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We study interorbital pairings of iron pnictide superconductors within a minimal two-orbital tight-binding
model. We find that in real space, a set of self-consistently determined pairing order parameters forms two
sublattices with a relative phase of � and the pairing symmetry is dx2−y2 �cos kx−cos ky. In momentum space,
it corresponds to the � pairing proposed by Yang �Phys. Rev. Lett. 63, 2144 �1989��, with nonzero momenta
of Cooper pairs. One physical consequence of this type of pairing is the existence of a significant amount of
zero energy �gapless� states around the Fermi surface even in the absence of disorder, which contradicts current
experiments thus excluding such a pairing in iron pnictide superconductors.
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I. INTRODUCTION

The discovery of a new family of iron pnictide supercon-
ducting materials1–6 has triggered a large effort in under-
standing the possible new mechanism of high-temperature
superconductivity. Most of the parent compounds of iron
pnictides have an antiferromagnetically ordered ground
state,7–10 which, upon doping, gives way to superconductiv-
ity. This behavior is similar to the cuprates. However, there is
a growing consensus among researchers that Mott physics
does not play a significant role for the iron pnictides, which
remain itinerant for all doping levels, including parent com-
pounds in which magnetic order is of spin-density-wave type
rather than Heisenberg antiferromagnetism of localized
spins.11,12 As another contrast to the cuprates, electronic
structure proposed by band-structure calculations13–17 and
supported by angle-resolved photoemission spectroscopy
�ARPES� �Refs. 18–20� consists of multiple electron and
hole sheets of Fermi surface, suggesting multiorbital physics
is essential for superconductivity in the iron pnictides.21

So far, most of the theoretical works considering multio-
rbital superconductivity in the iron pnictides are based on
Cooper pairing between electrons in the same orbit,22–26

which corresponds to next-nearest-neighbor �nnn� intraor-
bital pairing in the 1-Fe/cell representation in real space.
However, since the undoped iron pnictides are bad metals,6,8

the typical Hubbard repulsion U between electrons should be
in the intermediate regime. In this region, numerical studies
have suggested that nearest-neighbor �nn� interorbital pairing
transforming according to the B2g representation of the lat-
tice symmetry prevails.27–30 Furthermore, the momenta of
the Cooper pairs are presumed to be zero and thus excludes
the possibility of spontaneous pairing inhomogeneity in real
space, whose existence may enhance Tc and implicitly sug-
gests the phenomenon of high critical temperature may rely
on it.31–33

In this paper, we study a minimal two-orbital model with
nearest-neighbor interorbital and next-nearest-neighbor in-
traorbital attractive interactions Vnn and Vnnn. By using
Bogoliubov-de Gennes �BdG� equations, all the pairing order
parameters are determined self-consistently and the phase

diagram of the pairing symmetry is obtained. In the phase
diagram where next-nearest-neighbor intraorbital pairing
dominates, the pairing symmetry is sx2y2 �cos kx cos ky, con-
sistent with that proposed by Mazin16 and has been exten-
sively discussed elsewhere16,17,22,34 but when nearest-
neighbor interorbital pairing prevails, we do not find the
sx2+y2 �cos kx+cos ky pairing symmetry as in Refs. 28–30,
instead, the pairing order parameter forms two sublattices
spontaneously with a relative phase of � and has
dx2−y2 �cos kx−cos ky symmetry, which has never been re-
ported before. In momentum space, this type of pairing cor-
responds to the � pairing proposed by Yang,35 with nonzero
momenta of Cooper pairs. The dynamical spin susceptibility
shows some agreement with neutron-scattering experiments
while the calculated density of states �DOS� has a significant
amount of zero energy �gapless� states around the Fermi sur-
face even in the absence of disorder, which contradicts cer-
tain current experiments. However, whether interorbital pair-
ing is possible or not still need to be verified by future
experiments.

The outline of the paper is as follows: we lay down the
model Hamiltonian and introduce the numerical method in
Sec. II. The results and discussions are presented in Sec. III.
The conclusion is given in Sec. IV.

