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We analyze the Landau-Lifshitz-Gilbert equation when the precession motion of the magnetic moments is
additionally subjected to an uniaxial anisotropy and is driven by a multiplicative coupled stochastic field with
a finite correlation time �. The mean value for the spin-wave components offers that the spin-wave dispersion
relation and its damping is strongly influenced by the deterministic Gilbert damping parameter �, the strength
of the stochastic forces D and its temporal range �. The spin-spin-correlation function can be calculated in the
low-correlation time limit by deriving an evolution equation for the joint probability function. The stability
analysis enables us to find the phase diagram within the �−D plane for different values of � where damped
spin-wave solutions are stable. Even for zero deterministic Gilbert damping the magnons offer a finite lifetime.
We detect a parameter range where the deterministic and the stochastic damping mechanism are able to
compensate each other leading to undamped spin waves. The onset is characterized by a critical value of the
correlation time. An enhancement of � leads to an increase in the oscillations of the correlation function.
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I. INTRODUCTION

Magnetism can be generally characterized and analyzed
on different length and time scales. The description of fluc-
tuations of the magnetization, the occurrence of damped spin
waves and the influence of additional stochastic forces are
successfully performed on a mesoscopic scale where the spin
variables are represented by a continuous spatiotemporal
variable.1 In this case, a well-established approach is based
upon the Landau-Lifshitz equation,2 which describes the pre-
cession motion of the magnetization in an effective magnetic
field. This field consists of a superposition of an external
field and internal fields, produced by the interacting magnetic
moments. The latter one is strongly influenced by the isotro-
pic exchange interaction and the magnetocrystalline aniso-
tropy, for a recent review see.3 The studies using this frame
are concentrated on different dynamical aspects as the
switching behavior of magnetic nanoparticles, which can be
controlled by external time-dependent magnetic fields4 and
spin-polarized electric currents.5,6 Such a current-induced
spin transfer allows the manipulation of magnetic nanode-
vices. Recently, it has been demonstrated that an electric cur-
rent, flowing through a magnetic bilayer, can induce a cou-
pling between the layers.7 Likewise, such a current can also
cause the motion of magnetic domain walls in a nanowire.8

Another aspect is the dynamical response of ferromagnetic
nanoparticles as probed by ferromagnetic resonance, studied
in.9 In describing all this more complex behavior of magnetic
systems, the Landau-Lifshitz equation has to be extended by
the inclusion of dissipative processes. A damping term is
introduced phenomenologically in such a manner, that the
magnitude of the magnetization S� is preserved at any time.
Furthermore, the magnetization should align with the effec-
tive field in the long time limit. A realization is given by2

�S

�t
= − ��S � Beff� − ��S � �S � Beff�� . �1�

The quantities � and � are the gyromagnetic ratio and the
damping parameter, respectively. An alternative equation for

the magnetization dynamics had been proposed by Gilbert.10

The Gilbert equation yields an implicit form of the evolution
of the magnetization. A combination of both equations,
called Landau-Lifshitz-Gilbert �LLG� equation will be used
as the basic relation for our studies, see Eq. �2�. The origin of
the damping term as a nonrelativistic expansion of the Dirac
equation has been discussed in11 and a generalization of the
LLG for conducting ferromagnetics is offered in.12 The form
of the damping seems to be quite general as it has been
demonstrated in13 using symmetry arguments for ferroelec-
tric systems.

As an aspect let us focus on the influence of stochastic
fields. The interplay between current and magnetic fluctua-
tions and dissipation has been studied recently in.14 Via the
spin-transfer torque, spin-current noise causes a significant
enhancement of the magnetization fluctuations. Such a spin-
polarized current may transfer momentum to a magnet,
which leads to a spin-torque phenomenon. The shot noise
associated with the current gives rise to a stochastic force.15

