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Spin accumulation in a two-dimensional electron gas with Rashba spin-orbit interaction subject to an electric
field can take place without bulk spin currents �edge spin Hall effect�. This is demonstrated for the collisional
regime using the Boltzmann equation for the mean-free path longer than the spin-orbit length. Spin accumu-
lation originates from interference of incident and reflected electron waves at the sample boundary.
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Nowadays the spin Hall effect attracts a lot of attention of
theorists and experimentalists because of its importance for
spintronics.1,2 Originally the spin Hall effect was defined as
spin accumulation at sample edges caused by a bulk spin
current transverse to an applied electric field.3 However, the
very concept of spin current was a matter of debates �see
Ref. 4 for a review�. There is no conservation for the total
spin and its connection with spin accumulation is not
straightforward. Spin currents exist even in the equilibrium,
though they do not lead to spin accumulation at sample
edges5 but produce an edge spin torque, which can be mea-
sured mechanically.6 Moreover, spin accumulation at sample
edges is possible even without bulk spin current. It was dem-
onstrated for the ballistic spin Hall effect,7–9 when the elec-
tron mean-free path exceeds the sample sizes. Here the natu-
ral definition of the spin current as the averaged product of
the spin and group velocity is assumed.

In the ballistic regime the electric field is absent in the
bulk. This makes the case rather unique impeding possible
generalizations. The present Brief Report shows that edge
spin accumulation without bulk spin currents takes place also
in the collisional regime when the electron mean-free path is
much shorter than the sizes of the sample but still longer than
the distance where interference of incident and reflected
waves responsible for edge accumulation takes place. The
experimental evidences of the spin Hall effect reported in the
literature,10–12 were based on measurement of the spin accu-
mulated on the sample edges. Meanwhile, the spin accumu-
lation is not really a probe of the bulk spin current: the
former can be absent in the presence of the bulk current and
can appear in the absence of the latter. This should be taken
into account interpreting experiments on the spin Hall effect.

A straightforward method to find a bulk spin current is a
solution of the Boltzmann equation. However, the standard
Boltzmann equation for the scalar electron distribution func-
tion among the eigenstates of the Hamiltonian without disor-
der, does not work in the case of spin normal to the sample
plane. Indeed, all eigenstates of the Rashba Hamiltonian �Eq.
�1� below� do not have neither the z spin component nor its
current. Introducing the scalar distribution function for these
states one neglect any correlations between them, which
makes appearance of the z spin component or its current
impossible. Therefore, they used the quantum Boltzmann
equation, in which the distribution function was a matrix 2
�2 in spin indices.13,14 The z spin current requires finite
off-diagonal terms. On the other hand, it is now generally
believed that if the Rashba spin-orbit interaction is linear in

the electron momentum, the bulk current of the spin z com-
ponent vanishes.1 According to13,14 off-diagonal terms re-
sponsible for this current also vanish. Since the present Let-
ter addresses the case of linear Rashba spin-orbit interaction,
off-diagonal terms of the density matrix must be absent and
one can use the Boltzmann equations for two scalar distribu-
tion functions.

The Brief Report considers a two-dimensional �2D� elec-
tron gas confined to a potential well with infinitely high
walls. This lead to the simplest boundary condition at the
sample edges: the electron wave function must vanish. The
2D electron gas with Rashba spin-obit interaction is de-
scribed by the single-electron Hamiltonian

H =
�2

2m
��� �†�� � + i���†���̂ � ẑ�i�� i� − �� i�

†���̂ � ẑ�i��� ,

�1�

where �= �
�↑
�↓

� is a two-component spinor, ��̂ is the vector of
Pauli matrices. The plane-wave solutions of the Schrödinger
equation are

1
�2

� 1

�iei� 	eik�r�, �2�

where � is the angle between the wave vector k� and the axis
x �kx=k cos �, ky =k sin ��, and the upper �lower� sign cor-
responds to the upper �lower� branch of the spectrum �band�
with the energies

	 =
�2�k0

2 − �2�
2m

=
�2

m
� k2

2
� �k	 . �3�

The energy is parameterized by the wave number k0, which
is connected with absolute values of wave vectors in two
bands as k= 
k0
�
.

We assume that the 2D electron gas occupies the semis-
pace x�0 �Fig. 1�. A superposition of plane waves near the
sample edge contains one incident wave coming from x=
−� and two reflected waves. For high-energy electrons with
k0� �Fig. 2�a�� and the incident electron in the upper band,
the superposition is
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� =
eikyy

�2
�� 1

− iei�+
	eik+xx + r1� 1

ie−i�+
	e−ik+xx

+ r2� 1

− ie−i�−
	e−ik−xx� , �4�

where ��=arctan�ky /k�x�, and k�x=��k0
��2−ky
2 are the x

components of the wave vectors corresponding to states of
the same energy in the upper �+� and the lower �−� band. The
reflection coefficients for reflection to the same �r1� and to
the other �r2� band �Fig. 1� are obtained from the boundary
condition ��0�=0

r1 =
ei��++�−� − 1

ei��−−�+� + 1
, r2 = −

2ei�− cos �+

ei��−−�+� + 1
. �5�

The relation between the angles �+ and �− is determined
from the condition that scattering does not change the com-
ponent ky = �k0−��sin �+= �k0+��sin �−.