II. METHODOLOGY

We begin with the minimal two-orbital model for the iron
pnictides,11 the Hamiltonian in real space can be written as

H = Ht + H�,

Ht = − �
ij,��,�

�tij,�� + �	ij	���ci��
† cj��,

H� = �
ij,��

��ij,��ci�↑
† cj�↓

† + H.c.� . �1�

Here ci��
† creates an electron on site i in � orbital and with

spin �. Since we consider a two-orbital model, �=1�2� rep-
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resents dxz �dyz� orbital. The quantity tij,�� is the hopping
integral from the � orbital on site j to the � orbital on site i
and is given in Refs. 11 and 36 �also illustrated in Fig. 1�.
The quantity � is the chemical potential. The pairing order
parameter in real space is described by �ij,��

=Vij,���cj�↓ci�↑�. In the present work, we only consider the
spin singlet pairing. Hereafter, we assume there exist only
nearest-neighbor interorbital and next-nearest-neighbor in-
traorbital pairing, so the attractive interaction Vij,�� can be
written as

Vij,�� = 	Vnn for i, j being the nearest neighbors and � � � ,

Vnnn for i, j being the next-nearest neighbors and � = � ,

0 otherwise.

 �2�

In our notation, negative values of V mean attractive inter-
actions. In the BdG formalism, the Hamiltonian in Eq. �1�
can be written in a matrix form

H = C†MC ,

C† = �c11↑
† ,c11↓,c12↑

† ,c12↓,c21↑
† ,c21↓,c22↑

† ,c22↓, . . .� , �3�

where M is a �4NxNy�
 �4NxNy� matrix, with Nx and Ny
being the number of lattice sites along ex and ey directions in
the square lattice, respectively. By applying a unitary trans-
formation Q�Q†Q= I�, M can be diagonalized as M =QDQ†,
with Dmn=	mnEm, where Em are the eigenvalues of M. The
Hamiltonian can be re-expressed in the Bogoliubov quasipar-
ticle representation as

H = �†D� ,

C† = �†Q†. �4�

In terms of the Bogoliubov quasiparticles, one can recom-
pute the pairing order parameters in Eq. �1� as

�ij,�� = Vij,���cj�↓ci�↑�

= Vij,�� �
kl=1

4NxNy

Qkm
† Qnl��k

†�l�

= Vij,�� �
l=1

4NxNy

Qml
� Qnlf�El�

= � ji,��
� ,

n = 4�iy + Ny 
 ix� + 2� − 1,

m = 4�jy + Ny 
 jx� + 2� , �5�

where f�El� is the Fermi distribution function, Ri= �ix , iy� is
the two-dimensional lattice site vector where ix and iy are
both integers and ix=0,1 , . . . ,Nx−1 �iy =0,1 , . . . ,Ny −1�.
Here we have set the lattice constant a=1. The main proce-
dure of the self-consistent calculation is given below: first
start with a set of random complex numbers to every �ij,�� in
Eq. �3� �that is, we allow time-reversal-symmetry-breaking
superconducting order parameters�, the Hamiltonian is nu-

merically diagonalized and the unitary transformation Q is
obtained by using Eq. �4�, then the set of pairing order pa-
rameters �ij,�� is computed by Eq. �5� for the next iteration
step. The calculation is repeated until the absolute error of
the order parameters between two consecutive iteration steps
is less than 10−5. In the following calculation, we set
Nx=Ny =20 and N=NxNy, the chemical potential �=1.6 cor-
responds to electron doping. The temperature is set to be
T=0 K. The hopping integrals are t1=−1, t2=1.3, and
t3= t4=−0.85. Throughout the paper, the energies are mea-
sured in units of �t1�.11 By choosing these hopping param-
eters, this minimal two-orbital model can exhibit a Fermi
surface similar to that obtained from band-structure
calculations14,16,37,38 and contains the essential low-energy
physics of iron pnictide superconductors.11

III. RESULTS AND DISCUSSION

First by varying the values of Vnn and Vnnn, we get the
phase diagram of the pairing symmetry. The results are

FIG. 1. �Color online� Schematic illustration of the hopping pa-
rameters of the two-orbital dxz, dyz model on a square lattice. The
projections of the dxz �dyz� orbitals onto the xy plane are depicted in
red �green�. Here t1 represents the nearest-neighbor hopping inte-
gral between � orbitals and t2 the nearest-neighbor hopping integral
between � orbitals; t3 denotes next-nearest-neighbor hopping be-
tween similar orbitals and t4 the next-nearest-neighbor hopping in-
tegral between different orbitals.
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shown in Fig. 2. As one can see, on the right red side, there
exists only next-nearest-neighbor intraorbital pairing and the
pairing order parameters fulfill