In our paper we discuss the interplay between different dis-
sipation mechanism, namely, the inherent deterministic
damping in Eq. �1� and the stochastic magnetic field origi-
nated for instance by defect configurations giving rise to a
different coupling strength between the magnetic moments.
Assuming further, that the stochastic magnetic field is char-
acterized by a finite correlation time, the system offers
memory effects which might lead to a decoherent spin pre-
cession. To that aim we analyze a ferromagnet in the classi-
cal limit, i.e., the magnetic order is referred to single mag-
netic atoms which occupy equivalent crystal positions, and
the mean values of their spins exhibit a parallel orientation.
The last one is caused by the isotropic exchange interaction
which will be here supplemented by a magnetocrystalline
anisotropy that defines the direction of the preferred orienta-
tion. Especially, we discuss the influence of an uniaxial an-
isotropy. The coupling between different dissipation mecha-
nisms, mentioned above, leads to pronounced correlations,
which are discussed below. Due to the multiplicative cou-
pling of the stochastic field and the finite correlation time the
calculation of the spin-spin correlation function is more com-
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plicated. To that aim we have to derive an equivalent evolu-
tion equation for the joint probability distribution function.
Within the small correlation time limit this approach can be
fulfilled in an analytical manner. Our analysis is related to a
recent paper,16 in which likewise the stochastic dynamics of
the magnetization in ferromagnetic nanoparticles has been
studied. Further, we refer also to a recent paper17 where the
mean first passage time and the relaxation of magnetic mo-
ments has been analyzed. Different to those papers our ap-
proach is concentrated on the correlation effects in stochastic
system with colored noise.

Our paper is organized as follows: In Sec. II, we discuss
the LLG and characterize the additional stochastic field. The
equations for the single and the two particle joint probability
distribution are derived in Sec. III. Using these functions we
obtain the mean value of the spin wave variable and the
spin-spin correlation function. The phase diagram, based on
the stability analysis, is presented in Sec. IV. In Sec. V, we
finish with some conclusions.

II. MODEL

In order to develop a stochastic model for the spin dynam-
ics in ferromagnetic systems let us first consider the deter-
ministic part of the equation of motion. We focus on a de-
scription based upon the level of Landau-Lifshitz
phenomenology,2 for a recent review see.3 To follow this
line, we consider a high-spin systems in a ferromagnet suf-
ficiently below the Curie temperature. In that regime, the
dynamics of the magnet are dominated by transverse fluctua-
tions of the spatiotemporal varying local magnetization. The
weak excitations, called spin waves or magnons, are deter-
mined by a dispersion relation, the wavelength of which
should be large compared to the lattice constant a, i.e., the
relation q ·a�1 is presumed to be satisfied, where q is the
wave number. In this limit, the direction of the spin varies
slowly while its magnitude �S�=ms remains constant in time.
A proper description for such a situation is achieved by ap-
plying the LLG equation.4,10,18 The spin variable is repre-
sented by S=msn̂, where n̂�r , t� is a continuous variable
which characterizes the local orientation of the magnetic mo-
ment. The evolution equation for that local orientation reads

�n̂

�t
= −

�

1 + �2 n̂ � �Beff + ��n̂ � Beff�� . �2�

The quantities � and � are the gyromagnetic ratio and the
dimensionless Gilbert damping parameter, respectively,
where � is related to � introduced in Eq. �1�. Beff is the
effective magnetic field that drives the motion of the spin
density. Generally, it consists of an internal part originated
by the interaction of the spins and an external field. This
effective field is related to the Hamiltonian of the system by
functional variation with respect to n̂

Beff = − ms
−1	H

	n̂
. �3�

In absence of an external field the Hamiltonian can be ex-
pressed as19,20

H =� d3r�wex + wan�, with

wex =
1

2
ms
��n̂�2 and wan =

1

2
ms� sin2 � . �4�

Thereby, the constants 
 and � denote the exchange energy
density and the magnetocrystalline anisotropy energy den-
sity. To be more precise, 

