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We propose that we can realize “tight-binding photonic bands” in metallophotonic waveguide networks,
where the photonic bound states localized around the crossings of a network form a tight-binding band. The
formation of bound states at the crossings is distinct from the conventional bound states at defects or virtual
bound states in photonic crystals, but comes from a photonic counterpart of the zero-point states in wave
mechanics. Model calculations show that the low-lying photon dispersions are indeed described accurately by
the tight-binding model. To exemplify how we can exploit the tight-binding analogy for designing of photonic
bands, we propose a “flat photonic band” in the kagome network, in which the photonic flat band is shown to
arise with group velocities that can be as small as 1/1000 times the velocity of light in vacuum.
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Photonic crystals �PhCs� are interesting because they en-
able us to control optical properties just as we can manipu-
late properties of electrons in solids.1 PhCs have attracted
both experimental2,3 and theoretical4–6 interests, and the dra-
matic developments in the field in fact owe much to the
analogies between PhCs and solids. Many phenomena first
found in solids have also been found in PhCs, such as the
appearance of band gaps,7,8 Anderson localization,4,9 modes
localized to defects in the band-gap frequency,2 and lights
with small group velocities or heavy photons.6

While photonic bands realized in periodically modulated
dielectric media have been extensively studied, there should
be further avenues that have not been thoroughly explored.
In the electronic band structures, there are two opposite ap-
proaches well known in solid-state physics: the nearly-free-
electron model and the tight-binding model �TBM�. While
the former is perturbative, the TBM shows a great variety of
band structures, and numerous lattices have been analyzed in
solid-state physics. In this Brief Report we pose a question:
can we realize tight-binding photonic bands? Here, we pro-
pose a way to realize that. We predict that metallophotonic
waveguide networks �MPWNs�, where waveguides are
joined together to form a network structure as schematically
depicted in Fig. 1, should realize the tight-binding photonic
bands through an unsuspected “zero-point” localized photo-
nic states. The network is taken to be surrounded by a mate-
rial into which light cannot penetrate, so that the light is
confined inside the network. An obvious material is a metal
for a sufficiently smaller frequency than the plasma fre-
quency, such as in the microwave regime. Networks of line-
defect waveguides in PhCs may be another possibility, but
the detail of the surrounding material is unimportant as long
as the confining property and low-loss condition are satisfied.

We note that there exist literatures that propose some
ways to realize tight-binding photonic bands for coupled
waveguides or cavities in PhCs,10–12 and calculation methods
based on the TBM have been successfully applied to these
systems.13,14 However, most tight-binding studies have relied
on the introduction of defects, around which a localization
mechanism inside the band gap is sought. The MPWN we
propose here, by contrast, exploits a different mechanism.

The tight-binding photonic bands in MPWNs are shown to
arise from the states bound to each crossing of the wave-
guide, which is a photonic version of the zero-point effect in
quantum mechanics and has not been recognized so far. MP-
WNs thus make it possible to realize tight-binding bands
without defects. The concept of the zero-point state turns out
to be quite powerful in offering a clear understanding of
low-lying eigenmodes in these systems. In terms of struc-
tures, three-dimensional MPWNs are similar to the inverted
metallophotonic crystals of the woodpile type,15 but MPWNs
cover a wider class of systems including two-dimensional
structures as in Figs. 1�b� and 1�c�. In those inverted PhCs, it
has been recognized that air-band Bloch modes will localize
to the air region. While this localization mechanism will not
tell us whether the modes will localize to the crossings as in
our results, or at “arms,” the zero-point localization mecha-
nism tells us that they will localize at the most vacant sites
among the large dielectric constant region, namely, crossings
due to the zero-point effect. Thus, the zero-point localization
mechanism offers further insights into behaviors of eigen-
modes than the conventional concept does.

Here, we shall first show that the TBM is indeed a good
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FIG. 1. �Color online� Metallophotonic waveguide networks are
schematically shown: �a� a three-dimensional cubic lattice, �b� a
two-dimensional square lattice, and �c� a two-dimensional kagome
lattice. In each case, light is confined in the shaded regions, while
the rest of the space is filled with a light-prohibiting material such
as a metal. For two-dimensional cases as in �b� and �c�, the system
is assumed to have a large extension in the z direction.
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approximation by taking a two-dimensional square-lattice
MPWN as a typical example. To exemplify that we can use
the tight-binding photonic bands to design the photonic band
structures, we shall next consider metallophotonic wave-
guide on the kagome network. We shall show that the band
structure for the kagome network contains flat bands, which
are flat over the entire Brillouin zone with group velocities
typically as small as 1/1000 times the velocity of light in
vacuum. This amounts to a photonic realization of the “flat-
band model” in solid-state physics as conceived by Lieb,16

Mielke,17 and Tasaki.18 Ultraslow light is among keen inter-
ests in PhCs,6,19 which has also been discussed in view of
realizing a low-threshold laser. We then conclude that the
tight-binding analogy should provide a systematic way to
create photonic bands with desired band structures.