� j�ex�eyj,�� =
�0

4
�6�

with �=1,2 and �0 being real, so the pairing symmetry is
sx2y2 �cos kx cos ky. The magnitude of nearest-neighbor in-
terorbital pairing order parameter is always smaller than 10−5

in this region. On the other hand, on the upper left green
side, the magnitude of next-nearest-neighbor intraorbital
pairing order parameter is smaller than 10−5 while nearest-
neighbor interorbital pairing is dominant. Interestingly, in
this region, the order parameter breaks the time-reversal
symmetry, with a negligible real part compared to its imagi-
nary part. For a given site j and orbital index �, we have

� j�eyj,�̄� = − � j�exj,�̄� = − �
j�eyj,��̄

�
= �

j�exj,��̄

� �7�

with �=1,2. Together with Eq. �5�, the order parameter sat-
isfies

� j j�ey,�̄� = − �
j j�ey,��̄

�
= − � j�eyj,�̄�. �8�

Therefore, from Eqs. �7� and �8�, we can see that the order
parameter has dx2−y2 �cos kx−cos ky symmetry and if we fur-
ther define d-wave superconductivity �DSC� order parameter
at each site j as

�
j,�̄�

d
=

� j+exj,�̄� + � j−exj,�̄� − � j+eyj,�̄� − � j−eyj,�̄�

4
, �9�

it will form two intersecting sublattices with a relative phase
of � �as illustrated in Fig. 3�. That is, there is a spontaneous
pairing inhomogeneity in real space, which has never been
reported before for the iron pnictides. In the following, we
will refer to this type of pairing symmetry as two-sublattice
idx2−y2. In the blue region of the phase diagram, the magni-
tude of both next-nearest-neighbor intraorbital and nearest-

neighbor interorbital pairing order parameters is smaller than
10−5, so there is no pairing at all. At last, in the white re-
gions, the pairing symmetry is mainly sx2y2 with a small
amount of two-sublattice idx2−y2.

In Refs. 28–30, where the pairing symmetries are
studied by using the Lanczos method on small clusters with
on-site Coulomb interactions in a different two-orbital
model, it is shown that at large values of the Hubbard
repulsion U, next-nearest-neighbor intraorbital pairing pre-
vails and the pairing symmetry is sx2y2, consistent with our
results. But for nearest-neighbor interorbital pairing only
�Vnnn=0 , Vnn�0�, we could not find sx2+y2 �cos kx+cos ky

pairing symmetry in our phase diagram, while in Refs.
28–30, it dominates in the phase diagram at intermediate
values of the Hubbard repulsion U. We have checked our
result by using two different sets of initial �ij,�� in the self-
consistent calculation, one has every �ij,�� being a different
random complex number while the other one has all the
�ij,��=x, with x being an arbitrary real number, thus fulfill-
ing sx2+y2 symmetry at the very beginning. It turns out that no
matter what the initial values of �ij,�� are, the converged
solution is always two-sublattice idx2−y2 �complex initial val-
ues� or two-sublattice dx2−y2 �real initial values�. These two
patterns are degenerate in energy, with a global phase of �

2
between them, which will not affect the physical conse-
quences discussed below. Therefore, without loss of general-
ity, we restrict our discussion below to the two-sublattice
dx2−y2 case.

Having obtained the possible pairing symmetries in real
space since the sx2y2 pairing symmetry has been extensively
discussed elsewhere,16,17,22,34 we then concentrate on the
two-sublattice dx2−y2 pairing symmetry and transform Eq. �1�
into momentum space to see its physical consequences.
Since the DSC order parameter in Eq. �9� forms two inter-
secting sublattices with a relative phase of �, it can be re-
written as

�
j,�̄�

d
= eiQ·Rj

�0

4
�10�

with Q= �� ,�� and �0 being real. In momentum space, H�

in Eq. �1� is transformed into

FIG. 2. �Color online� The phase diagram of the pairing
symmetry.

