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Many-body GW calculation of the oxygen vacancy in ZnO
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Density-functional theory (DFT) calculations of defect levels in semiconductors based on approximate
functionals are subject to considerable uncertainties, in particular due to inaccurate band-gap energies. Testing
previous correction methods by many-body GW calculations for the O vacancy in ZnO, we find that: (i) The
GW quasiparticle shifts of the V(; defect states increase the spitting between occupied and unoccupied states
due to self-interaction correction, and do not reflect the conduction- versus valence-band character. (ii) The GW
quasiparticle energies of charged defect states require important corrections for supercell finite-size effects. (iii)
The GW results are robust with respect to the choice of the underlying DFT or hybrid-DFT functional, and the
(2+/0) donor transition lies below midgap, close to our previous prediction employing rigid band-edge shifts.
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Density functional theory (DFT) in the local density or
gradient corrected approximations (LDA or GGA) has long
formed the basis for most theoretical accounts of defects in
semiconductors and insulators. However, the underlying ap-
proximations for the electronic interactions lead to signifi-
cant ambiguities, such as the ill-determined position of
charge transition levels'? due to the notorious “band-gap
problem.” These well-known limitations spurred the devel-
opment of methods for correcting DFT results, ranging from
“postprocessor” corrections that are applied after DFT ener-
gies were calculated'™ to empirical DFT corrections that are
applied self-consistently,>® and post-DFT methods such as
self-interaction correction’ and hybrid DFT.®!! Alternatively,
many-body perturbation theory based on the GW
approximation® for the electron self-energy has been very
successful for the prediction of quasiparticle (QP) energy
spectra, i.e., the band structures, of defect-free semiconduc-
tors and insulators.!” It is expected that GW will set the
benchmark also for defects.!'> We choose here the classic
case of the oxygen vacancy in ZnO as a system that has
received a great deal of interest and debate in the
literature.>™>7%13 The purpose of this work is to reevaluate
DFT correction methods in view of GW quasiparticle energy
calculations for the defect states of V5. The charge-neutral
vacancy VOO introduces a doubly occupied a% level inside the
band gap, and successive ionization leads to the ng (a}) and
Vé* (a?) charge states, as illustrated in Fig. 1. The quantities
of interest (and debate) are (i) the donor levels which deter-
mine the electrical activity of V, i.e., the electrical transition
energies €(2+/1+) and &(1+/0); since Vj is a negative-U
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center,>>7%13 the most important transition energy is the po-
sition of the £(2+/0) equilibrium transition level in the cor-
rected band gap, and (ii) the absolute formation energy of Vg
which determines the abundance of this defect in real ZnO
materials. Reviews of the experimental literature on O va-
cancies are found in Refs. 3 and 4.

Obtaining structurally relaxed transition energies from
GW. The GW method has been used mainly to determine QP
energies within many-body perturbation theory, but not for
the calculation of total energies and structural relaxation (al-
though first steps into this direction have been taken'*!%).
Indeed, we do not attempt to calculate here the transition
energies (g/q') directly from GW total energies. As illus-
trated in Fig. 1, we determine instead separately the vertical
(Franck-Condon) ionization energies eo(¢— ¢') and the sub-
sequent structural relaxation energies E,,(¢') in the final
state. While we have determined the vertical transition ener-
gies of Vg in ZnO before in a DFT study,? we now calculate
the QP energies of the defect states in GW to determine more
accurately the vertical transitions relative to the band edges.
The structural relaxation energies E, are calculated within
the underlying DFT or hybrid-DFT Hamiltonian. Note that
the GW calculated QP energies are used here to determine
the electron removal energies, for which excitonic electron-
hole interactions should not be included. Instead, the
conduction-band minimum (CBM) serves as a distant reser-
voir for free electrons [“e” in Fig. 1(d)] and defines an en-
ergy reference for the defect QP energies.

The equilibrium transition level &(g/q’) is determined
from the sum of the vertical transition energies £q and the
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relaxation energies E,. In principle, one can either use the
electron removal energies €o(q— g+ 1) from occupied states
to determine the successive transition energies toward higher
charge states [e.g., VO(a?)— V5 (al)— V5 (dY); see Fig.
1(d)] or, as done in Ref. 12, one can use the electron addition
energies £o(q—q—1) into unoccupied states to determine
the successive transition energies toward lower charge states
le.g., V5'(a)) — Vi (a}) — Vo(a)]. Both ways should lead to
the same result for (q/q’). Here, we choose the former
option, because in ZnO the a; defect state of V%; occurs as a
broad resonance deep inside the conduction band [see Fig.
1(c)], impairing the accurate determination of the electron
addition energy. In addition, since the QP energies of charged
defects in supercells are subject to electrostatic finite-size
effects (see below), it is desirable to avoid higher charge
states.

