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We perform a numerical simulation of quantum turbulence produced by thermal counterflow in superfluid
4He by using the vortex filament model with the full Biot-Savart law. The pioneering work of Schwarz has two
shortcomings: it neglects the nonlocal terms of the Biot-Savart integral �known as the localized induction
approximation �LIA�� and it employs an unphysical mixing procedure to sustain the statistically steady state of
turbulence. We have succeeded in generating the statistically steady state under periodic boundary conditions
without using the LIA or the mixing procedure. This state exhibits the characteristic relation L=�2vns

2 between
the line-length density L and the counterflow relative velocity vns and there is quantitative agreement between
the coefficient � and some measured values. The parameter � and some anisotropy parameters are calculated
as functions of temperature and the counterflow relative velocity. The numerical results obtained using the full
Biot-Savart law are compared with those obtained using the LIA. The LIA calculation constructs a layered
structure of vortices and does not proceed to a turbulent state but rather to another anisotropic vortex state;
thus, the LIA is not suitable for simulations of turbulence.
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I. INTRODUCTION

Quantum turbulence,1,2 which is the disordered motion of
a tangle of quantized vortices, has been investigated since
pioneering thermal counterflow experiments by Vinen3 in the
late 1950s. Many experimental, theoretical, and numerical
studies have advanced our understanding of counterflow tur-
bulence. Many researchers have recently focused on quan-
tum turbulence near 0 K. One of their main motivations is
that quantum turbulence at 0 K exhibits some similarities
with turbulence in ordinary fluids.1 A typical example is Kol-
mogorov’s law, which is the most important statistical law of
classical turbulence and which has been numerically con-
firmed in quantum turbulence too.4 In contrast, turbulence at
finite temperatures �e.g., counterflow turbulence� is a form of
motion peculiar to two-fluid hydrodynamics5 and has no di-
rect analog with turbulence in an ordinary viscous fluid. For
this reason, turbulence at finite temperatures is not currently
investigated as much as turbulence at 0 K. However, the
physics of finite-temperature turbulence is far from fully
understood.6 Recently, particle-image velocimetry
experiments,7–9 which is a technique for visualizing fluid
flow using small particles, have been performed to investi-
gate counterflow of superfluid 4He. In order to interpret these
experiments, we need to understand the microscopic vortex
dynamics in thermal counterflow. Our current understanding
of counterflow turbulence is still deficient. Hence, in this
introduction we briefly review research of counterflow turbu-
lence and reveal some important unresolved problems.

According to the two-fluid model, superfluid 4He consists
of an intimate mixture of two-fluid components: a viscous
normal fluid and an inviscid superfluid. The density and ve-
locity of the normal fluid are, respectively, denoted by �n and
vn, while the superfluid density and velocity are, respec-
tively, denoted by �s and vs. The total density, �=�s+�n, is
approximately temperature independent, but the relative pro-
portions of the normal fluid and the superfluid, �s /� and

�n /�, depends strongly on the temperature. In this system,
any rotational motion of a superfluid is sustained only by
quantized vortices, which have the quantum circulation
�=h /m4, where h is Planck’s constant and m4 is the mass of
a 4He atom.

A thermal counterflow, which is internal convection pro-
duced by a temperature gradient, is explained by this two-
fluid model. In a counterflow, entropy and heat are carried
only by the normal-fluid component. Hence, if a heat current
is applied to the closed end of channel, then the normal fluid
will flow from warmer areas to cooler areas while the super-
fluid will flow in the opposite direction to conserve the total
mass. In this way, counterflow is induced with a relative
velocity between the superfluid and the normal fluid of
vns=vn−vs. However, superflow becomes dissipative �super-
fluid turbulence� above a certain critical counterflow veloc-
ity. The concept of superfluid turbulence was introduced by
Feynman10 who stated that the turbulent state consists of a
disordered set of quantized vortices, called a vortex tangle.