Band structure for a square lattice. To demonstrate our
basic idea for the tight-binding photonic band, we take the
simplest example of a square-lattice network �Fig. 1�b�� for
the waveguide. Here, we focus on the TM-polarized mode
�i.e., E � z� in two-dimensional networks. The validity of the
TBM that we discuss here, however, can be extended to
three-dimensional cases with arbitrary polarizations as men-
tioned later. While a band calculation for metallophotonic
crystals is more complicated than those for PhCs with dielec-
trics, here we employ a simplified method as follows to ex-
tract the essence of the band structure. We assume that the
metal that forms the wall of the network can be represented
by a medium having a large and negative dielectric constant.
Thus, we set the dielectric constant inside the waveguide to
be unity, while the dielectric constant outside is taken to be
−10 000 in actual calculations. This should be adequate for
describing a metal, at least in the microwave regime, where
the metal can be effectively regarded as completely reflec-
tive. For shorter wavelengths, e.g., in the optical regime, the
loss associated with the metal may not be ignored. A possible
way out from the loss in this regime will be to employ line-

defect waveguides since there is no loss associated with the
material.

Band structures and eigenmodes have been obtained nu-
merically with a plane-wave expansion method1 for each
value a of the lattice constant of the network structure, while
we set the width of each waveguide to be unity. We take a
sufficient number of plane waves �typically 7225� to attain
convergence.

The band structure for the square-lattice network for a
=2.25 is shown in the inset of Fig. 2. We then fit the lowest
band with the tight-binding band as shown in Fig. 2 for two
values of a=2.25,2.75. We can see that the fit is already
good for the TBM with nearest-neighbor transfers, while the
fit becomes even better when we include the further-neighbor
transfers �tn1 , tn2 in Fig. 3�. We quantify this by plotting the
best-fit nearest-neighbor and further-neighbor transfers
against the lattice constant a in Fig. 3. Each of the transfers
is seen to decrease exponentially with a, where further-
neighbor transfers decay more rapidly.

If we look at the eigenmodes, shown for the lowest band
in Fig. 4, they are in fact localized around each crossing,
with a rapidly decaying tail toward the neighboring junc-
tions. We note that the existence of the bound amplitude
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FIG. 2. �Color online� Calculated photonic band structure for
the bottom band for a square-lattice network �Fig. 1�b�� for two
values of a. The error bars come from restricting the number of
plane waves to 7225. Curves represent tight-binding fits of the
bands with nearest-neighbor transfers �dashed lines� or with trans-
fers extending to further neighbors �solid lines�. Inset depicts low-
lying bands for a=2.25.
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FIG. 3. �Color online� The best-fit “hopping integrals” for the
photonic tight-binding band plotted against the lattice constant a for
the nearest-neighbor transfer �t� and further-neighbor ones �tn1 , tn2�
as depicted in the inset. Errors in the fitting are smaller than the size
of the symbols.
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FIG. 4. �Color online� Eigenmodes in the bottom band at �
point for �a� a=2.0 and �b� a=3.0. The boundaries of the waveguide
are shown as dotted lines. Modes are normalized in each unit cell.
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localized around each crossing is analogous to the corre-
sponding localized states in quantum mechanics, which exist
due to a zero-point effect. Namely, for an electron system in
crossed quantum wires, it has been shown20 that there exist
bound states at the crossing. This comes from the fact that
the wave function has a smaller zero-point energy at a cross-
ing to form a bound state since the electron is less con-
strained there than in an arm. Schrödinger’s and Maxwell’s
equations for two-dimensional TM-polarized PhCs are
equivalent,21 so that the results in Schrödinger’s equation can
be applied to the present system. When we translate the
former to the present system, the lowest bound-state energy
should be 0.406 �in units of 2�c with the waveguide width
=1�. The center of the tight-binding band �i.e., the on-site
energy in the tight-binding fit� in Fig. 2 is 0.406�0.001,
which excellently agrees with the present result.

Such an excellent agreement owes much to the formation
of the bound states. By contrast, resonant states, which have
intrinsic losses, will couple to extended states to result in
significant transfers to distant neighbors, deteriorating the
tight-binding picture with near-neighbor transfers. The ori-
gins of the losses include the loss in the surrounding mate-
rial, the out-of-plane energy leakage, and the radiation loss
due to a finite size. While the first one may be avoided for
metals in the microwave regime and for line-defect
waveguides, the latter two losses can degrade the tight-
binding fit.

We note that the existence itself of such localized states
has been suggested for photonic crystal waveguides. Namely,
it has been pointed out that there is a state in the photonic
band gap with amplitudes localized around a T junction,22

while a high transmission through a bend in a waveguide is
observed for which a possibility for bound states is pointed
out.14 However, the band structure due to a periodic array of
such localized states in a periodic waveguide network has
not been explored.