The present calculations are performed in the projector
augmented wave (PAW) framework of the VASP code,'®
which includes recent implementations of hybrid DFT (Ref.
17) and GW.'® Supercell finite-size effects are treated as de-
scribed in Refs. 2 and 19. For the sake of computational
feasibility we consider here the metastable zinc-blende (ZB)
phase of Zn0O,?° which has a higher symmetry but otherwise
has very similar properties as wurtzite (WZ) ZnO.?' For the
underlying DFT calculation, needed to determine the wave
functions for the subsequent GW calculation and for the re-
laxation energies E,., we use the GGA parametrization of
Ref. 22 and employ the DFT+ U method?? for the Zn-d elec-
trons with U-J=6 eV, as in previous GGA+U calculations
of defects in ZnO.® We refer to GW based on GGA+U as
“GW-GGA+U.” The motivation for the choice of the
GGA+U method is that, as shown in Fig. 1, the single-
particle defect energies relative to the band edges are de-
scribed qualitatively correctly for all the three charge states
of Vp. In contrast, in GGA (without U) the V, defect state in
the 1+ state exhibits a spurious hybridization with the con-
duction band, which leads to an erroneous charge and spin
density and to incorrect atomic relaxation? and precludes the
calculation of GW quasiparticle energies based on GGA
wave functions.?* For comparison, we perform the same type
of GW calculations also based on the HSE hybrid-DFT
functional® (“GW-HSE”), using a=0.25 for the fraction of
Fock exchange and u=0.2 A~' for the range separation pa-
rameter.

For computational economy, we employ a relatively soft
PAW pseudopotential (PP) for oxygen (PAW radius:
R=1.0 A), which has been tested for ZnO before in DFT
(Ref. 2) and hybrid-DFT (Ref. 8) calculations [the error in
the binding energy of the O, molecule due to the soft PP
(Refs. 2 and 8) has been corrected]. The two-atomic ZB cell
of defect-free ZnO was calculated using a I centered
8 X8 X8 k mesh and a total of 144 bands. The GW QP
energies in the 64-atom supercells are calculated with a I’
centered 2 X 2 X 2 k mesh and a total of 2048 bands, and the
response functions are determined only at the I' point. We
tested the effect of these reductions of computational param-
eters in smaller cells of pure ZnO and expect that the result-
ing uncertainty should not exceed 0.2 eV for the QP energies
of the V defect states relative to the band edges.

Finite-size correction for quasiparticle energies of de-
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FIG. 2. (Color online) Squares: finite-size scaling of the single-
particle energy ep(a;) of v%; in ZnO for cell sizes between N=64
and 1000 atoms, calculated in GGA+ U with a constrained atomic
configuration. Solid line: a fit proportional to the inverse linear
supercell dimension 1/L. Circles: finite-size-corrected e(a;).
Dashed line: average e(a;) after correction.

fects. We have previously addressed>!? image charge correc-
tions for fotal energies of charged supercells. In general,
however, also the DFT single-particle energies or the GW
quasiparticle energies require corrections if the defect state
is localized. In this case, the energy ep, of the defect state is
shifted by an amount Aep,=AV,(R,) due to the electrostatic
potential AV}, that is created by the charged defect images
and by the compensating background at the site R, of the
defect. In order to illustrate the importance of this type of
finite-size effects, we show in Fig. 2 the GGA + U calculated
single-particle energy ep, of the unoccupied a, state of V(Z:;r as
a function of the supercell size. For demonstration purposes,
the atomic configuration here is constrained such that the a;
state lies within the GGA+ U band gap within the series of
supercells between 64 and 1000 atoms [in a fully relaxed
calculation, the a; state of V%;’ lies above the CBM; see Fig.
1(c)]. Potential alignment effects>!® have been taken into
account to determine the energy ep, relative to the valence-
band maximum (VBM) of the defect-free ZnO host. We now
determine a finite-size correction for e, by calculating the
potential AV at the site Ry of the O vacancy. Here, the
charged vacancy images in neighboring supercells are ap-
proximated as point charges (the self-potential due to the
charged vacancy at R, is excluded). The dielectric screening
is taken into account by dividing the bare Coulomb potential
by the dielectric constant. As seen in Fig. 2 from the
GGA+U calculations of up to 1000 atom supercells, this
correction accurately removes the finite-size effects. The GW
calculated QP energies of the defect state will be affected in
exactly the same manner, since this size dependence of the
GGA + U single-particle energies of the localized defect state
results from purely electrostatic interaction between super-
cells (not from interactions due to overlapping defect-state
wave functions). Therefore, we apply analogous corrections
to the GW QP energies of Vi and Vg shown in Figs. 1(b)
and 1(c). Note, however, that the QP energy of the doubly
charged vacancy V%; is not needed for the prediction for the
£(2+/0) equilibrium transition (cf. Fig. 1).

