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Highly accurate numerical results for single-particle spectrum and order parameter are obtained for the
magnetically ordered Kondo lattice by means of the dynamical mean-field theory combined with the
continuous-time quantum Monte Carlo method. Hybridized energy bands involving local spins are identified in
the Néel state as a hallmark of itinerant antiferromagnetism. At the boundary of the reduced Brillouin zone, the
twofold degeneracy remains in spite of the doubled unit cell. This degeneracy results if the molecular field felt
by localized spins has identical magnitude and reversed direction with that of conduction electrons. The
persistent Kondo effect is responsible for the behavior. The antiferromagnetic quantum transition occurs inside
the itinerant regime and does not accompany the itinerant-localized transition.

DOI: 10.1103/PhysRevB.81.113108 PACS number�s�: 71.27.�a, 75.20.Hr, 64.70.Tg

The distinction between itinerant and localized characters
of strongly correlated electrons has been one of the most
fundamental issues in condensed-matter physics. The Kondo
effect plays a central role in this problem because even a
localized spin may acquire itinerant character by coupling
with conduction electrons, and may form a Fermi liquid.
Some of recent experiments suggest that quantum phase
transition between magnetic and paramagnetic ground states
accompanies a change between localized and itinerant char-
acters of electrons, with a non-Fermi-liquid behavior in the
vicinity of the transition.1 Another experiment using the de
Haas-van Alphen effect has probed the change in the Fermi
surface as the external pressure drives such systems as CeIn3
and CeRhIn5 across the magnetic transition.2 On the other
hand, recent photoemission experiment for CeRu2Si2 and
CeRu2Si2−xGex indicates that the Fermi surfaces of both are
essentially the same, which involve f electrons and are re-
ferred to as the large Fermi surface. The experiment is per-
formed at temperatures above the Néel transition of
CeRu2Si2−xGex,

3 while CeRu2Si2 remains paramagnetic
down at least to 0.1 K. Thus, the antiferromagnetism in
CeRu2Si2−xGex seems to be itinerant. Consistent understand-
ing of this variety of phenomena is highly desirable, but is
still lacking.

In this Brief Report, we report on finite temperature re-
sults that provide understanding of how the magnetic order is
related to the change from itinerant to localized characters of
electrons. It is obvious that the issue is not restricted to a
particular compound. Hence, we work with the Kondo lattice
model �KLM� since the KLM is the simplest system that is
capable of describing both itinerant and localized characters
of electrons. The KLM is given by

H = �
k�

�kck�
† ck� + 2J�

i

Si · sci, �1�

where the first term represents the kinetic energy of conduc-
tion electrons, Si is the localized spin at site i, and sci

= 1
2���ci�

† ���ci� denotes the conduction-electron spin at the
same site. The competition between the Ruderman-Kittel-
Kasuya-Yosida �RKKY� interaction and the Kondo effect de-
termines the phase diagram.4

The ordered phase in the KLM has been investigated be-
yond the mean-field theory in one- �Refs. 5 and 6� and two-
�Refs. 7–11� dimensional systems. We approach the KLM
from infinite dimensions using the dynamical mean-field
theory �DMFT� to allow for the Néel state at finite tempera-
tures. We use the continuous-time quantum Monte Carlo
method �CT-QMC� �Refs. 12–14� as the impurity solver and
focus on the case of unit number nc=1 of conduction elec-
trons per site. In contrast with the metallic antiferromag-
netism with nc�1, where an incommensurate order may ex-
ist, we can safely assume the simple staggered order because
of the nesting condition for the conduction band in the hy-
percubic lattice. Hence, the results in this Brief Report are
exact in infinite dimensions except for statistical errors.