FIG. 3. �Color online� The value of �
j,�̄�

d
at each lattice site. At

the red sites, �
j,�̄�

d
is positive while at the green sites, it is negative.
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H� = �
k,�

��kck�↑
† c−�k+Q��̄↓

† + H.c.� , �11�

where

�k =
�0

2
�cos kx − cos ky� �12�

with

�0 =
2Vnn

N
�
k

�cos kx − cos ky��ck�↑c−�k+Q��̄↓� . �13�

In order to obtain the desired resolution to resolve
the resonance in energy, in the following, we set
N=2048
2048. Equations �11� and �12� are just the � pair-
ing proposed by Yang,35 with nonzero momenta of Cooper
pairs. While the � pairing has been studied in some high-

temperature superconductors such as the cuprates31–33 and in
a three-orbital model for the iron pnictides where exact di-
agonalization studies do not favor such a kind of pairing,39

our calculation reveals the possible � pairing in the iron
pnictides. Besides, in Refs. 31–33, a spatially modulated
pairing interaction is required to achieve � pairing, our
model can yield � pairing spontaneously from a spatially
homogeneous pairing interaction Vnn.

In momentum space, the Hamiltonian can be written in a
matrix form

H = �
k

k
†Mkk �14�

with

k
† = �ck1↑

† ,ck2↑
† ,c−�k+Q�1↓,c−�k+Q�2↓� , �15�

Mk =�
�x�k� − � �xy�k� 0 �k

�xy�k� �y�k� − � �k 0

0 �k
� − �x�k + Q� + � − �xy�k + Q�

�k
� 0 − �xy�k + Q� − �y�k + Q� + �

 , �16�

�x�k� = − 2t1 cos kx − 2t2 cos ky − 4t3 cos kx cos ky ,

�y�k� = − 2t2 cos kx − 2t1 cos ky − 4t3 cos kx cos ky ,

�xy�k� = − 4t4 sin kx sin ky . �17�

Following the standard procedure as described in Refs. 26
and 29, we can diagonalize the tight-binding part of the
Hamiltonian and transform it into the band representation as

H = �
k

�k
†Mk��k, �18�

where

�k
† = �ck+↑

† ,ck−↑
† ,c−�k+Q�−↓,c−�k+Q�+↓� ,

Mk� =�
E+�k� 0 0 �k�

0 E−�k� − �k� 0

0 − �k�
� − E−�k + Q� 0

�k�
� 0 0 − E+�k + Q�

 ,

�19�

and

���k� =
�x�k� � �y�k�

2
,

E��k� = �+�k� � ��−
2�k� + �xy

2 �k� − � ,

�k� = sgn��xy�k���k. �20�

Here we have used relations �xy�k+Q�=�xy�k� and
�−�k+Q�=−�−�k�. From Eq. �19�, we can see that, although
the pairing is interorbital, it still corresponds to the intraband
pairing. The Cooper pairs are composed of two electrons �k↑
and −�k+Q�↓� in the same band.

The eigenvalues of Mk� are the energies of quasiparticles,
they are

�1�2�k = Z+�k� � �Q+
2�k� + ��k�2, �21a�

�3�4�k = Z−�k� � �Q−
2�k� + ��k�2, �21b�

where Z�= �E��k�−E��k+Q�� /2 and Q�

= �E��k�+E��k+Q�� /2. Now there no longer exists the
symmetry relation of �1k=−�2k nor �3k=−�4k as in the case
of Q= �0,0�. For the two-orbital model, the mean-field su-
perconducting Green’s function matrix can be written as

g�k,�� = − �T�k���k
†�0�� �22�

and
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g�k,ipn� = Ak�
1

ipn − �1k
0 0 0

0
1

ipn − �2k
0 0

0 0
1

ipn − �3k
0

0 0 0
1

ipn − �4k

Ak
† , �23�

where Ak is a unitary matrix that satisfies

Ak
†MkAk =�

�1k 0 0 0

0 �2k 0 0

0 0 �3k 0

0 0 0 �4k

 . �24�

In the following, we present physical consequences of this type of pairing and compare them with some current experi-
ments. First we study the spin susceptibility defined as �zz�q , i�n�=���=1

