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We propose a one-step scheme to generate Greenberger-Horne-Zeilinger �GHZ� states for superconducting
flux qubits or charge qubits in a circuit QED setup. The GHZ state can be produced within the coherence time
of the multiqubit system. Our scheme is independent of the initial state of the transmission line resonator and
works in the presence of higher harmonic modes. Our analysis also shows that the scheme is robust to various
operation errors and environmental noise.
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I. INTRODUCTION

Entanglement is the most important resource for quantum
information processing. Therefore, the question of how to
prepare maximally entangled states, i.e., the Greenberger-
Horne-Zeilinger �GHZ� state or the Bell states in the two-
qubit case, in various systems remains an important issue.
Superconducting Josephson-junction qubits are one of the
promising solid-state candidates for a physical realization of
the building blocks of a quantum information processor, see,
e.g. Refs. 1–4. They are undergoing rapid development ex-
perimentally, in particular, in circuit QED setups. Two-qubit
Bell states have been demonstrated experimentally.5–7 There
are also some theoretical proposals on how to generate maxi-
mally entangled states for two or three qubits.8–18 However,
how to scale up to multiqubit GHZ state generation remains
an open question. Some general scheme based on fully con-
nected qubit network is proposed but no specific circuit de-
sign is provided.19 Most recently, preparation of multiqubit
GHZ states was proposed based on measurement.20,21 This
type of state preparation is probabilistic and the probability
to achieve a GHZ state decreases exponentially with the
number of qubits.

In quantum optical or atomic systems, one-step genera-
tions of GHZ states for multiple qubits have been studied
previously. However, those schemes are based on some spe-
cial properties of atoms or ions which are not fulfilled in
systems of superconducting qubits, such as the homogeneous
energy splitting of the internal energy levels22 or the intrinsic
interaction of Bose-Einstein condensates.23

In this paper, we propose a one-step GHZ state prepara-
tion scheme based on the nonperturbative dynamic evolution
of the qubit-resonator system. It works for multiple qubits
�N�3�. The preparation time is short and the preparation is
robust to environmental decoherence and operation errors.

II. COUPLED CIRCUIT QED SYSTEM

The GHZ state preparation scheme described below is
based on a circuit QED setup where superconducting qubits
are strongly coupled to a one-dimensional superconducting
transmission line resonator �TLR�. Figure 1�a� shows the
type of circuit we have in mind: a qubit array is placed in
parallel with a line of length L0. The superconducting trans-
mission line is essentially an LC resonator with distributed

inductance and capacitance.24,25 The oscillating supercurrent
vanishes at the end of the transmission line and this provides
the boundary condition for the electromagnetic field of this
on-chip resonator. The qubits are fabricated around the cen-
tral positions x=L0 /2. Since the qubit dimension �several
micrometer� is much smaller than the wavelength of the fun-
damental electromagnetic modes �centimeter�, the coupling
between the qubits and the TLR is approximately homoge-
neous. Since x=L0 /2 is an antinode of the magnetic field
where the electric field is zero, the qubits are only coupled to
the magnetic component, which induces a magnetic flux
through the superconducting loop given by

���i� = ��i��0

�
�a + a†� �1�

with

FIG. 1. �Color online� Schematic diagram of our setup. �a� The
qubits are coupled through a superconducting stripline resonator
�the blue stripe�. Each “crossed box” denotes one qubit which can
be either a charge qubit or a flux qubit; the red dashed line shows
the magnitude of the magnetic field. �b� Detailed schematic of a
charge qubit. The crosses denote Josephson junctions. �c� Detailed
schematic of a gradiometer-type flux qubit. The crosses denote Jo-
sephson junctions.
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��i� =
M�i��

�0
���

2L
. �2�

Here, M�i� is the mutual inductance between the resonator
and the ith qubit, �=� / �LC�1/2 is the frequency of the fun-
damental resonator mode, �0=h /2e is the magnetic-flux
quantum and L �C� is the total self-inductance �capacitance�
of the stripline. Here, we have assumed the qubit array to be
only coupled with a single mode of the resonator and a �a†�
is the annihilation �creation� operator of this fundamental
mode. The stripline resonator can be used to couple both
charge qubits and flux qubits as described below.

