffusion coefficient and which systems
lack this behavior.

From the mathematical point of view, the possibility for a
nonanalytic dependence D�F� can be seen from expressions
�30� and �39� for the coefficients ai and bi as functions of
B�exp�eFd /kT�. These expressions are series that converge
at B�1 and diverge at B	1. For B�1 �i.e., for negative
eF�, one can obtain converging series, applying a “mirror
reflection” transformation �i+k→ i−k , B→B−1� to Eqs.
�30� and �39�. Therefore, ai and bi are defined by different
series expansions for positive and negative values of the
field. Moreover, at eF�0, the values ai and bi depend on
quantities related to sites i, i+1, i+2, . . . �for example, on
�i+1,i+2, �i+1, etc.�; on the contrary, for eF�0, these coeffi-
cients ai and bi depend on a different set of sites: i, i−1, i
−2, . . .. So, it is obvious that, in a disordered system, the
function ai�F� for negative F cannot be obtained by analytic
continuation of this function for positive F and vice versa.
The same is true for bi�F�. Keeping in mind that the mobility
��v /F and the diffusion coefficient D depend on a’s and
b’s via Eq. �27�, one can conclude that negative-field parts of
the functions ��F�, D�F� may not be analytic continuations
of their positive-field parts. Consequently, a nonanalyticity of
��F� and D�F� at F=0 is possible.

It is evident from Figs. 2 and 3 and from Eqs. �54� and
�79� that both the RBM and the REM demonstrate a linear
low-field behavior of D�F� according to Eq. �91�. Moreover,
Eq. �78� shows that the mobility ��F� in the REM also con-
tains a linear contribution with respect to F, while in the
RBM the mobility is a smooth function of F �see Eq. �53��.

Parris et al.25,29 considered a model of a 1D continuous
medium with smooth disorder potential and obtained analyti-
cal expressions for ��F� and D�F�. Although the low-field
behavior of the mobility and of the diffusion coefficient were
not discussed in detail,25,29 one can learn from Eqs. �25� and
�69� of Ref. 29 that this behavior is qualitatively the same as
in our REM. The method of Refs. 25 and 29 is, however, not
directly applicable to the Gaussian-disorder model consid-

ered here. Therefore, a separate derivation was necessary.
One-dimensional transport with Gaussian DOS has an-

other peculiarity—namely, there are sites with arbitrarily
high energies, which represent barriers for transport. Despite
the fact that such barriers are very rare, their influence on the
transport properties should be noticeable �unlike in the 2D
and 3D cases, where a carrier can easily pass around these
hard places�. One can argue that this peculiarity might be
responsible for the unusual nonanalytical behavior of ��F�
and D�F�. In order to check this assumption, we consider a
1D system with a discrete DOS g��� allowing only two val-
ues of energy ��=−� and �=��

g��� =
1

2
��� + �� +

1

2
��� − �� . �93�

It is obvious that there are no high barriers in this system.
Using our general expressions �50�, �51�, �70�, and �71�, we
have calculated the dependencies ��F� and D�F� for this
DOS for both RBM and REM. The results demonstrate
qualitatively the same low-field behavior as in the case of
Gaussian DOS. Therefore, the property of the nonanalyticity
of � and D cannot be attributed just to the presence of infi-
nitely high barriers provided by the corresponding DOS.

We have also checked whether this nonanalyticity is re-
lated to the assumption of the nearest-neighbor hopping. We
have considered the same random-energy model as discussed
in Sec. IV, except that we allow transitions to distant states.
The dependence of transition rates �ij on distances rij be-
tween the sites is governed by the Miller-Abrahams expres-
sion �3�. The mobility and diffusion coefficient as functions
of electric field were calculated by a Monte Carlo algorithm
described in the following paper.20 Again, the results have
shown linear low-field dependencies ��F� and D�F�. There-
fore one can conclude that the linear behavior of the diffu-
sion coefficient, Eq. �91�, is a robust property of 1D disor-
dered systems.

On the contrary, at higher dimensions, there are no evi-
dences of a linear field dependence of the diffusion coeffi-
cient. Both our Monte Carlo simulations �see the following
paper, Ref. 20� and previous studies24 clearly demonstrate a
parabolic field dependence, Eq. �92�, for 2D and 3D systems
with Gaussian disorder. It is worth to note that a smooth
dependence D�F� should be obtained also in 1D systems
without disorder—namely, in systems with periodically re-
peated site energies �and barrier heights�. Indeed, such a sys-
tem is equivalent to a finite chain �with periodical boundary
conditions� considered by Derrida.27 One can therefore use
Derrida’s formula for D, Eq. �80�. This formula, in the case
of finite chain length N, is an analytic function of the transi-
tion rates �ij and consequently of the electric field. Our nu-
merical studies also confirm that for small N, there is a re-
gion of parabolic dependence D�F� around F=0. Thus,
disorder is important for the nonanalytic behavior of D�F�.

Finally, we will discuss the applicability of Einstein’s re-
lation �1� for finite electric fields. Our analytical results, Eqs.
�53�, �54�, �78�, and �79�, show that Einstein’s relation is
violated at any nonzero field F both in RBM and REM and
that the deviation from Eq. �1� is proportional to �F�. One
should note that this phenomenon is related to the discrete
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nature of the systems, in which charge transport is dominated
by hopping processes. For the opposite case of a continuous-
medium model, the diffusion coefficient is known to obey a
generalized version of the Einstein relation25,29

D�F� =
kT

e

dv
dF

, �94�

where v�F� is the drift velocity. Our expressions for both
RBM and REM, however, demonstrate that Eq. �94� is also
violated in the general case and the deviation is also propor-
tional to �F�. We argue that, generally, there are no exact
connections between D�F� and ��F� at F�0. Indeed, let us
consider the REM. There are 11 quantities m1 . . .m11 �see
Sec. IV� dependent on statistics of the energy levels and on
the electric field. The mobility depends on three of them
�m1 ,m3 ,m4� according to Eq. �70�; the diffusion coefficient
depends on all 11 quantities �see Eq. �71��. For an arbitrary
density of states, all the 11 quantities are independent of each
other and cannot be reduced to each other. Consequently,
there is no general way to reduce the diffusion coefficient to
the mobility at nonzero electric field.

In conclusion, we have examined analytically and numeri-
cally two models of one-dimensional hopping transport—the
RBM and the REM. Exact analytical solutions of field-
dependent diffusion coefficient have been obtained for both
models in the case of nearest-neighbor hopping. We have
demonstrated that the nonanalytic field dependence �91� of
the diffusion coefficient as well as the violation of the Ein-
stein relation for any nonzero electric field are inherent prop-
erties of hopping transport in one-dimensional disordered
systems.
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