Ja2, J being the coupling
strength that measures the interaction between nearest neigh-
bors in the isotropic Heisenberg model.21 Once again a is the
lattice constant. Notice that the form of the exchange energy
in the Hamiltonian �4� arises from the Heisenberg model in
the classical limit. The quantity � represents the angle be-
tween n̂ and the anisotropy axis �̂= �0,0 ,1�, where �̂ points
in the direction of the easy axis in the ground state in the
case of zero applied external field. Thus, the constant ��0
characterizes anisotropy as a consequence of relativistic in-
teractions �spin orbital and dipole-dipole ones20�. In deriving
Eq. �4� we have used n̂2=1. Although it is more conventional
to introduce the angular coordinates �� ,��,2,4 we find it more
appropriate to use Cartesian coordinates. To proceed, we di-
vide the vector n̂ into a static and a dynamic part designated
by � and �, respectively. In the linearized spin wave ap-
proach let us make the ansatz

n̂�r,t� = ��r� + ��r,t� = ��̂ + �, � = const., �5�

where n̂2=1 is still valid. The effective field can now be
obtained from Eqs. �3� and �4�. This yields

Beff = 
�2� − ���; �� = ��1,�2,0� . �6�

Equation �2� together with Eqs. �3� and �4� represent the
deterministic model for a classical ferromagnet. In order to
extent the model let us supplement the effective magnetic
field in Eq. �6� by a stochastic component yielding an effec-
tive random field Beff=Beff+��t�. The stochastic process
��t� is assumed to be Gaussian distributed with zero mean
and obeying a colored correlation function

�̃ij�t,t�� = 	�i�t�� j�t��
 =
D̃ij

�̃ij

exp�−
�t − t��

�̃ij
� . �7�

Here, D̃ij and �̃ij are the noise strength and the finite corre-
lation time of the noise �. Due to the coupling of the effec-
tive field to the spin orientation n̂ the stochastic process is a
multiplicative one. Microscopically, such a random process
might be originated by a fluctuating coupling strength for
instance. The situation associated with our model is illus-
trated in Fig. 1 and can be understood as follows: the sto-
chastic vector field ��t� is able to change the orientation of
the localized moment at different times. Therefore, fixed
phase relations between adjacent spins might be destroyed.
Moreover, the ��tk� are interrelated due to the finite correla-
tion time �. The anisotropy axis defines the preferred orien-
tation of the mean value of magnetization. Due to the inclu-
sion of ��t� the deterministic Eq. �2� is transformed into the
stochastic LLG. Using Eq. �5� it follows
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��

�t
= −

�

1 + �2 �� + �� � �Beff + ���� + �� � Beff�� . �8�

The random magnetic field is defined by

Beff = 
�2� − ��� + ��t� , �9�

where �� is given in Eq. �6�. With regard to the following
procedure we suppose the random field to be solely gener-
ated dynamically, i.e., n̂���t�=����t�. So far, the dynam-
ics of our model �Eqs. �8� and �9�� are reflected by a nonlin-
ear, stochastic partial differential equation �PDE�. Using
Fourier transformation, i.e., ��q , t�=F���r , t�� and introduc-
ing the following dimensionless quantities

� = �l0q�2 + 1, l0
2 =




�
, � = ��, t̄ = �t, ��t� =

��t�
�

,

�10�

the components �i�q , t� fulfill the equation

d

dt
�i�q,t� = �i���q,t�� + �ij���q,t��� j�t� . �11�

The quantity l0 is the characteristic magnetic length.22 The
vector � and the matrix � are given by

� = ���
− ����1 + �2�
�1 − ���2

0
�, � =

1

1 + �2 , �12�

and

� = �
���3 �3 − ��2 + ���1�
− �3 ���3 �1 − ���2

�2 − �1 0
� . �13�

For convenience we have substituted t̄→ t again. The statis-
tical properties of ��t� are expressed as 	��t�
=0 and