A. Charge-qubit system

We first consider the charge-qubit case. Suppose each qu-
bit is a charge qubit �see Fig. 1�b�� consisting of a dc-
superconducting quantum interference device �SQUID�
formed by a superconducting island connected to two Jo-
sephson junctions. The Coulomb energy of each qubit is
modified by an external bias voltage and the effective Jo-
sephson tunneling energy is determined by the magnetic flux
�d

�i� threading the dc-SQUID. The Hamiltonian of a single
charge qubit reads26

H�i� �
EC

�i�

4
�1 − 2ng

�i���z
�i� − EJ

�i� cos��
�d

�i�

�0
��x

�i�, �3�

where EC
�i� �EJ

�i�� is the Coulomb �Josephson� energy of the ith
qubit and ng

�i� is the bias charge number that can be controlled
by an external gate voltage. The Pauli matrices �z= 	0
�0	
− 	1
�1	 and �x= 	0
�1		1
�0	 are defined in terms of the
charge eigenstates 	0
 and 	1
. 	0
 and 	1
 denote 0 and 1
excess Cooper pair on the island, respectively. �d

�i�=�e
�i�

+���i� includes contributions from both the external flux bias
�e

�i� and the flux ���i�.
For small ��i�, the Josephson energy can be expanded to

linear order in ��i�, which results in an additional linear cou-
pling between the x component of the qubits and the bosonic
mode. If all the qubits are assumed to be biased at the de-
generacy point ng

�i�=1 /2, the total Hamiltonian reads

H = �
i

���i���e
�i���x

�i� + g�i���e
�i���a + a†��x

�i�� + HLC �4�

with the single charge-qubit energy splitting ��i���e
�i��=

−EJ
�i� cos���e

�i� /�0�, g�i���e
�i��=��i�EJ

�i� sin���e
�i� /�0�, and

the free Hamiltonian of the TLR HLC=�a†a. Note that the
coupling between the qubits and the TLR can be turned off
by setting �e

�i�=n�0.

B. Flux qubit system

For a flux qubit system, a circuit example to realize our
proposal is shown in Fig. 1�c�. The ith qubit contains four
Josephson junctions in three loops instead of one or two
loops in the conventional flux qubit design.27,28 The two
junctions in the dc-SQUID have identical Josephson energies
	0

�i�EJ
�i�, here 	0

�i� is the ratio between the Josephson energy of
the smaller junction and that of the two bigger junctions.27,28

The other two junctions are assumed to have the Josephson

energy EJ
�i�. The superconducting loops are penetrated by

magnetic fluxes �q1
�i�, �q2

�i�, and �d
�i�, respectively. The corre-

sponding phase relations are


4
�i� − 
3

�i� = 2��d
�i�/�0, �5�


1
�i� + 
2

�i� +

3

�i�

2
+


4
�i�

2
= 2���q1

�i� − �q2
�i��/�0, �6�

�q1
�i� + �q2

�i� + �d
�i� = n�0, �7�

where 
k �k=1,2 ,3 ,4� is the phase difference across the kth
junction. The total Josephson energy of the circuit is

− U0
�i� = EJ

�i� cos 
1
�i� + EJ

�i� cos 
2
�i� + 	�i�EJ

�i� cos�2��t
�i�/�0

− �
1
�i� + 
2

�i��� �8�

with �t
�i���q1

�i� −�q2
�i� and 	�i�=2	0

�i� cos���d
�i� /�0�. If �t

�i� is
biased close to �0 /2, the circuit becomes a flux qubit, i.e., a
two-level system in the quantum regime.27,28 Together with
the charging energy, the total Hamiltonian for the ith qubit is

H�i� = ��i���t
�i���z

�i� + ��i���d
�i���x

�i�. �9�

The Pauli matrices read �z= 	0
�0	− 	1
�1	 and �x
= 	0
�1		1
�0	 and are defined in terms of the classical current
where 	0
 and 	1
 denote the states with clockwise and coun-
terclockwise currents in the loop. The energy spacing of the
two current states is ��i���t

�i��� Ip
�i���t

�i�−�0 /2� where Ip is
the persistent current in the loop, and the tunneling matrix
element between the two states is ��i���d

�i�����i��	�i��. Note
that in contrast to the original flux qubit design,27,28 this gra-
diometer flux qubit is insensitive to homogeneous fluctua-
tions of the magnetic flux.29 More importantly, it enables the
TLR to couple with the dc-SQUID loop without changing
the total bias flux of the qubit. As in the case of the charge
qubit, the magnetic flux in the dc-SQUID loop includes two
parts: �d

�i�=�e
�i�+���i�, where �e

�i� is due to the external con-
trol line and ���i� is due to the TLR.