Quasiparticle energies of the Vq defect states. The GW
QP energies eV relative to the initial DFT (or hybrid-DFT)
eigenenergy ePFT values are determined as
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€0V = DT 4 Re(uPTTIS(e0%) — VTP, (1)
where the initial DFT wave functions wEFT (n=band index)
are kept constant, and the GW self-energy 2 is determined
by iteratively updating (four times) the eigenvalues in G and
in W (both in bulk and defect calculations). The resulting
GW band gaps of ZB ZnO are 3.25 eV (GW-GGA+U) and
334 eV (GW-HSE), in agreement with previous GW
calculations.'*?® Figure 1 shows the QP energy shifts for
both the ZnO band edges and for the a; symmetric V, defect
level, whose energy strongly depends on the V charge state
and the respective atomic configuration of V.> Remarkably,
the a; state tracks the shift of the VBM (Ey,) if it is occupied,
but it tracks the CBM (E() if it is unoccupied. This GW
result is at variance with the expectation that the defect levels
would shift in proportion to their CBM vs VBM wave-
function characters.* Instead, the QP energy shifts appear to
reflect the self-interaction correction, which increases the
splitting between occupied and unoccupied states, even when
the wave-function character is similar [see Fig. 1(b)]. This
finding lends some justification to the band-gap correction
via a rigid shift of the conduction band:! to the extent that the
occupied defect QP energies track the valence band, the ver-
tical electron removal energies remain invariant relative to
the VBM. Since the cation-d states generally experience a
larger self-interaction error than, e.g., the anion-p states, it is
often practical to use DFT+ U for cation-d states before shift-
ing the conduction band.>!3

In the case of V%;, the a; state forms a broad resonance
deep inside the conduction band, both in GGA+U and GW,
which confirms the expectation®!? that V; would be a source
of persistent photoconductivity. [Shown in Fig. 1(c) is the
energy corresponding to the center of mass of the vacancy-
site projected s-like density of states in a fully relaxed super-
cell, as described in Ref. 3 for the case of a standard LDA
calculation. ]

GW-corrected thermodynamic transition energies. We
now turn to combining the vertical transition energies &g
from GW and the relaxation energies E,; from GGA+U to
determine the equilibrium transition energies £(g/q’). Verti-
cal transitions require, however, special care in correcting
finite-size effects due to the simultaneous presence of elec-
tronic and ionic screening:'® consider, for example, the opti-
cal transition Vg’ — V&' +e [see Fig. 1(b)], where the atomic
configuration of the final V¢ state is constrained to that of
the initial 1+ state. Here, the electronic screening attenuates
the 2+ defect charge, but the ionic contribution still reflects
the screening of the initial 1+ state, which makes it difficult
to correct the image charge interaction of such intermediate
states (this problem does not exist if the initial state is charge
neutral). In order to avoid these ambiguities, we apply the
following two-step procedure: first we calculate the V tran-
sition levels from the GW QP energies and the (hybrid-)DFT
relaxation energies by constraining the structural relaxation
to the first two atomic shells around V(, [Fig. 3(a)]. This
eliminates ionic screening of the interaction between super-
cells, and we can use the calculated electronic dielectric con-
stant to determine the image charge corrections. The vertical
£0(0—1+) and go(1+ —2+) energies under this constraint
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FIG. 3. (Color online) Formation energy AH(ER) of Vg in ZnO
under O-poor conditions, calculated using vertical (optical) transi-
tion energies &g from GW and relaxation energies E, from
GGA+U. (a) Atomic relaxation is restricted to the first two nearest-
neighbor shells. (b) Formation energies obtained when full relax-
ation of all atoms is allowed.

are, respectively, 2.60 and 2.89 eV in GW-GGA+U [see
Figs. 1(b) and 1(d)], or 2.88 and 3.43 eV in GW-HSE.