2 �zz
���q , i�n�,11,25 where

�zz
���q,i�n� =

1

N
�

0

�

d�ei�n��T�Sz
��q,��Sz

��− q,0�� �25�

and

Sz
��q,�� =

1

2�
k

�ck�↑
† ���ck+q�↑��� − ck�↓

† ���ck+q�↓���� . �26�

The mean-field spin susceptibility is

�zz
���0��q,i�n� =

1

4
�P��

�1� + P�+2�+2
�1� + P�+2�

�1� + P��+2
�1� � , �27�

Pij
�1��q,i�n� = −

1

�N
�
kpn

gij�k,ipn�gji�k + q,ipn + i�n� = −
1

N
�
k

�
mn=1

4

AkimAkjm
� Ak+qjnAk+qin

� f��mk� − f��nk+q�
i�n + �mk − �nk+q

. �28�

We then use the random-phase approximation �RPA� to
take into account the effect of the on-site intraorbital and
interorbital Coulomb interactions U and U�, respectively.
Since the interorbital Coulomb interaction U� does not con-
tribute to the RPA response when only the spin fluctuations
are considered,11,22,25 the RPA spin susceptibility is deter-
mined by the matrix equation

�zz
RPA�q,i�n� = �

��

��zz
�0��q,i�n��I − ��zz

�0��q,i�n��−1���,

�29�

where I is a 2
2 unit matrix and the interaction vertex is
�=2UI.

Figure 4 presents the imaginary part of the RPA spin sus-
ceptibility �zz

RPA�q ,�� at q= �� ,0� as a function of �, by
changing i�n to �+ i� in Eq. �29�, for two different �0. As

we can see, for �0=0.156, there is an enhancement of inten-
sity around �=0.23 ��1.5�0�, suggesting a spin resonance
at this energy transfer. However, in contrast to the neutron-
scattering experiments,40–46 no spin gap exists below the
resonance energy, which suggests that q= �� ,0� wave vector
connects two zero energy states �gapless� on the hole and the
electron parts of the Fermi surface, respectively. On the other
hand, for �0=0.28, the spin response shows some agreement
with the experimental observation:40–46 a spin gap develops
at low energy �below �=0.1� and the weight is transferred to
form a spin resonance at about �=0.35 ��1.25�0�. This
means in our interorbital pairing model, the spin response is
dependent on the value of �0 and does not have a generic
feature.

In order to better understand its physical consequences,
we then proceed to calculate the DOS. The DOS is given by
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���� = −
1

�N
�

i,�,�
Im��ci���ci��

† ���+i�

= −
1

�N
�

k,�,�
Im��ck���ck��

† ���+i�

=
1

N
�

k,�,n
��Ak�n�2	�� − �nk� + �Ak�+2n�2	�� + �nk��

=
�

�N
�

k,�,n

4 � �Ak�n�2

�2 + �� − �nk�2 +
�Ak�+2n�2

�2 + �� + �nk�2� . �30�

Here Im��¯ ���+i� is the imaginary part of the retarded
Green’s function and the Dirac delta function is approxi-
mated by

	�x� →
�

�2 + x2 �31�

with �=0.002 being chosen. The results are shown in Fig. 5.
The density of states shows different behavior depending on
the values of �0. For small �0, there is a plateau like an
inverse U around �=0. As �0 increases, the width and height
of the plateau decreases and gradually it resembles an in-
verse V. As �0 increases further, a dip around �=0 emerges,
at first it is V shaped, gradually it becomes U shaped, with an
increasing width. The density of states at �=0 is always
nonzero, indicating there are points in the Brillouin zone
where the energies of the quasiparticles are zero. There are
peaks in the density of states, whose positions are symmetric
with respect to �=0 but the height of the left peak is slightly
higher than that of the right one. In addition, there is also
some asymmetry near �=0. In most scanning tunnel micro-
scope experiments,47–50 the peak positions are symmetric and
with a V-shaped gap. The former is consistent with our cal-
culation while the shape of the gap shows some discrepancy.

The finite DOS at the Fermi energy ��=0� can be under-
stood in this way: based on the expression for the energies of

quasiparticles in Eq. �21�, we find, on the hole sheets of the
Fermi surface located at � and M, where E−�k�=0, if
�E−�k+Q��� ��k�, then either �3k or �4k will approach zero.
The situation is similar for the electron sheet of the Fermi
surface located at X where E+�k�=0, �E+�k+Q��� ��k� will
lead to either �1k or �2k being close to zero. This is indeed
the situation occurring in our two-orbital model. The two
hole sheets of the Fermi surface located at � and M are not
perfectly connected by wave vector Q= �� ,��, so on those
parts of the Fermi surface, where E−�k�=0, we must have
�E−�k+Q���0, otherwise they will be nested. On the other
hand, according to Eq. �12�, ��k��0 since k��0,0� ��� or
k���� , ��� �M�. Therefore, on the hole sheets of the
Fermi surface, there is always �3k�0 or �4k�0. The situa-
tion is a little different on the electron parts of the Fermi
surface located at X. In this case, ��k��

�0

2 since
k���� ,0� or k��0, ���, so there is a critical value of �0,
below which we have �1k�0 or �2k�0. For small �0, the
energies of quasiparticles on both the electron and the hole
parts of the Fermi surface are close to zero, thus contributing
to the DOS at �=0. As �0 increases, the energies of quasi-
particles on the electron parts of the Fermi surface are lifted
above zero while those on the hole parts of the Fermi surface
are still close to zero, so the DOS at �=0 decreases but still
remains finite. This also explains why for small �0, there is
no spin gap in the spin susceptibility while a spin gap devel-
ops for larger �0.

On the other hand, at large �0, the gap is U shaped, in-
consistent with the V-shaped gap observed
experimentally.47–50 One possible reason is that we used a
mean-field approximation while similar to the cuprates,
when the order-parameter fluctuations are taken into account,
one can expect some kind of pseudogap, which typically
results in a V-shaped gap in the dx2−y2 case.51,52

IV. CONCLUSION

In conclusion, we have studied a minimal two-orbital
model of iron pnictide superconductors. Based on the real-

FIG. 4. �Color online� The imaginary part of the RPA spin sus-
ceptibility �zz

RPA�q ,�� at q= �� ,0� as a function of �, by changing
i�n to �+ i� in Eq. �29�, for �0=0.28 �black solid� and �0=0.156
�red dash�. We use �=0.004, U=3.12, and N=2048
2048.

FIG. 5. �Color online� The DOS for various values of �0.
�0=0.04 �black solid�, 0.08 �red dash�, 0.136 �green dot�, 0.156
�blue dash dot�, 0.2 �cyan dash dot�, 0.24 �magenta short dash�, and
0.28 �yellow short dot�.
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space BdG equations, we have determined the phase diagram
of the pairing symmetry when only nearest-neighbor interor-
bital and next-nearest-neighbor intraorbital pairing interac-
tions are considered. In the phase diagram where next-
nearest-neighbor intraorbital pairing dominates, the pairing
symmetry is sx2y2 �cos kx cos ky, consistent with that pro-
posed by Mazin16 but when nearest-neighbor interorbital
pairing prevails, we do not find the sx2+y2 �cos kx+cos ky
pairing symmetry as reported in Refs. 28–30, instead, the
pairing order parameter forms two sublattices with a relative
phase of � and has dx2−y2 �cos kx−cos ky symmetry. In mo-
mentum space, it corresponds to the � pairing proposed by
Yang,35 with nonzero momenta of Cooper pairs. Although
the � pairing has been previously studied for the cuprates by
using spatially inhomogeneous pairing interactions,31–33 our
calculation reveals the possible spontaneous � pairing based
on a spatially homogeneous pairing interaction. A physical
consequence of this type of pairing is to give rise to a sig-
nificant amount of zero energy �gapless� states around the
Fermi surface even in the absence of disorder. For small �0,
the energies of quasiparticles on both the electron and the
hole parts of the Fermi surface are close to zero, thus con-
tributing to the finite DOS at �=0 and leading to the disap-
pearance of the spin gap in the superconducting spin suscep-
tibility. As �0 increases, the energies of quasiparticles on the
electron parts of the Fermi surface are lifted above zero

while those on the hole parts of the Fermi surface still remain
close to zero, so the DOS at �=0 decreases but still remains
finite and a spin gap develops in the superconducting spin
susceptibility.

We notice, as a model calculation, the momentum depen-
dence of the superconducting gap is in stark contrast to ex-
isting ARPES experiments where no node was observed on
the hole parts of the Fermi surface.18–20,53 Therefore, based
on the available experimental data, the two-sublattice dx2−y2

pairing symmetry is excluded for the iron pnictides. Further-
more, since the sx2y2 pairing symmetry originating from next-
nearest-neighbor intraorbital pairing agrees more with cur-
rent experiments,16,17,22,34 we can estimate that �Vnn� is
smaller than �Vnnn� for the iron pnictides. However, whether
interorbital pairing is possible in other materials or not still
need to be verified by other experiments.
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