We look for the density sz= �� /2��†�̂z� of the z spin
component. In the plane waves sz vanishes. But near the

boundary because of the interference between the waves in
the superposition a finite oscillating sz is possible �Friedel-
type oscillation� and is given by

s+z�k�� =
�

4
�r1�e−2i�+ + 1�e−2ik1x + r2�e−i��++�−� + 1�e−i�k+x+k−x�x

+ r1
�r2�ei��+−�−� + 1�ei�k+x−k−x�x� + c.c.

=
��sin �+ + sin �−�cos �+

1 + cos��+ − �−�
�sin �2k+xx� − sin�k+xx

+ k−xx� − sin�k+xx − k−xx�� . �6�

Exchanging + and − one obtains the spin density s−z�k�� for
the incident electron from the lower band.

Similarly one can consider the low-energy case k0��
when the x components of the wave vectors k�x

=���
k0�2−ky
2 belong to the two states of the lower band

on the left and on the right of the band energy minimum
respectively �Fig. 2�b��. On the left from the minimum the
direction of the group velocity v� =�	 /��k� is opposite to that
of the wave vector k�. Since the charge transport is deter-
mined by the group velocity but not by k�, the wave vector for
the incident electron from the left side is directed from the
edge but not to the edge.

The expressions given above are valid only if ky �k+ or
sin �−� 
k0−�
 / �k0+��. At k−ky k+ the reflection of the
incident electron from the lower band to the upper one is
forbidden by the conservation law. But the contribution of
the upper band into the wave superposition is still present in
the form of the evanescent mode. The wave superposition in
this case is

� =
eikyy

�2
�� 1

iei�−
	eik−xx + r1� 1

− ie−i�−
	e−ik−xx + g�1

s
	epx� ,

�7�

where

p = ��k0 + ��2sin2 �− − �k0 − ��2, s =
ky − p

k0 − �
,

r1 = −
s − iei�−

s + ie−i�−
, g = −

2i cos �−

s + ie−i�−
. �8�

The z spin density for this wave superposition contains not
only the interference contributions but also the contribution
from the evanescent component �epx

s−z�k�� =
p cos2 �−

k0 sin �−
�e2px + cos�2k−xx� − 2epx cos�k−xx��

+
cos �−

k0 sin �−
�2k0 − �k0 + ��cos2 �−��sin�2k−xx�

− 2epx sin� −xkx�� . �9�

This expression is valid independently of whether the elec-
tron energy is high �k0�� or low �k0���.

All contributions to the z spin density are odd with respect
to the sign of ky and vanish in the equilibrium state. But in

electric current
FIG. 1. �Color online� Spin-dependent reflection of electrons

from an ideal impenetrable wall. The electron from the upper band
�k�+

i � is reflected either as an electron from the same band �k�+
r � or as

an electron from the lower band �k�−
r �.

a) b)

+ -
+ -

FIG. 2. �Color online� The energies and the wave vectors of the
waves interfering at the sample edge. �a� The high-energy case k0

�, the interference between electrons from the different bands,
k�=k0
�. �b� The low-energy case k0��, the interference be-
tween electrons from the low band on two sides of the energy
minimum, k�=�
k0.
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the presence of the voltage bias along the y axis the distri-
bution function also has an odd component and spin polar-
ization becomes possible. Let us start from the case of the
ballistic regime when the voltage drop occurs at the contacts,
and there is no electric field inside the sample. In the narrow
interval of energies 	F+eV		F around the Fermi surface
only left-moving electrons with ky 0 are present. They are
responsible for the edge accumulation of the z spin. Bearing
in mind that eV=d	= ��2 /m�kFdk the spin density sz�x�
=s+z�x�+s−z�x� is determined by the two band contributions

s�z�x� =
meVk�F

4�2�2kF


0

�/2

s�z�k��d��. �10�

Here we restrict ourselves with the limit of zero temperature
and the integration is performed over the Fermi circumfer-
ences of the two bands with the Fermi wave vectors k�F
= 
kF
�
, where kF is the value of k0 at the Fermi circum-
ference. The asymptotic behavior of the spin density is de-
termined by the evanescent-mode contribution and at x→
−� is given by

sz�x� =
meV

8�2�
� �

kF

1

k+F
2 k−F

1


x
3
. �11�

The total accumulated spin, in agreement with the earlier
works,9 is given by

Sz = 
−�

0

sz�x�dx =
meV

8�2��
�ln

kF + �


kF − �

−

2�

kF
	 . �12�

For comparison with the collisional regime it is convenient
to connect the total spin not with the voltage V but with the
electric current

j =
e2nV

��
� �

2kF

kF
2 + �2 at kF  �

1

kF
at kF � �� , �13�

where the 2D electron density is n= �kF
2 +�2� /2� at kF�

and n=�kF /� at kF��. Then

Sz =
mj

8�en
�ln

kF + �


kF − �

−

2�

kF
	 � �

kF
2 + �2

2�kF

at kF  �

kF

�
at kF � �� .