For ��i�1, one can expand the Hamiltonian in terms of
�. The second-order terms ��i�2d2� /d	2 are much smaller
than the zeroth- and the first-order terms. The Hamiltonian of
each qubit can be written as30

H�i� = ��i���t
�i���z

�i� + ��i���e
�i���x

�i� + g�i���e
�i���x

�i��a + a†� .

�10�

The coupling coefficient is

g�i���e
�i�� = − 2	0

�i���i� sin���e
�i�/�0��d��	�i��

d	�i� �
�d

�i�=�e
�i�

.

�11�

Therefore, by setting �e
�i�=n�0, the qubit-resonator interac-

tion can be turned off. When the interaction is on, �e
�i� can be

tuned to compensate the difference of the fabrication param-
eters and realize a homogeneous coupling g�i�=g. Then if
each qubit is biased at the degeneracy point �t

�i�= �n
+1 /2��0, the total Hamiltonian becomes
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H = �
i

��i���e
�i���x

�i� + g�i���e
�i���x

�i��a + a†� + HLC, �12�

where ��i���e
�i��=��i���e

�i�� is the single-qubit energy split-
ting. Comparing Eqs. �4� and �12�, it is evident that the two
Hamiltonians have the same structure: the interaction term
commutes with the free term and the interaction can be
switched on and off. In the next section, we show how to
generate a multiqubit GHZ state by utilizing these features.

III. GENERATION OF A GHZ STATE

In the interaction picture,

HI�t� = �
i

g�i��a†ei�t + ae−i�t��x
�i�. �13�

Since ��x
�i��x

�j� ,a�x
�i� ,a†�x

�i� ,1� form a closed Lie algebra, the
time evolution operator in the interaction picture can be writ-
ten in a factorized way as31

UI�t� = �
i�j

e−iAij�t��x
�i��x

�j��
i

e−iBi�t�a�x
�i�

� �
i

e−iBi
��t�a†�x

�i�
e−iD�t�

�14�

and UI�t� satisfies

i� �

�t
UI�t��UI

−1�t� = HI�t� . �15�

Solving this equation for the initial condition Aij�0�=Bi�0�
=D�0�=0, we obtain

Bi�t� =
ig�i�

�
�e−i�t − 1� , �16�

Aij�t� =
g�i�g�j�

�
� 1

i�
�ei�t − 1� − t� , �17�

D�t� = �
i

�g�i��2

�
� 1

i�
�ei�t − 1� − t� . �18�

In the Schrödinger picture

Us�t� = U0�t�UI�t� = e−i�a†at�
i

e−i��i��x
�i�tUI�t� . �19�

Note that Bi�t� is a periodic function of time and vanishes
at t=Tn=2�n /� for integer n. At these instants of time, the
time evolution operator takes the form

U�Tn� = exp�− i�
i�j

�ij�n��x
�i��x

�j��exp�− iD�t�� �20�

in the interaction picture. Here, �ij�n�=g�i�g�j�Tn /�
=g�i�g�j�2�n /�2. Thus, at these times, the time evolution is
equivalent to that of a system of coupled qubits with an
interaction Hamiltonian of the form ��x

�i��x
�j�. Therefore, by

choosing appropriate coupling pulse sequences, an effective
XX coupling can be realized for multiple qubits. This cou-
pling can be utilized to construct a CNOT gate for two
qubits.30 If the couplings are homogeneous for all qubits, i.e.,
g�i�=g �for i=1, . . . ,N�,

�ij�n� � ��n� =
g2

�22�n . �21�

Equation �20� can be written as

U�Tn� = exp�− i4��n�Jx
2�exp�i��n�N�exp�− iD�t�� �22�

with Jx=�i�x
�i� /2.