This idea was further developed by Vinen. In order to
describe amplification of a temperature difference at the ends
of a capillary retaining thermal counterflow, Gorter and
Mellink11 introduced some additional interactions between
the normal fluid and superfluid �mutual friction�. Through
experimental studies of the second-sound attenuation, Vinen
considered this Gorter-Mellink mutual friction in relation to
the macroscopic dynamics of the vortex tangle.3 Assuming
homogeneous superfluid turbulence �actually, counterflow
turbulence is anisotropic�, Vinen obtained an equation for the
evolution of the vortex line density �VLD� L�t�, which we
call Vinen’s equation

dL

dt
= ��vns�L3/2 − �2

�

2�
L2, �1�

where � and �2 are temperature-dependent parameters. The
first term represents the energy injection from the normal
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fluid to the vortices. The second term denotes the energy
dissipation of vortices due to reconnection between vortices.
The first and second terms indicate the growth and the de-
generation of a vortex tangle, respectively. Therefore, after
the growth period of the VLD, the vortex tangle enters a
statistically steady state. In the steady state, the VLD is ob-
tained by setting dL /dt equal to zero, which gives

L = �2vns
2 , �2�

where � is a temperature-dependent parameter. This relation
is able to describe well a large number of observations of
stationary cases.6

On the other hand, the nonlinear and nonlocal dynamics
of vortices have long delayed progress in achieving a micro-
scopic understanding of quantum turbulence. It was
Schwarz12,13 who made a breakthrough. He investigated
counterflow turbulence using the vortex filament model and
dynamic scaling.13 The observable quantities obtained by his
calculation agree well with the experimental results for the
steady state of vortex tangles. This study confirmed the idea
proposed by Feynman that superfluid turbulence consists of a
quantized vortex tangle. However, thermal counterflow tur-
bulence is far from being perfectly understood. The numeri-
cal simulation of Schwarz has serious defects. One is that
calculations are performed under the localized induction ap-
proximation �LIA�, which neglects interactions between vor-
tices. Schwarz reported that as a result the layer structure is
constructed gradually when periodic boundary conditions are
applied. Of course, this behavior differs from experimental
observations. In order to remedy this, an unphysical, artificial
mixing procedure was employed, in which half the vortices
are randomly selected to be rotated by 90° around the axis
defined by the flow velocity. It is only this method that en-
ables the steady state to be sustained under periodic bound-
ary conditions. These defects cause us to conjecture that the
LIA is unsuitable due the absence of interactions between
vortices. To understand counterflow turbulence properly,
simulations have to be performed using the full Biot-Savart
law without using the artificial mixing procedure.

The contents of this paper are as follows. Section II de-
scribes the equations of motion of vortices and the numerical
calculation method. In Sec. III, we show numerical simula-
tions of counterflow turbulence by the full Biot-Savart law
and some physical parameters such as the VLD and aniso-
tropy parameters. Section IV compares the results obtained
using the full Biot-Savart law with those obtained using the
LIA, and shows that the LIA is unsuitable. Section V is de-
voted to conclusions and discussions.

II. EQUATIONS OF MOTION

A quantized vortex is represented by a filament passing
through a fluid and has a definite direction corresponding to
its vorticity. Except for the thin core region, a superflow
velocity field has a classically well-defined meaning and can
be described by ideal fluid dynamics. The velocity produced
at a point r by a filament is given by the Biot-Savart expres-
sion

v� =
�

4�
�

L

�s1 − r� � ds1

�s1 − r�3
. �3�

The filament is represented in parametric form s=s�	 , t�,
where s1 refers to a point on the filament and the integration
is performed along the filament. Helmholtz’s theorem for a
perfect fluid states that the vortex moves with the superfluid
velocity at the point. Attempting to calculate the velocity v�

at a point r=s on the filament causes the integral diverge as
s1→s. To avoid this, we divide the velocity ṡ of the filament
at the point s into two components12

ṡ =
�

4�
s� � s� ln�2�l+l−�1/2

e1/4a0
� +

�

4�
�

L

� �s1 − s� � ds1

�s1 − s�3
,

�4�

where the prime denotes derivatives with respect to the arc
length 	, a0 is a cut-off parameter corresponding to the vor-
tex core radius, and l+ and l− are the lengths of the two
adjacent line elements connected to point s. The first term
denotes the localized induction field arising from a curved
line element acting on itself. The second term represents the
nonlocal field obtained by performing the Biot-Savart inte-
gral along the rest of the filament and all other filaments in
the system. The LIA, which has been used in several
studies,12–15 involves neglecting the second nonlocal term in
Eq. �4�. The equation for the LIA is often written as

ṡ = 
s� � s�. �5�

Here the coefficient 
 is defined by


 =
�

4�
ln� c	R


a0
� , �6�

where c is a constant of order unity and �l+l−�1/2 is replaced
by the characteristic radius 	R
 of curvature of the vortex
lines. In contrast, calculations without the LIA are referred to
as full Biot-Savart calculations.