In a second step [Fig. 3(b)], we then calculate the
(hybrid-)DFT supercell energies for all charge states without
any constraint, where we can use the total dielectric constant
due to combined electronic and ionic screening,19 (we use
the experimental value of 8.1). The removal of the constraint
lowers the formation energy mostly for the 2+ state and leads
to a negative-U behavior (as before, see Refs. 3, 4, 7, and 8)
with a &(2+/0) transition at Ey+1.36 eV (GW-GGA+U),
as shown in Fig. 3(b). In GW-HSE, we obtain the transition
at Ey+1.66 eV, noting that the difference mainly reflects the
larger lattice constant of HSE (which is close to that of
GGA) compared to GGA+ U.?’ Thus, apart from the effect of
the lattice parameter, the GW results based on GGA+ U and
HSE (see Table I) are essentially identical and agree well
with  our previous DFT-corrected prediction at
Ey+1.30 eV." For the HSE hybrid functional (@=0.25), we
observed that the position of the £(2+/0) level remains vir-
tually constant in GW-HSE when measured relative to the
VBM (see Table I). Since, however, GW shifts up the HSE
calculated CBM by about 1 eV, the ionization energy for
release of free electrons increases considerably due to the
GW corrections. On the other hand, hybrid-DFT calculations
using the HSE hybrid functional with an increased fraction
of Fock exchange so as to reproduce the experimental band
gap of ZnO (Ref. 8) gave a transition level higher in the gap
at Ey+2.2 eV (we obtain here Ey+2.34 eV for HSE with
a=0.40). The present GW results suggest, however, that the
Vo defect level is better described by using the standard form

TABLE I. Properties of zinc-blende ZnO in GGA+ U, HSE, and
in GW: the band gap E,, the heat of formation AH; of ZnO, the
formation energy of Vg under O-poor/Zn-rich conditions, and the
thermodynamic €(2+/0) transition level of V. All numbers are in
eV.

E, AH; AH(VY) e(2+/0)
GGA+U 146 3742 0.81° Ey+0.98
GW-GGA+U 3.25 Ey+136
HSE 234 =3.07 0.96 Ey+1.67
GW-HSE 3.34 Ey+1.66

“Elemental reference energies for GGA+ U are taken from Ref. 28.
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of HSE (a@=0.25) plus a rigid shift of about 1 eV for the
CBM.

Absolute formation energies. Besides the position of the
defect level in the gap, previous calculations also differed
about the absolute formation energy of V,*>7313 which—as
mentioned above—is presently not accessible in the GW
method. Here, we use the energy of the charge-neutral V%
state, as calculated by GGA+ U or HSE, along with the tran-
sition levels &(g/q’) as determined above, to obtain the ab-
solute formation energies AH(V{), as shown in Fig. 3(b). In
the case of GGA+U, however, there exists an ambiguity,
because the value of U used for the ZnO compound is not
suitable also for the elemental metallic phase of Zn. There-
fore, we use for this case the optimized elemental reference
energies of Ref. 28, which are determined so as to optimize
the degree of error cancellation between the energies of the
compound and that of the elemental constituents. Thus, in
the Zn-rich/O-poor limit, we obtain AH(V%):O.SI eV based
on GGA+U, which is close to the prediction of HSE irre-
spective of the value of the parameter « (see Table I and Ref.
8). Note, however, that by using the elemental reference en-
ergies of Ref. 28 for GGA + U we better reconcile the experi-
mental heat of formation of ZnO (AH;=-3.63 eV) than
GGA (Ref. 28) and hybrid DFT (see Ref. 8 and Table I),
thereby describing better the AH(Vy) difference between the
Zn-rich/O-poor and the Zn-poor/O-rich conditions.
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Conclusions. We calculated the quasiparticle energies for
the defect states of the O vacancy in ZnO within the GW
approximation based on DFT and hybrid-DFT wave func-
tions, paying particular attention to finite-size effects for the
QP energies of the charged defect states. The resulting ther-
modynamic &(2+/0) donor transition lies consistently at or
below midgap, irrespective of the underlying functional
(GGA+U or HSE), and agrees quite well with previous
results,'? where the band-gap error was corrected through
rigid shifts of the band edges. The defect level of the O
vacancy in ZnO predicted by the HSE hybrid-DFT functional
is well described when using the standard parameter «
=0.25 for the Fock exchange, plus a rigid shift (~1 eV) of
the CBM. In contrast, adjusting the hybrid-DFT parameters
so as to match the experimental band gap tends to move the
Vo defect level too close to the CBM.
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