�kl�t,t�� = 	�k�t��l�t��
 =
Dkl

�kl
	kl exp�−

�t − t��
�kl

�
→

�kl→0

2Dkl	kl	�t − t�� . �14�

Incidentally, in the limit �→0 the usual white noise proper-
ties are recovered. We emphasize that although we regard the
long-wavelength limit �a ·q�1�, wave vectors for which
l0 ·q�1 �in Eq. �10�� can also occur.22 But this case is not
discussed in the present paper and will be the content of
future work. Whereas, in what follows we restrict our con-
siderations to the case q→0 so that, actually, l0 ·q�1 is
fulfilled. Hence, we can set �=1 approximately in Eq. �10�.
Due to the anisotropy the spin-wave dispersion relation of-
fers a gap at q=0. Owing to this fact � is studied at zero-
wave vector. For this situation the assumption of a space-
independent stochastic force �i�t�, compare Eq. �7�, is
reasonable. For nonzero wave vector the noise field should
be a spatiotemporal field �i��r , t��. Because our model is
based on a short range interaction we expect that the corre-
sponding noise correlation function is 	-correlated, i.e., in-
stead of Eq. �14� we have

�kl�r,t;r�,t�� =
Dkl

�kl
	kl exp�−

�t − t��
�kl

�2M	�r − r�� ,

where M is the strength of the spatial correlation. Using this
relation we are able to study also the case of small q which
satisfies l0 ·q�1. In the present paper we concentrate on the
case of zero wave vector q=0.

III. CORRELATION FUNCTIONS

In the present section let us discuss the statistical behavior
of the basic Eqs. �11�–�14�. They describe a nonstationary,
non-Markovian process attributed to the finite correlation
time. Due to their common origin both characteristics cannot
be analyzed separately. In the limit �→0, Eq. �11� defines a
Markovian process which provides also stationarity by an
appropriate choice of initial conditions.23 However, the
present study is focused on the effect of nonzero correlation
times. To that purpose we need a proper probability distribu-
tion function which reflects the stochastic process defined by
Eqs. �11�–�14�. In deriving the relevant joint probability dis-
tribution function we follow the line given in,24 where the
detailed calculations had been carried out, see also the refer-
ences cited therein. In particular, it has been underlined in
those papers that in order to calculate correlation functions of
type 	�i�t�� j�t��
 a single probability distribution function
P�� , t� is not sufficient. Instead of that one needs a joint
probability distribution of the form P�� , t ;�� , t��. Before
proceeding let us shortly summarize the main steps to get the
joint probability distribution function. To simplify the calcu-
lation we assume �kl=�	kl and Dkl=D	kl. Notice that our
system is nonergodic what would directly allow us to relate
the stochastic interferences with temperature fluctuations by
means of a fluctuation-dissipation theorem. Based on Eq.
�11� the appropriate joint probability distribution is defined
by,24,25 for a more general discussion compare also:26

x

y

z

anisotropy axis ν

exchange∝ J

a

η(t1)
η(t2)

η(t3)

random field at
different times ti

FIG. 1. �Color online� Part of a ferromagnetic domain influ-
enced by stochastic forces for the example of cubic symmetry with
lattice constant a. The black spin in the center only interacts with its
nearest neighbors �green�, where J is a measure for the exchange
integral.
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P��,t;��,t�� = 		���t� − ��	���t�� − ���
 . �15�

Here, the average is performed over all realizations of the
stochastic process. In defining the joint probability distribu-
tion function we follow the convention to indicate the sto-
chastic process by the function ��t� whereas the quantity
without arguments � stands for the special values of the
stochastic variable. These values are even realized with the
probability P�� , t ;�� , t��. The equation of motion for this
probability distribution reads according to24

�

�t
P��,t;��,t��

= −
�

��i
�

0

t

� jk�t,t1��� 	�i�t�
	�k�t1��

��t�=�

· 	���t�

− ��	���t�� − ����dt1 −
�

��i�
�

0

t�
� jk�t,t1�

��� 	�i�t��
	�k�t1��

��t��=��

· 	���t� − ��	���t�� − ����dt1,

�16�

where Novikov’s theorem27 has been applied. Expressions
for the response functions 	�i�t� /	�k�t1� and 	�i�t�� /	�k�t1�
can be found by formal integration of Eq. �11� and iterating
the formal solution. After a tedious but straightforward cal-
culation including the computation of the response functions
to lowest order in �t− t1� and �t�− t1� and the evaluation of
several correlation integrals referring to �kl from Eq. �14�,
Eq. �16� can be rewritten in the limit of small correlation
time � as