When counterflow is applied, the applied superfluid ve-
locity vs is added to v�, and the total velocity ṡ0 of the vortex
filament without dissipation is

ṡ0 =
�

4�
s� � s� ln�2�l+l−�1/2

e1/4a0
� +

�

4�
�

L

� �s1 − s� � ds1

�s1 − s�3
+ vs.

�7�

At finite temperatures the mutual friction due to the interac-
tion between the vortex core and the normal-fluid flow vn is
taken into account. The velocity of a point s is then given
by12

ṡ = ṡ0 + �s� � �vn − ṡ0� − ��s� � �s� � �vn − ṡ0�� , �8�

where � and �� are the temperature-dependent coefficients
and ṡ0 is calculated from Eq. �7�. Since �� is small compared
with �, some authors12–14 neglect ��. In this study, we take
into account both �� and �. Table I presents the mutual fic-
tion parameters used in this study.12

The Gross-Pitaevskii �GP� model might be considered
more appropriate than the vortex filament model. In contrast
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with the vortex filament model �which is used by several
groups including us�,12–15 the GP model can represent phe-
nomena associated with the vortex core including reconnec-
tion, nucleation, and annihilation. However, no methods have
been established for treating mutual friction in the GP model,
and huge calculations are necessary to obtain statistics such
as the VLD. In contrast, the vortex filament model can in-
corporate the effect of mutual friction phenomenologically
using the experimentally observable parameters � and ��,
and it has a lower computational cost for dense vortices. For
these reasons, the vortex filament model is more suitable for
numerically simulating counterflow turbulence.

Needless to say, mutual friction plays an important role in
counterflow turbulence. Let us assume the LIA with Eq. �5�
and neglect the term with ��. Then, Eqs. �7� and �8� are
reduced to

ṡ = 
s� � s� + vs + �s� � �vn − vs − 
s� � s�� . �9�

If mutual friction is absent, the dynamics due to only the
self-induced velocity conserves the total line length of vorti-
ces. When mutual friction is present and the counterflow vns
flows against the local self-induced velocity 
s��s�, the
mutual friction always shrinks the vortex line locally. On the
other hand, the relative flow along the self-induced velocity
yields a critical radius of curvature given by

Rc �



vns
. �10�

When the local radius R at a point on a vortex is smaller than
Rc, the vortex will shrink locally, while the vortex will bal-
loon out when R�Rc. Thus, mutual friction causes the vor-
tex line length to both grow and decay. This dual role of
mutual friction sustains the steady state of counterflow tur-
bulence, ensuring that a highly curved structure whose local
radius of curvature is less than Rc will be smoothed out.

Some important quantities that are useful for characteriz-
ing the vortex tangle are introduced below.13 The VLD is

L =
1

�
�

L
d , �11�

where the integral is performed at all vortices in the sample
volume �. The anisotropy of the vortex tangle that is formed
under the counterflow vns is represented by the dimension-
less parameters

I� =
1

�L
�

L
�1 − �s� · r̂��2�d , �12�

I� =
1

�L
�

L
�1 − �s� · r̂��2�d , �13�

Ilr̂� =
1

�L3/2�
L

s� � s�d . �14�

Here, r̂� and r̂� represent unit vectors parallel and perpen-
dicular to the vns direction, respectively. Symmetry generally
yields the relation I� /2+ I�=1. If the vortex tangle is isotro-

pic, the averages of these parameters are Ī� = Ī�=2 /3 and

Īl=0. At the other extreme, if the tangle consists entirely of

curves lying in planes normal to vns, Ī� =1, and Ī�=1 /2.
A numerical study of an incompressible Navier-Stokes

fluid revealed that the close interaction of two vortices leads
to their reconnection, chiefly because of the viscous diffusion
of the vorticity.16 Koplik and Levine17 directly solved the GP
equation to show that two close quantized vortices reconnect
even in a superfluid. Our numerical method for vortex fila-
ments cannot represent the reconnection process itself.
Hence, we reconnect vortices that pass within the space res-
olution � with unit probability. Every vortex initially con-
sists of a string of points at regular intervals of �. When a
point on a vortex approaches another point on another vortex
more closely than the fixed space resolution �, we join
these two points and reconnect the vortices. This reconnec-
tion procedure is standard in the vortex filament model, but a
different procedure is used in some studies.15 We discuss this
in Sec. V.