As the half-filled limit is approached from nc�1, the
large Fermi surface tends to the zone boundary of the para-
magnetic phase, while the small Fermi surface involves half
of the Brillouin zone volume. Provided that the ground state
has no discontinuity in the zero-doping limit, the limiting
location of the Fermi surface should be reflected in the loca-
tion of the energy gap in the half-filled case. In the localized
antiferromagnetism, the gap opens at the boundary of the
new Brillouin zone since conduction electrons feel the stag-
gered internal field. In itinerant magnetism, on the other
hand, we show in this Brief Report that the energy gap is
located in the center of the new Brillouin zone. The zone-
center location is due to the emergence of energy bands of
magnetic electrons. Hence, the location of the energy gap
distinguishes between itinerant and localized behaviors. Note
that such a distinction does not apply to the single band
model such as the Hubbard model where the energy gap in
the half-filled limit always occurs in the boundary of the
Brillouin zone. In this case the character of electrons changes
continuously from the itinerant limit to the localized one, as
the Coulomb repulsion increases relative to the band width.

We take the bare density of states

�c��� = �2/� exp�− 2�2� , �2�

which corresponds to an infinite dimensional hypercubic lat-
tice. We have taken the bandwidth D=1 as the unit of energy.
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For the Gaussian density of states, the Kondo temperature TK
is defined by

�c�0�TK =
e−	/2

��
exp�−

1

2�c�0�J� , �3�

where e−	/2 /���0.42 with 	�0.577 being the Euler con-
stant. This expression of TK corresponds to divergence of
effective exchange in the lowest-order scaling equation.

The hypercubic lattice has the nesting property with the
wave vector Q= �� ,� , . . .� at half filling, which favors the
staggered order. In the two-sublattice formalism, the Green’s
function Gk��z� of conduction electrons is a 2
2 matrix
where z is a complex energy, and a wave vector k belongs to
the reduced Brillouin zone.15 In the DMFT, the wave vector
enters only through �k. Therefore, we introduce the notation
�=�k and regard � as if it represents a wave number. The
spectral function A��� ,�� can be calculated from the matrix
Green’s function G��� ,z� as

A���,�� = − Im	Tr G���,� + i��
/� . �4�

Then the renormalized density of states ����� is given by
�����=2N−1�kA���k ,��, where the summation runs over the
reduced Brillouin zone with N /2 points. In the paramagnetic
state, the reduced number of k is compensated by the trace
over Gk��z� to give the same ����� as derived by the use of
the original Brillouin zone. Even in the Néel state, �����
does not depend on � because of the summation over sub-
lattices.

Let us first discuss the magnitude of the staggered mo-
ment given by 2�SQ

z �= �SA
z �− �SB

z �. The RKKY interaction is
responsible for the effective magnetic field, which is deter-
mined self-consistently as in the standard mean-field theory.
Figure 1 shows the temperature dependence of the staggered
moment, which should vanish at the Néel temperature TN.
On the other hand, the staggered magnetic susceptibility Q
in the paramagnetic state should diverge as the temperature
is lowered toward TN. Hence, we also plot Q

−1 calculated in
Ref. 4. It is found that the estimates of TN by �SQ

z � and Q
−1

are consistent with each other. However, the calculation of
�SQ

z � becomes increasingly difficult as T is approached to TN.
The results shown in Fig. 1 are restricted to the temperature

range where we could obtain reliable values. With J=0.1, the
localized spins are almost fully polarized in the ground state.
The temperature dependence can be fitted very well by the
mean-field formula, provided the saturated magnetization at
T=0 is given. As J increases, �SQ

z � decreases by the Kondo
effect, which eventually suppresses the antiferromagnetism
at J=Jc�0.27 down to T=0. With J�0.2, the mean-field
theory does no longer provide a good fit for the temperature
dependence.

We next discuss the density of states near T=0, which is
derived using the Padé approximation for analytical continu-
ation from imaginary Matsubara frequencies i�n to the real
ones. Since the Monte Carlo data are obtained accurately in
the imaginary time domain, the Padé approximation works
well in the CT-QMC method.14 Figure 2 shows ����� for
different values of J near the ground state. Namely, we take
the temperature where the density of states does not vary
much when T decreases further. For example, we take T
=0.01 for J=0.3, but T=0.002 for J=0.1. The present
method has no difficulty to go to such low temperatures with
high accuracy. In the case of J=0.3 with the paramagnetic
ground state, the density of states has a gap caused by the
Kondo effect. The state is often called the Kondo insulator.
In the case of J=0.26, the ground state is antiferromagnetic
as seen from Fig. 1. The density of states in the ordered
phase is almost the same as that with J=0.3. Namely, the
density of states does not depend much on whether the
ground state is paramagnetic or antiferromagnetic as long as
J is close to the critical value Jc.