Suppose the initial state of the qubits is

	��0�
 = �
i=1

N

	− 
z
�i�, �23�

where 	� 
z denotes the eigenstates of �z, �z	� 
z= � 	� 
z.
This initial state can be prepared by biasing the qubits far
away from the degeneracy point, letting them relax to the
ground state, and then biasing them back non-adiabatically.
Starting from the initial state, under the time evolution de-
scribed by Eq. �22�, the state evolves into a GHZ state22,23

�up to a global phase factor�

	��Tn�
 =
1
�2

� �
i=1

N

	− 
z
�i� + ei��N+1�/2

�
i=1

N

	+ 
z
�i�� , �24�

if ��n�= �1+4m�� /8, where m is an arbitrary integer. A com-
parison with Eq. �21� shows that the integers n and m are
related by

n = m
�2

4g2 +
�2

16g2 , �25�

which is possible only if the �experimentally controllable�
parameter g2 /�2 is chosen to be

g2

�2 =
1 + 4m

16n
. �26�

Since it is difficult in practice to realize g comparable to �,
we assume m=0. Hence Eq. �26� determines the value nmin
�typically larger than 1� which corresponds to the minimum
preparation time of the GHZ state

Tmin =
2�nmin

�
=

��

8g2 . �27�

The optimal case nmin=1 could be realized if it were possible
to achieve g=� /4. The same GHZ state is periodically gen-
erated at later times, with preparation time Tp=Tmin�1+4m�.

For both types of qubits, g is proportional to �� �since g
is proportional to �, see Eqs. �2� and �4��. If we assume g
=���, we obtain Tmin=� /8�2. Therefore, the preparation
time does not depend on �. Furthermore, the preparation
time Eq. �27� does not increase with the number of qubits.

If the qubits evolve under the time evolution described by
Eq. �22� with ��n�= �3+4m�� /8, another N-qubit GHZ state
is realized,

	��Tn�
 =
1
�2

� �
i=1

N

	− 
z
�i� + e−i��N+1�/2

�
i=1

N

	+ 
z
�i�� . �28�

In the following discussion, we focus on the GHZ state Eq.
�24� since it can be prepared in a shorter time.

The treatment discussed up to now is valid if the qubit
number N is even. For odd N, the single-qubit rotation U�
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=exp�−�Jx /2� is needed in addition to the time evolution Eq.
�22�. The GHZ state that can be realized for odd N has the
form

	��Tn�
 =
1
�2

� �
i=1

N

	− 
z
�i� + ei�N/2

�
i=1

N

	+ 
z
�i�� . �29�

To conclude: one can prepare an N-qubit GHZ state by turn-
ing on the qubit-resonator interaction for a specified time.

For this GHZ state to be useful for quantum information
processing, the preparation time has to be shorter than the
quantum coherence time of the whole system. In general, a
short preparation time results from a strong qubit-qubit cou-
pling. However, this conflicts with the weak-coupling condi-
tion assumed in many schemes in order to utilize virtual-
photon excitation or the rotating-wave approximation. Our
preparation scheme for the GHZ state is based on real exci-
tations of the quantum bus. No weak-coupling condition is
required here. In principle, it can be applied to the “ultras-
trong” coupling regime that the coupling strength between
the quantum bus �i.e., the TLR� and the qubits is comparable
to the free system energy spacing. Hence it is possible to
implement GHZ state preparation in a very short time. To get
an idea of the time scale under realistic experimental condi-
tions, we now estimate the preparation time using typical
experimental parameters.

Assuming the mutual inductance between qubit and reso-
nator M�i�=20 pH, the self-inductance L=100 pH, and the
resonator frequency �=1 GHz leads to �1.76�10−3 for
both types of qubits. For charge qubits, we assume EJ

�i�

=14 GHz, ��i�=10 GHz, and that the bias during the cou-
pling period satisfies sin���e

�i� /�0�=0.8. This leads to a cou-
pling strength of g=19.71 MHz. For flux qubits, we assume
a qubit frequency ��i�=10 GHz, EJ

�i�=345 GHz, 	0
�i�=0.42,

the bias satisfies sin���e
�i� /�0�=0.71, and at this bias,

d� /d	=112 GHz. Both 2	0
�i� and 2	0

�i� cos���e
�i� /�0�

should be within the interval �0.6, 0.85� so that the circuits
can always work as flux qubits both with and without bias.
This leads to g�144 MHz.30 The coupling strength is much
stronger for flux qubits than charge qubits because of the
direct magnetic coupling to the phase degree of freedom.