The tight-binding band considered here should emerge in
general in MPWNs for arbitrary spatial dimensions and po-
larizations. Namely, the tight-binding bands emerge from the
bound states via the zero-point analog states in MPWNs,
which will continue to exist when we consider more compli-
cated structures with arbitrarily polarized electromagnetic
fields. Thus, we envisage here that MPWNs should generally
accommodate tight-binding photonic bands.

There is a way to achieve tight-binding bands in existing
studies employing coupled plasmon modes,23 but these bands
should be susceptible to disorder in the surface of metals.
The present system, on the other hand, should be robust
against disorder. It has been known for cavities that a disor-
der in the surface of a cavity does not significantly decrease
the Q value.24 The robustness comes from the fact that the
field resides away from the surface, which also applies to the
bound states considered here.

Kagome lattice and a flat band. To show that the present
TBM can be a powerful guideline in designing photonic
bands, we propose that the photonic band in a kagome net-
work of waveguides �Fig. 1�c�� should contain flat bands. A
curious point is that the class of flat bands considered here is
totally different from a dispersionless band in the narrow-
band �i.e., zero-transfer� limit. The emergence of the flat

band, originally considered in solid-state physics by Mielke
and by Tasaki, is due to an interference effect inherently
connected to the topology of the lattice, and thus the flat
band exists no matter how large the transfers between the
states at adjacent sites are. For electrons, there has been at-
tempts to realize flat electronic bands in the kagome �a typi-
cal Mielke� network of quantum wires.25,26 So we pose a
question here: is that can we realize the topologically origi-
nated flat photonic bands?

The result in Fig. 5 shows that the lowest three bands
have the same forms as in the TBM, where the third photonic
band from the bottom is indeed extremely flat, as expected.
The width of this band is in fact 3�10−4 �for a=4� in the
present normalization, so that light becomes more than 1000
times as slow as light in vacuum. We note that the band
becomes flat as an interference effect on the lattice where the
nearest-neighbor transfer is primarily at work, so that reso-
nant states with distant transfers would not realize this.
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FIG. 5. �Color online� The lowest three photonic bands calcu-
lated numerically for the kagome network shown in Fig. 1�c� for
a=4.0. Inset depicts a wider energy range.
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FIG. 6. �Color online� Absolute value of the eigenmodes in the
flat �third� band in a kagome network �Fig. 1�c�� with a=4.0 for
several points �a�–�c� in the first Brillouin zone as shown in the
inset. �d� is for the sixth band at point �c� in the Brillouin zone.
Modes are normalized in each unit cell.
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It is intriguing to look at the eigenmodes in the flat band
in Fig. 6�a�. While they are again localized around the cross-
ing sites, the specialty of the flat band is appreciated if we
look at the dependence of the eigenmode on the wave vector
k. Namely, one hallmark of the flat band à la Mielke is that
the uk part in a Bloch wave function eik·r uk strongly depends
on k,27 while the eigenmodes in the zero-transfer limit obvi-
ously are not. We can confirm in Fig. 6 that the photonic
eigenmode in the flat band indeed depends significantly on k
in the same manner as in the electron TBM on kagome.

Another notable feature is that there is more than one
band which is flat. We can see that the sixth band is also flat
as seen in the inset of Fig. 5, with the velocity less than
1/100 times the light in vacuum. If we compare the eigen-
modes in the two flat bands in Figs. 6�c� and 6�d�, we can see
that the sixth band has an eigenmode with an extra node in
the unit cell. We can confirm that the two eigenmodes differ
only in the nodal structure over the whole Brillouin zone.
This implies that these two flat bands originate from different
bound states with different symmetries. The existence of
more than one bound state is in fact also seen in an electron
system at the jointing sites.20 Thus, the photonic tight-
binding bands can accommodate more than one set of bands

corresponding to different symmetries in the bound-state
modes.

In conclusion, we have considered MPWNs and shown
that their band structures can be well captured as the tight-
binding photonic bands. This phenomenon can be explained
by bound states via the zero-point energy �in the language of
Schrödinger’s equation� at the jointing sites. This offers a
way to realize tight-binding bands in photonic crystals. To
exemplify that the TBM can be exploited as a good guideline
in designing photonic bands with desired band structures in
MPWNs, we have shown that a kagome network accommo-
dates flat bands with unusually small group velocities. As a
prospect there are a vast number of interesting lattice struc-
tures for MPWNs to be studied, among which are massless
Dirac cones with the “electron” �positive velocity� and
“hole” �negative velocity� branches in the honeycomb lattice.
Other future problems include the detailed study of loss as-
sociated with metals for MPWNs in an optical regime. Quan-
titative comparisons with other systems and application de-
tails will also be future problems.

We wish to thank Kazuaki Sakoda and Takafumi Hatano
for illuminating discussions.
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