�14�

In the limits of weak ��→0� and strong ��→�� spin-orbit
interaction this yields Sz= �mj /24�en���2 /kF

2� and Sz=
−mj /4�en, respectively. At kF=� there is a logarithmic di-
vergence, which can be cut either by the sample size or by
nonlinear effects.

Let us switch now to the collisional regime. As was ex-
plained in the Introduction, since the bulk spin current is
absent, one may use the Boltzmann equations for scalar dis-
tribution functions: f��k��= f0�k��+ f�� �k��, where f0�k�� is the
equilibrium Fermi distribution function. The stationary solu-
tion of the Boltzmann equation for the nonequilibrium dis-

tribution function f�� in a weak electric field along the y axis
is15

f�� =
e�E�

�

� f0�k��

�k�
=

eE�

�

�2kF

m
sin ����	 − 	F� . �15�

The relaxation time � for elastic scattering on defects is de-
termined by the transport cross section. In general it is a
function of energy and may be different for two bands,
though this difference must vanish for weak spin-orbit cou-
pling. For the sake of simplicity in the following we assume
the energy and band independent �. Extension to the analysis
without this assumption is straightforward but depends on
details of the scattering mechanism, which cannot affect our
final conclusions. The function f�� determines the electric
current equal to j=e2E�kF

2 /2�m for kF� and to j
=e2E��kF /2�m for kF��. The z spin densities for the two
bands instead of Eq. �10� are given by

s�z�x� =
eE�k�F

4�2�


−�/2

�/2

sin ��s�z�k��d��. �16�

Tedious but straightforward integrations similar to those for
the ballistic regime yield the total edge spin

Sz = −
mj

32�2en

kF
2 + �2

kF
4 �3�kF

2 − �2�arctan
2��kF

kF − �

−
2��kF�3kF

2 + 2kF� + 3�2�
kF + �

+ ��kF
2 + 3�2�� , �17�

for the high-energy case kF� and

Sz = −
mj

16�2en�kF
�3��2 − kF

2�arctan
2��kF

� − kF

−
��kF�6�2 + 6kF

2 + 4�kF�
� + kF

+ 4��kF� , �18�

for the low-energy case �kF.
When �→� the difference between the ballistic and col-

lisional regime vanishes. On the other hand, in contrast to the
ballistic regime, in the collisional regime the accumulated
spin remains finite even in the limit of zero spin-orbit cou-
pling �→0. This paradoxical result is explained by the di-
vergence of the width �1 / �k−x−k+x� of the spin accumula-
tion area in this limit. In the ballistic regime this divergence
is canceled after summation over the two bands. However,
our analysis is valid only if all relevant scales including
1 / �k−x−k+x� are less than the electron mean-free path. When
this condition is violated the spin accumulation should go
down. Figure 3 shows the reduced total accumulated spin

S̃z=4�enSz /mj for the ballistic �curve 1� and the collisional
�curve 2� regimes as a function of the density-dependent pa-
rameter � /��n.

Originally they connected the spin Hall effect with bulk
spin currents and the question arises whether edge accumu-
lation without bulk currents may be called the spin Hall ef-
fect. A choice of terminology usually is a matter of conven-
tion, taste, or tradition. Edge spin accumulation and spin
currents require the same symmetry, and one may call the
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edge spin accumulation without bulk currents the edge spin
Hall effect. Anyway, the spin accumulation is not a method
to probe spin bulk currents. A possible manifestation of the
bulk spin current is an edge torque, which can be measured
mechanically.6

In order to compare the edge and the bulk spin Hall ef-
fects, we scale the latter using the “universal” spin conduc-
tivity �SH= jz /E=e /8�, though in reality this is far from be-

ing universal.1 Here jz is the bulk current of the z spin.
Assuming that at the edge the bulk spin current is fully com-
pensated with spin diffusion current,2,3 the total accumulated
spin is jz�s=eE�s /8�, where �s is the spin relaxation time.
So ratio of the edge to the bulk spin Hall effect is �� /�s.

For comparison with the spin Hall effect observed in the
2D hole gas11,12 on may use ��10� /EF=20 /kFvF, n=2
�1012 cm−1, and the accumulation area width 10 nm given
by Nomura et al.12 Then the total spin accumulated due to
the edge spin Hall effect at �→0 is about 70% of the ex-
perimental value. So the interpretation of this experiment in
the terms of the bulk spin currents probably must be recon-
sidered even if the spin-orbit interaction for these materials
should be described by a model more general than analyzed
in the present letter.

In summary, in a system with spin-orbit interaction an
electric field can lead to spin accumulation at sample edges
normal to the field even without bulk spin currents �edge
spin Hall effect�. It has been demonstrated for a 2D electron
gas in the collisional regime. Therefore observation of edge
spin accumulation cannot be a probe of bulk spin currents
and other methods must be used for their detection.4
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FIG. 3. �Color online� The plot of the reduced total spin S̃z

=4�enSz /mj as a function of � /��n. 1—the ballistic regime.
2—the collisional regime.
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