�

�t
Ps��,t;��,t��

= �L0��,�� + exp�− �t − t��/��D
�

��i
�ik���

�

��n�
�nk�����

�Ps��,t;��,t�� . �17�

Thereby, transient terms and terms of the form 
� exp�−�t
− t�� /�� �these terms would lead to terms of order �2 in Eq.
�22�� have been neglected. The result is valid in the station-
ary case characterized by t→� and t�→� but finite s= t
− t�. In Eq. �17� L0 is the operator appearing in the equation
for the single probability density. Following24,28 the operator
reads

L0��,�� = −
�

��i
�i��� +

�

��i
�ik���

�

��n
�D��nk���

− �Mnk���� + D2��Knkm���
�

��l
�lm���

+
1

2
�nm���

�

��l
Klkm����� , �18�

with

Mnk = �r
��nk

��r
− �rk

��n

��r
,

Knlk = �rk
��nl

��r
−

��nk

��r
�rl. �19�

The equation of motion for the expectation value 	�i
s can be
evaluated from the single probability distribution in the sta-
tionary state,

�

�t
Ps��,t� = L0Ps��,t� . �20�

One finds

d

dt
	�i�t�
s = 	�i
s + D� ��ik

��n
��nk − �Mnk��

s

− D2��� �

��r
� ��ik

��n
Knkm��rm�

s

+
1

2
� �

��r
� ��ik

��n
�nm�Krkm�

s
� . �21�

The knowledge of the evolution equation of the joint prob-
ability distribution P�� , t ;�� , t�� due to Eqs. �17� and �18�
allows us to get the corresponding equation for the correla-
tion functions. Following again,24 it results

d

dt
	�i�t�� j�t��
s = 	�i���t��� j�t��
s

+ D�� ��ik

��n
��nk − �Mnk��

t

� j�t���
s

− D2���� �

��r
� ��ik

��n
Knkm��rm�

t

� j�t���
s

+
1

2
�� �

��r
� ��ik

��n
�nm�Krkm�

t

� j�t���
s
�

+ D exp�−
t − t�

�
�	�ik���t��� jk���t���
s,

�22�

where the symbol � . . . �t denotes the quantity � . . . � at time t.
As mentioned above the result is valid for t, t�→� while s
= t− t��0 remains finite. The quantities Mnk and Kklm are
defined in Eq. �19�. The components �i and �ij are given in
Eqs. �12� and �13�. Performing the summation over double
indices according to Eqs. �21� and �22� we obtain the evolu-
tion equations for the mean value and the correlation func-
tion

d

dt
	�i�t�
s = Gik	�k�t�
s, �23�

and
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d

ds
Cij�s� =

d

ds
	�i�t� + s�� j�t��
s = Gik	�k�t� + s�� j�t��
s

+ D exp�−
s

�
�	�ik���t� + s��� jk���t���
s.

�24�

Notice, that in the steady state one gets Cij�t , t��=Cij�s� with
s= t− t�. The matrix components of Gik are given by

Gik = �− A1 A2 0

− A2 − A1 0

0 0 − A3
� , �25�

where

A1 = − D2��6�2�2 − 1��4 + 2�2�D��3

− D��2�2 − 2��2 + �2�� ,

A2 =
1

2
��D2��11 − 3�2�2��4 + �D���2�2 − 1��3

+ 3�D��2 − �� ,

A3 = + D2��3�2�2 + 1��4 − 4�2�D��3 + 2D�2, �26�

and � is defined in Eq. �12�. At this point let us stress that in
the case t�=0 the term 
exp�−�t− t�� /�� on the right-hand
side �rhs� in Eqs. �22� and �24�, respectively, would vanish in
the steady state, i.e.,

	�i�t� + s�� j�t��
s � 	�i�s�� j�0�
s.