When J is smaller, sharp peaks develop at both edges of
the gap. The origin is understood as follows: putting the
self-energy of conduction electrons as the staggered potential
�h by the Néel order, we obtain

Tr G���,z� = �z + ��2 + h2�−1 + �z − ��2 + h2�−1. �5�

Then the density of states is given by

����� =
2�

��2 − h2
�c���2 − h2� , �6�

with a square-root divergence at both edges �= �h. For
�2�h2, we obtain �����=0. This form of ����� roughly
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FIG. 1. �Color online� Staggered spin polarization 2�SQ
z � �left

scale� as a function of temperature for different values of J. Also
shown is the inverse staggered susceptibility Q

−1 �right scale�,
which goes to zero at TN.
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FIG. 2. �Color online� J dependence of the density of states for
the conduction electron and with T�0.
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explains the peak structure with J=0.1 in Fig. 2. In the nu-
merical result, the residual Kondo effect actually suppresses
the divergence in �����.

On the other hand, the density of states for larger J does
not show a clear threshold. The Gaussian tail in the bare
density of states �c��� causes a tiny but finite magnitude of
����� within the apparent energy gap. Therefore, we intro-
duce the characteristic value �c of the energy gap as giving
the half-maximum value of the peak in the density of states.
Figure 3 shows �c /2 as a function of J. The error bars have
been estimated from five bins of data. It is clear that �c
changes continuously at J=Jc. This shows that both the
Kondo effect and the staggered internal field are contributing
to �c. For J�0.1, on the other hand, �c /2 is almost propor-
tional to J. This behavior shows that the gap is mainly de-
termined by the staggered field J�Sz� as shown also in Fig. 3.

The details of the itinerancy are seen in the single-particle
spectral function A��� ,��. Figure 4 shows the spectrum in
the case J=0.2 where the Kondo effect is significant. In both
paramagnetic and ordered phases, the spectrum consists of
four bands in the reduced Brillouin zone. In the paramag-
netic phase shown in the left panel, the new bands are as-
cribed to “hybridization bands” caused by the Kondo
effect.16 We note that there is no real hybridization between
the f and conduction electrons because the f electron does
not have the charge degrees of freedom in the KLM. In the
Brillouin zone of the paramagnetic state, the energy gap is
indirect from the zone boundary to the zone center, both of

which correspond to �→ �� in Fig. 4. In the right panel of
Fig. 4�b�, these hybridization bands are clearly seen even in
the antiferromagnetic phase. Hence, we classify the antifer-
romagnetism in this regime as itinerant.

Let us now present the spectrum in the ferromagnetic
KLM for comparison, where each site forms S=1 state with
antiferromagnetic intersite interaction. The Kondo effect is
absent in the case of J�0. We can apply the CT-QMC
method also to ferromagnetic J as noted in Ref. 17. Figure 5
shows the spectrum with the same T as in Fig. 4. In the
paramagnetic state shown in Fig. 5�a�, the spectrum is almost
the same as the original conduction band. On the other hand,
in the antiferromagnetic phase shown in Fig. 5�b�, the spec-
trum shows the clear gap structure. These behaviors are ex-
plained well by Eq. �5� with h=0 in Fig. 5�a�, while h�0 in
Fig. 5�b�. In the case of ferromagnetic J, the number of
bands is two in contrast to the case with J�0 with four
bands.

Thus, the itinerant or localized behavior can be distin-
guished by the number of energy bands in the reduced Bril-
louin zone. Moreover, the location of the energy gap is at the
zone boundary in the localized case, but at the zone center in
the itinerant case. Note that �= �� correspond to the lower
and upper edges of the conduction band in infinite dimen-
sions. Both edges come to the center in the reduced Brillouin
zone.