In this study, all calculations are performed under the
following conditions. The numerical space resolution is
�=8.0�10−4 cm, and the time resolution is
�t=1.0�10−4 s. To integrate the equation of motion
given by Eq. �8� with respect to time we used the
fourth-order Runge-Kutta method. The computing box is
0.1�0.1�0.1 cm3. We usually start with an initial vortex
configuration of six vortex rings, as shown in Fig. 1�a�. If the
vortex ring is smaller than Rc in Eq. �10�, it always shrinks,
finally disappearing. Hence in our simulation, we make vor-
tices that are shorter than �l=7��=5.6�10−3 cm to van-
ish. This cut-off line length is determined to satisfy �l�Rc,
since a vortex longer than Rc has the possibility of expanding
and causing the VLD to increase.

III. NUMERICAL SIMULATION OF COUNTERFLOW
TURBULENCE

In this section, we present numerical simulations of coun-
terflow turbulence using the full Biot-Savart law under peri-
odic boundary conditions. Figure 1 shows a typical result
with the time evolution of the VLD shown in Fig. 2 and the
anisotropy parameter shown in Fig. 3. The initial configura-
tion consists of six vortex rings.

In the first stage �0� t�0.4 s�, the critical radius Rc in
Eq. �10� determines the vortex destiny. Vortex ring sections
in which the radius of curvature exceeds Rc, expand in the
direction perpendicular to vns through mutual friction, while
small vortex rings shrink. Thus, vortices evolve and become

TABLE I. Friction coefficients.

T
�K� � ��

1.3 0.036 0.014

1.6 0.098 0.016

1.9 0.21 0.009

2.1 0.50 −0.03
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anisotropic, as shown in Figs. 2 and 3. At the end of this
stage, large vortices appear that are comparable to the system
size under periodic boundary conditions. These vortices sur-
vive with a large radius of curvature and continuously gen-
erate small vortices by reconnections in the subsequent
stages so that they function as “vortex mills.”18

In the second stage �0.4� t�2.0 s�, vortex tangles un-
dergo continuous evolution despite the decreasing aniso-
tropy. As vortex rings expand, reconnections between vorti-
ces occur frequently. Reconnections generate vortices with
various curvatures, resulting in them shrinking and expand-
ing as discussed in the first stage. Local sections with a small
radius of curvature formed by reconnections have an almost
isotropic self-induced velocity, which prevents the vortices
from lying perpendicular to vns, and reduces I�. In addition,
as the VLD increases, vortex expansion becomes slower than
in the first stage because the reconnection distorts vortices,
which prevents a vortex from smoothly expanding.

In the third stage �t�2.0 s�, the statistically steady state
is realized by the competition between the growth and decay

of a vortex tangle. The growth mechanism is still vortex
expansion through mutual friction. The decay mechanism ei-
ther creates vortices with local radii of curvature smaller than
Rc or the self-induced velocity is oriented in the opposite
direction to vns after reconnections, as discussed in Sec. II.
The increasing VLD causes more reconnections so that the
decay mechanism becomes effective. When the VLD has in-
creased sufficiently, the two mechanisms begin to compete
so that the vortex tangle enters the statistically steady state.
The LIA calculation cannot realize this competition, as dis-
cussed in Sec. IV, which shows that vortex interaction is
essential for creating a steady state.

The steady state is known to exhibit the characteristic
relation L=�2vns

2 as discussed in Sec. I. Our steady states
almost satisfy this relation when vns and L are relatively
large, as shown in Fig. 4. In Table II we show the parameter
� as a function of T. Our results quantitatively agree with the
experimental observations of Childers and Tough.6,19 Addi-
tionally, there is a critical velocity of turbulence, below
which vortices disappear. This critical velocity has been
measured in many previous studies;6,20–22 it is given by

vns,c 
2.5 + 1.44�

�d
, �15�

where d is the channel size of the experimental system and �
is a constant of order unity. In our simulation, the system size
may be taken to be the size of the periodic box. Then, Eq.
�15� gives vns,c�0.1 cm, which is almost consistent with