The occurrence of such a term is a strong indication for the
nonstationarity of our model. An explicit calculation shows,
that in general this inequality holds for nonstationary
processes.23

IV. RESULTS

The solution of Eq. �23� can be found by standard Greens
function methods and Laplace transformation. As the result
we find

	��t�
s = � e−A1t cos�A2t� e−A1t sin�A2t� 0

− e−A1t sin�A2t� e−A1t cos�A2t� 0

0 0 e−A3t� · 	�0
s,

�27�

where 	�0
s= 	��t=0�
s are the initial conditions. The pa-
rameters A1 , A3, and A2 defined in Eqs. �26� play the roles
of the magnon lifetime and the frequency of the spin wave at
zero wave vector, respectively. As can be seen in Eq. �26� all
of these three parameters are affected by the correlation time
� and the strength D of the random force. Moreover, the
Gilbert damping parameter � influences the system as well.
The solution of Eq. �24� for the correlation function in case
of t�=0 is formal identical to that of Eq. �27�. The more
general situation t��0 allows no simple analytic solution
and hence the behavior of the correlation function C�s� is

studied numerically. In order to analyze the mean values and
the correlation function let us first examine the parameter
range where physical accessible solutions exist. In the fol-
lowing we assume 	�1�0�
= 	�2�0�
= 	�0
 and 	�3�0�
=0,
since the solutions for �1�t� and �2�t� on the one hand and
�3�t� on the other hand are decoupled in Eq. �27�. Therefore,
spin-wave solutions only exists for nonzero averages 	�1�t�

and 	�2�t�
. The existence of such nontrivial solutions are
determined in dependence on the noise parameters D and �
and the deterministic damping parameter �. Notice, that the

dimensionless quantity D= D̃ /�, i.e., D is the ratio between
the strength of the correlation function �Eq. �7�� and the an-
isotropy field in the original units. The stability of spin wave
solutions is guaranteed for positive parameters A1 and A3.
According to Eq. �26� the phase diagrams are depicted in
Fig. 2 within the �−D plane for different values of the cor-
relation time �. The separatrix between stable and unstable
regions is determined by the condition A1=0. The second
condition A3=0 is irrelevant due to the imposed initial con-
ditions. As the result of the stability analysis the phase space
diagram is subdivided into four regions where region IV
does not exist in case of �=0, see Fig. 2�a�. For generality,
we take into account both positive and negative values of D
indicating correlations and anticorrelations of the stochastic
field. Damped spin waves are observed in the areas I and IV,
whereas the sectors II and III reveal nonaccessible solutions.
In those regions the spin wave amplitude, proportional to
exp�−A1t�, tends to infinity which should not be realized,
compare Figs. 2�b�–2�d�. Actually, a reasonable behavior is
observed in regions I and IV. As visible from Fig. 2 damped
spin waves will always emerge for D�0 even in the limit of
zero damping parameter � and vanishing correlation time �.
This behavior is shown in Fig. 3, where the evolution of
	�1�t�
 is depicted for different values of �. As can be seen in
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FIG. 2. �−D plane for fixed magnetization �=0.9 and different
values of �.
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Fig. 2�a� the solution for D�0 is unlimited and conse-
quently, it should be excluded further. Contrary to this situ-
ation, additional solutions will be developed in region IV in
case of ��0 and simultaneously �=0, see Figs. 2�b�–2�d�.
Thereby the size of area IV grows with increasing �. Like-
wise, the extent of region I decreases for an enhanced �.
However, in the limit of D=0 and consequently for �=0, too,
only damped spin waves are observed. Immediately on the
separations line undamped periodic solutions will evolve,
compare the subfigures in Fig. 2. This remarkable effect can
be traced back to the interplay between the deterministic
damping and the stochastic forces. Both damping mechanism
are compensated mutually, which reminds of a kind of reso-
nance phenomenon. The difference to conventional reso-
nance behavior consists of the compensation of the inherent
deterministic Gilbert damping and the stochastic one origi-
nated from the random field. This statement is emphasized
by the fact that undamped periodic solutions do not develop
in the absence of stochastic interferences, i.e., D=0. The
situation might be interpreted physically as follows: the re-
quired energy that enables the system to sustain the deter-
ministic damping mechanisms is delivered by the stochastic
influences due to the interaction with the environment. To be
more precise, in general, the Gilbert damping enforces the
coherent alignment of the spin density along the precession
axis. Contrary, the random field supports the dephasing of
the orientation of the classical spins. Surprisingly, the model
predicts the existence of a critical value �=�c�0 depending
on � and D which determines the onset of undamped peri-
odic solutions. Notice, that negative values of �c are ex-
cluded. The critical value is