We note another characteristic feature in Fig. 4�b� that the
degeneracy at �=0 remains in the antiferromagnetic phase. A
toy model helps one to understand the origin of the degen-
eracy. Let us consider a noninteracting periodic Anderson
model under the staggered field as

HPAM = �
k�

�kck�
† ck� + V�

i�

�f i�
† ci� + H.c.� + 2�

i

�hisci
z

+ HiSi
z� , �7�

where f i� �f i�
† � is the annihilation �creation� operator of an f

electron at the i site with the hybridization V. The staggered
fields represent the molecular field associated with the anti-
ferromagnetism. Then we choose hi= �h and Hi= �H,
where the A �B� sublattice has the positive �negative� sign.

There are four branches associated with c and f degrees of
freedom for the electrons, as well as the presence of A and B
sublattices. At �=0, we obtain the energies

E�� = 0� = �
1

2
	�h + H� � ��h − H�2 + 4V2
 . �8�

If the relation h=−H holds, E��=0� has only two distinct
values both of which are doubly degenerate. We interpret the

FIG. 3. �Color online� J dependence of the energy gap �c /2. For
comparison, also plotted are J�Sz�, J�sc

z�; Sz and sc
z are the localized

and conduction spins at a local site, respectively. Ṽ2 /D represents
the effective hybridization to be explained later, and TK is the
Kondo temperature defined by Eq. �3�.

FIG. 4. �Color online� Single-particle spectrum with J=0.2 in
�a� paramagnetic phase at T=0.035 and �b� antiferromagnetic phase
at T=0.010.

FIG. 5. �Color online� A��� ,�� with ferromagnetic interaction
J=−0.2 in �a� paramagnetic phase at T=0.035 and �b� antiferromag-
netic phase at T=0.010.

BRIEF REPORTS PHYSICAL REVIEW B 81, 113108 �2010�

113108-3



degeneracy in Fig. 4�b� as caused by the relation h=−H for
the molecular field. We call such a situation “quasilocal com-
pensation.” Note that the magnitudes of the polarization for
the conduction spin J�sc

z� and localized spin J�Sz� are much
different as shown in Fig. 3. Hence, the actual energy level is
determined not by the local internal field, but by a long-range
field involving remote conduction electrons. The compensa-
tion is reminiscent of the spatially extended Kondo singlet
with small J.

Let us identify the energy scale in the Néel state from the
self-energy. For sublattice �= �1 and spin �= �1, ����z� is
expanded as

����z� = ��h +
Ṽ2

z
+ O� 1

z2� , �9�

where Ṽ is the effective hybridization. The coefficient Ṽ2 of
1 /z corresponds to the jump at �=0 in the imaginary time

domain. We extract numerically the coefficient Ṽ2 of 1 / i�n in

the self-energy. Figure 3 shows the result for Ṽ2 /D�=Ṽ2� as a
function of J. Note that the indirect energy gap in the toy

model �7� is given by V2 /D. The agreement between Ṽ2 /D
and �c /2 in the paramagnetic phase is excellent. However,
this consistency should not be taken too seriously because �c

depends on the definition of the gap. We emphasize that
Ṽ2 /D shows no anomaly across the phase transition to the
antiferromagnetic phase. It also shows good proportionality
to the Kondo temperature as Ṽ2 /D�2.6TK.

In the region 0�J�0.1, the Néel temperature TN is much
larger than TK as seen from Figs. 1 and 3. The electronic
state at the transition has a localized character since the
Kondo effect is negligible at TN. Namely, there is no hybrid-
ized band, and the energy gap occurs at the boundary of the
reduced Brillouin zone. However, we have checked that two
almost flat bands appear newly below TK even with J=0.05.
Hence, the crossover from the localized behavior to the itin-
erant one occurs inside the Néel ordered state.

In summary, we have derived single-particle spectrum and
the temperature-dependent order parameter in the infinite di-
mensional KLM allowing for the Néel order. The high nu-
merical accuracy has made it possible to find the quasilocal
compensation between the conduction and localized spins
indicating the persistent tendency toward the Kondo singlet
at each site. The effective hybridization energy has no
anomaly across the quantum phase transition, and it scales
well with the impurity Kondo temperature TK. Hence, the
quantum transition into antiferromagnetism occurs within the
itinerant regime and does not involve itinerant-localized tran-
sition.
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