( a ) ( b )

( c ) ( d )

( e ) ( f )

( a ) ( b )

( c ) ( d )

( e ) ( f )

FIG. 1. �Color online� Development of a vortex tangle by the
full Biot-Savart calculation in a periodic box with a size of 0.1 cm.
Here, the temperature is T=1.9 K and the counterflow velocity
vns=0.572 cm /s is along the vertical axis. �a� t=0 s, �b�
t=0.05 s, �c� t=0.5 s, �d� t=1.0 s, �e� t=3.0 s, and �f� t=4.0 s.
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FIG. 2. �Color online� Vortex line density as a function of time
for four different counterflow velocities.
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FIG. 3. Anisotropy parameter as a function of time. Here,
T=1.9 K and counterflow velocity vns=0.572 cm /s.
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FIG. 4. �Color online� The steady-state vortex line density L�t�
as a function of the counterflow velocity vns. The error bars repre-
sent the standard deviation.
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our numerical results. However, the temperature dependence
of vns,c should be discussed. Equation �15� states that vns,c
should decrease with T, which differs from the behavior in
Fig. 4. Our numerical results show that vns,c decreases with T
below 1.9 K but increases at 2.1 K slightly. This is because
the strong mutual friction makes the vortices so anisotropic
that they cannot form enough reconnections with other vor-
tices, and so become degenerate.

Figure 5�a� shows the anisotropy as a function of vns and
T. The anisotropy is almost independent of vns and is depen-
dent on T, in agreement with experimental observations.23

The anisotropy ratio I� / I� has been measured
experimentally23 and estimated by numerical simulation.13

An isotropic vortex tangle yields I� / I� =1. If the vortex
tangle consists entirely of curves lying in planes normal to
vns, then I� / I� =1 /2. We show this anisotropy ratio in Fig.
5�b�. The anisotropy increases with increasing temperature
because the mutual friction increases. The steady state shows

slightly higher values of I� / I� than those obtained by
Schwarz. This is why the vortex interaction reduces the an-
isotropy, as discussed in Sec. IV.

All our numerical results are in reasonable agreement
with experimental results. This means that our model realis-
tically simulates counterflow turbulence. The steady state
was obtained without using an artificial mixing procedure.

IV. VALIDITY OF THE LIA

Previous studies of counterflow turbulence with the LIA
have encountered some serious difficulties. Schwarz could
not obtain the statistically steady state under periodic bound-
ary conditions without using a mixing procedure, as dis-
cussed in Sec. I. Kondaurova et al.15 could obtain the steady
state using a different reconnection procedure from us, which
is discussed in Sec. V. However, their values of � were three
times larger than experimentally measured values. These dif-
ficulties probably arise from the LIA. In this section, we
compare two calculations, namely, the LIA �Figs. 6�a� and
6�c�� and the full Biot-Savart law �Figs. 6�b� and 6�d��. We
run both calculations at the same condition, T=1.6 K and
vns=0.367 cm /s. Because of the Biot-Savart integral along
all vortices, the running time of the full Biot-Savart calcula-
tion is about ten times longer than that of the LIA calcula-
tion. The time evolution of L�t� and I��t� is shown in Figs. 7
and 8.

The dynamics of vortices by the LIA is qualitatively simi-
lar to that with the full Biot-Savart law in the first and second
stages described in Sec. III. The vortex tangle appears to
enter the steady state for 4� t�8 s. However, the VLD is
about twice that for the full Biot-Savart law, as shown in Fig.
7. This difference is due to the absence of interaction be-
tween vortices; the interaction in general works strongly im-
mediately before and after reconnections. In the case of the
full Biot-Savart calculation, through the mutual friction the
interaction between vortices tends to separate two parallel
vortices and bring two antiparallel vortices closer to recon-

TABLE II. Line density coefficients � and the anisotropy pa-
rameter I�. �num and �exp denote our numerical results and experi-
mental results by Childers and Tough, Refs. 6 and 19, respectively.

T
�K�

�num

�s /cm2�
�exp

�s /cm2� I�

1.3 53.5 59 0.738

1.6 109.6 93 0.771

1.9 140.1 133 0.820

2.1 157.3 0.901
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FIG. 5. �Color online� �a� Anisotropy parameter I� as a function
of vns. The error bars represent the standard deviation. �b� Aniso-
tropy ratio I� / I� as a function of temperature obtained by us �dots�,
Schwarz �Ref. 13� �triangles�, and experimentally �Ref. 23� �vertical
bars�.