Therefore the interaction time to realize a GHZ state is
Tmin=1 �s for charge qubits and Tmin=19 ns for flux qubits.
The preparation time for flux qubits is much shorter than the
coherence time of the TLR which can be several hundred
microseconds. The typical single-qubit coherence time at the
degeneracy point is several microseconds. Hence, in prin-
ciple, the scheme is able to prepare GHZ states for several
tens of qubits. If the coupling strength can be further in-
creased to the ultrastrong regime in experiment, the prepara-
tion of a multiqubit GHZ state can be comparable to the time
of a single-qubit operation.

IV. PREPARATION ERRORS

From the above calculation, it is clear that the essential
point to prepare the GHZ state is to control the length of the
dc pulse to manipulate the flux bias �e

�i�. In the beginning,
the external magnetic flux �e

�i� is set to n�0, and all the

qubits are properly initialized. Then the interaction between
the qubits and the resonator is turned on by biasing �e

�i� away
from n�0 to some appropriate value for a time Tmin. Finally,
the interaction is switched off by setting �e

�i�=n�0 again and
the multiqubit GHZ state is realized. Note that all the qubit
biases are modified during the preparation by the same pulse,
therefore all the qubits can share one control line for the
magnetic flux. To accomplish this operation, several practical
issues have to be considered.

The first one is the precision of the control of the pulse
length to keep the error acceptable. If the pulse length is not
exactly Tmin, the state realized is not a GHZ state and this
error can be evaluated by calculating the fidelity32,33 F�t�
=Tr��GHZ�q�t��, where �q�t� is the reduced density matrix of
the qubits and �GHZ is the density matrix of the N-qubit GHZ
state. In Fig. 2, the blue solid curves show the fidelity of state
preparation, the regime with fidelity larger than 90% is
marked by two green dotted lines. To realize a preparation
with above 90% fidelity, the time control of the pulse should
be precise to around 2.5 ns in the four qubits case, which is
possible in experiment.

The second problem is the influence of the nonideal pulse
shape. In the above calculation, we have assumed that a per-
fect square pulse can be applied so that g�i� is a constant
during the preparation. However, in experiment the dc pulse
generated always has a finite rise and fall time. Since the
coupling strength g�i� depends on the bias flux �e

�i�, the
modulation of the magnetic flux results in a time-dependent
coupling strength g�i�=g�i��t�. If g�i� varies slowly with time
�compared with e−i�t�, the above discussions still hold except
that the decoupling time T at which the qubit-resonator cou-
pling can be canceled is shifted to satisfy

0 1 2 3 4 5
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0.6

0.8

1

F

(a)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Time

F

(b)(b)

(a)

FIG. 2. �Color online� Time dependence of the fidelity of the
prepared GHZ state for two different initial resonator states: the
ground state �blue solid line� and the thermal state �red dashed line�
in the case of �a� two qubits and �b� four qubits. The black dots
indicate the time when the resonator and qubits are effectively de-
coupled. The green dotted lines limit the regime in which the fidel-
ity is larger than 90%. The following parameter values were used:
qubit frequency �=10 GHz, resonator frequency �=1 GHz, and
coupling strength g=144 MHz. The time is given in units of Tmin.
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e−i�Tg�i��T� − g�i��0� = 0. �30�

A GHZ state is prepared if

��

8
= �

0

T

dt��ei�t��g�i��t��g�j��0� + g�i��0�g�j��t���

− 2g�i��t��g�j��t��� �31�

for all i and j. This means a GHZ state can be realized by dc
pulses of finite bandwidth without introducing additional er-
rors.