( a ) ( b )

( c ) ( d )

( a ) ( b )

( c ) ( d )

FIG. 6. �a� Side and �c� top views of the LIA calculation. �b�
Side and �d� top views of the full Biot-Savart calculation. All fig-
ures are at t=18.6 s. The system is a �0.2 cm�3 cube. Applied
normal-fluid velocity is vns=0.55 cm /s.
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nection. Reconnection generally creates sharp cusps12 in the
vortex lines, so that the vortices separate rapidly with a large
self-induced velocity. However, the LIA calculations result in
very different reconnection dynamics. Reconnection between
parallel vortices occurs frequently in the LIA, whereas they
occur very little in the full Biot-Savart calculation due to the
interaction. After reconnection between parallel vortices spe-
cific to the LIA calculation, the newly created vortices can-
not separate rapidly because the radius of curvature is large,
as shown schematically in Fig. 9, which tends to get the
vortices together. Also, the resulting vortices are affected
little by the decay mechanism described in Sec. III. Conse-
quently, the average distance of the LIA is smaller and the
VLD is larger than those of the full Biot-Savart calculation.

The expansion by mutual friction tends to straighten vor-
tices perpendicularly to vns, but reconnection suppresses this
tendency by creating a low radius of curvature. However, as
discussed above, in the LIA calculations, parallel vortices
tend to come together due to the absence of interaction;
hence, vortices cannot create a small radius of curvature,
which gradually straighten and align vortices. Vortices even-
tually commence forming a bundle structure composed of
parallel straight vortices, as shown in Figs. 6�a� and 6�c�,
which is bunches of straight vortices, not turbulence. In this
state, the vorticity directions of the vortex bundles differ
from one layer to another, as shown in Fig. 10.

The LIA calculation gives very different vortex properties
from the full Biot-Savart calculation. We can thus conclude
that the LIA is unsuitable for simulating counterflow turbu-
lence. The interaction between vortices plays an important
role in making turbulence uniform. It probably applies to any
kind of quantum turbulence.

V. CONCLUSIONS

In this study, we investigated thermal counterflow turbu-
lence using the vortex filament model. The full Biot-Savart
law was used in our calculation, unlike previous studies by
Schwarz.13 We obtain the statistically steady state without
using the mixing procedure that Schwarz used to sustain the
steady state. Our numerical results reveal the characteristic
relation L=�2vns

2 , which has been observed in many experi-
ments, and the parameter � agrees with experimentally mea-
sured values. Also, the anisotropy parameters are in reason-
able agreement with experimental observations.

To investigate the validity of the LIA, we compared the
LIA with the full Biot-Savart calculation. Kondaurova
et al.15 mentioned that the reason why Schwarz encountered
difficulties is due to the reconnection procedure; they ob-
tained the steady state using the LIA and a different recon-
nection procedure from us and Schwarz. They assume that
reconnections occur only when the vortices are expected to
cross each other. Probably the details of the reconnection
procedure are not relevant to statistical quantities such as the
VLD and the anisotropy parameters. Kondaurova et al. en-
countered another difficulty in that the value of the parameter
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FIG. 7. �Color online� Comparison of the time evolution of the
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FIG. 9. Reconnection of almost parallel vortices.

FIG. 10. Vorticity direction of bundles in the layer vortices
shown in Figs. 6�a� and 6�c�.
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� is very large. Our comparison between the LIA and the full
Biot-Savart reveal that the difficulties encountered by
Schwarz and Kondaurova et al. originate from the LIA. The
steady state of turbulence cannot be sustained in LIA calcu-
lations because most vortices gradually straighten and lie in
the planes normal to vns. Since the full Biot-Savart calcula-
tion includes the interaction between vortices, our findings
imply that the interaction between vortices is essential for
turbulence simulations.

Paoletti et al.8 succeeded in visualizing counterflow using
solid hydrogen particles, and they obtained a bimodal distri-
bution for the particle velocity. Paoletti et al. expect that
particles dragged by the normal fluid and particles trapped in

the vortex tangle contribute to this bimodality, but this still
remains to be confirmed. Further study is required to under-
stand this observation.
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