Another systematic error appears because the parameter
g2 /�2 cannot be controlled with arbitrary accuracy, i.e., Eq.
�26� will be satisfied only approximately. In experiment, �e

�i�

is tuned to get the desired value of g; whereas � is fixed by
the geometry of the device. Suppose the experimental inac-
curacy leads to a modified value for the coupling strength,
g�1+��, where � quantifies the magnitude of error. Hence the
prepared state deviates from the GHZ state. The fidelity of
the prepared state depends on � as

F��� = 	���T�	GHZ
	2 =
1

22N��
r=0

N

CN
r ei�/2��2+2���N/2 − r�2�2

.

�32�

where CN
r =N ! / �r ! �N−r�!� is the binomial coefficient. This

expression is valid for even N. For odd N, the fidelity turns
out to be given by Eq. �32� with N→N+1.

Figure 3 shows that the fidelity decreases as the error in
the coupling coefficient increases. In the case of a four-qubit
GHZ state, a fidelity of 98% can be achieved if the error in g
is within 3%. However, as the number of qubits increases,
the fidelity drops more rapidly. Hence a more precise control
of the flux bias is required to realize many-qubit GHZ states.

V. ERROR CAUSED BY DECOHERENCE

An important advantage of our proposal is that the state
preparation is independent of the initial state of the resonator.
In general, it is not easy to prepare the system to be exactly
in the ground state. For example, at typical dilution fridge
temperatures, say 50 mK, there is a non-negligible probabil-
ity �30%� for the first excited state of a 1 GHz resonator to be

occupied. This problem is less severe for the qubits since
their energy scale is much higher. Therefore a scheme which
is insensitive to the initial state is desirable.

Figure 2 shows the fidelity of the prepared GHZ state for
two different initial states of the resonator �the ground state
and the thermal state at 50 mK�. Although the time evolu-
tions are different, in general, the fidelities at the decoupling
time Tn �indicated by black dots in the figures� are the same.
This can be explained from Eq. �14�, at times Tn, only the
first term of Eq. �14� is kept, i.e., the qubits and resonator are
decoupled. No matter what the initial state of the resonator
is, at these times, the resonator has evolved back to its initial
state. This means the GHZ state preparation is not influenced
by the initial state or in other words, the preparation is in-
sensitive to the decoherence that occurred before the interac-
tion was switched on.

But the decoherence during the operation certainly
changes the final output state. In general, environmental fluc-
tuations induce both dephasing and relaxation to the system.
Since the qubits are all biased at the degeneracy point, the
strong dephasing effect due to 1 / f noise is largely sup-
pressed. Thus we can use a master equation which only in-
cludes relaxation as damping instead of the unitary operator
Eq. �14� to fully characterize the time evolution

�̇�t� = − i�H,��t�� + LQ��t� + LR��t� , �33�

where ��t� is the density matrix of the system �qubits
+resonator� in the interaction picture and LR represents the
decoherence of the resonator

LR� =
�

2
�Nth + 1��2a�a† − a†a� − �a†a� +

�

2
Nth�2a†�a

− aa†� − �aa†� . �34�

Here, � is the resonator decay rate and Nth= �exp�� /kBT�
−1�−1 the average number of photons in the resonator. Fi-
nally, LQ represents the decoherence of the qubits

LQ� =
�

2
�2�̃−��̃+ − ��̃+�̃− − �̃+�̃−�� , �35�

where � is the qubit decay rate and �̃� are written in the
diagonal basis of �x. The quality factor of a TLR can be as
high as than 106. The qubit T1 time at the degeneracy point is
several microsecond at most in present experiment. To be on
the safe side, we assume for the resonator Q=2�103 and
�=0.5 MHz, and for the qubit T1=100 ns, i.e., the decay
rate is �=10 MHz. Here we neglect excitations of the qubit
since its energy spacing is much larger than the thermal fluc-
tuation. To investigate the influence of decoherence, we com-
pare the fidelity to prepare a GHZ state with/without deco-
herence. The result is shown in Fig. 4 where the difference of
the two fidelities �F=F−Fd �where Fd is the fidelity in the
presence of decoherence� is plotted as a function of time.
The red dots mark the difference at the GHZ state prepara-
tion times Tp. Obviously, the error due to decoherence in-
creases with time. As we analyzed in the previous section,
the preparation time is much shorter than the decoherence
time. Therefore the error is still quite small at the minimum
preparation time Tmin �indicated by the first dot�: the error
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FIG. 3. �Color online� Dependence of the fidelity F on the error
of the coupling coefficient �. The curves correspond to N=2 �top�,
4, 6, and 8 �bottom�.
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caused by decoherence is around 3.7% in the four-qubit case.

VI. DISCUSSION AND CONCLUSION

In the above discussion, for simplicity, we assumed that
the qubits only interact with a single mode of the resonator.
However, since we did not invoke the rotating-wave approxi-
mation in our calculation, higher modes of the TLR �Refs. 24
and 34� will also contribute to the coupling. Therefore, the
interaction Eq. �13� should include a sum over multiple
modes whose frequencies are below a cutoff �c. The cutoff is
determined by a number of practical issues, e.g., by the su-
perconducting gap or the fact that the resonator is not strictly
one dimensional.24 The time evolution including higher
modes is of the same form as Eq. �14� but includes a product
over all the relevant modes. Neglecting the small nonlinear
effect due to output coupling, the frequencies of all higher
modes are multiples of the frequency of the fundamental
mode, �ñ= ñ� and �c= ñc�, all the coupling coefficients be-
tween the qubits and different modes of the TLR, Bi,ñ�t�
= igñ

�i��e−i�ñt−1� /�ñ are still zero for t=Tn=2n� /�. Here
gñ

�i��g�i���ñ�. Hence the only correction to our scheme is
including a sum over all the relevant modes in the definition
of Aij�t� in Eq. �17�,

Aij�t� = �
ñ=1

ñc gñ
�i�gñ

�j�

�ñ
t . �36�

For low excitation modes whose wavelengths are still much
larger than the qubit dimension, the homogeneous coupling

assumption still approximately valid, i.e., gñ
�i��gñ. For ex-

ample, considering ñc=10 for a 10 cm transmission line,
around the center there is a 0.32-mm-long region where the
magnetic field varies within 5%. The distance between the
center of two qubits is roughly 10 �m. This means up to
around 30 qubits are coupled to the resonator approximately
homogeneously. One can also tune �e

i to further compensate
the slight inhomogeneity. The correction to the time evolu-
tion Eq. �22� can be simply written as ��n�
= �2�n�g2�ñc /2� /�2. Therefore, the effect of the higher exci-
tation modes actually amounts to increasing the coupling co-
efficient g→g�ñc /2, which helps to reduce the operation
time.

The electric field of the higher modes has little effect on
the flux qubits but will change the voltage bias of the charge
qubits and couple to their �z component. However, at the
degeneracy point, where the free Hamiltonian is proportional
to �x, these coupling terms are rapidly oscillating and are
expected to have a small effect on the system. However, the
situation is less advantageous than for flux qubits and higher
modes should be suppressed by choosing high fundamental
mode frequencies in the charge-qubit case. For a small num-
ber of qubits, a lumped LC circuit can also be used as a
quantum bus35,36 to generate a GHZ state by following our
scheme. In this case, only one single mode contributes.

In conclusion, we have proposed a scheme to prepare an
N-qubit GHZ state in a system of superconducting qubits
coupled by a transmission line resonator. We have analyzed
the preparation scheme for both charge qubits and flux qu-
bits. With this method, a multiqubit GHZ state can be pre-
pared within the quantum coherence time. In the case of flux
qubits that is especially favorable, the preparation time is
two orders of magnitude shorter than the qubit coherence
time. The preparation time can be reduced further if the cou-
pling strength is increased to the ultrastrong-coupling re-
gime, where the coupling strength is comparable to the free
qubit Hamiltonian. The preparation scheme is insensitive to
the initial state of the resonator and robust to operation errors
and decoherence. The coupling can be switched by dc pulses
of finite rise and fall times without introducing additional
errors. In addition, the scheme described in this paper utilizes
a linear coupling which is intrinsically error free if proper dc
control is achieved. Due to all these advantages, this pro-
posal could be a promising candidate for GHZ state genera-
tion in systems of superconducting qubits.
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