�c = −
��2��3 − D�2 + �� + 2D��1 + �2�2

2D�2��3 − 3D�2 + �� + D2 . �28�

Hence, this result could imply the possibility of the cancel-
lation of both damping processes. Examples according to the
damped and the periodic case are displayed in Fig. 4. An
increasing � favors the damping process as it is visible in
Fig. 4�a�. Based on estimations obtained for ferromagnetic

materials29 and references therein, the Gilbert damping pa-
rameter can range between 0.04���0.22 in thin magnetic
films, whereas the bulk value for Co takes �b�0.005. The
phase space diagram in Fig. 2 offers periodic solutions only
for values of � larger than those known from experiments.
Therefore such periodic solutions seem to be hard to see
experimentally. We proceed further by analyzing the behav-
ior of the correlation function by numerical computation of
the solution of Eq. �24� with Eqs. �25� and �26�. As initial
values we choose Cik�t= t� , t��=Cik�s=0�=C0 for every com-
bination i ,k= �1,2 ,3�. The results are depicted in Figs. 5 and
6. Inspecting Figs. 5�a�–5�c� one recognizes that an enhance-
ment of the correlation time � leads to an increase of the
oscillations within the correlation functions C1k, k= �1,2 ,3�.
Moreover, Fig. 5�d� reveals that the oscillatory behavior of
C31 seems to be suppressed. Obviously, the decay of the cor-
relation function is enhanced if � growths up. The pure pe-
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riodic case for �=�c, corresponding to Fig. 4�b�, is depicted
in Fig. 6. Exemplary, C12 and C31 are illustrated. The behav-
ior of the latter is similar to the damped case, displayed in
Fig. 5�d�, unless slight oscillations occur. However, if one
compares the form of C12 in Figs. 5�b� and 6 the differences
are obvious. The amplitude of the correlation function for the
undamped case grows to the fourfold magnitude in compari-
son with C0, whereas the damped correlation function ap-
proaches zero. Further, a periodic behavior is shown in Fig.
6, and therefore, the correlation will oscillate about zero but
never vanish for all s= t− t��0.

V. CONCLUSIONS

In this paper, we have analyzed the dynamics of a classi-
cal spin model with uniaxial anisotropy. Aside from the de-
terministic damping due to the Landau-Lifshitz-Gilbert equa-
tion the system is subjected to an additional dissipation

process by the inclusion of a stochastic field with colored
noise. Both dissipation processes are able to compete leading
to a more complex behavior. To study this one we derive an
equation for the joint probability distribution which allows
us to find the corresponding spin-spin-correlation function.
This program can be fulfilled analytically and numerically in
the spin wave approach and the small correlation time limit.
Based on the mean value for the spin-wave component and
the correlation function we discuss the stability of the system
in terms of the stochastic parameters, namely the strength of
the correlated noise D and the finite correlation time �, as
well as the deterministic Gilbert damping parameter �. The
phase diagram in the �−D plane offers that the system de-
velops stable and unstable spin-wave solutions due to the
interplay between the stochastic and the deterministic damp-
ing mechanism. So stable solutions evolve for arbitrary posi-
tive D and moderate values of the Gilbert damping �. Fur-
ther, we find that also the finite correlation time of the
stochastic field influences the evolution of the spin waves. In
particular, the model reveals for fixed D and � a critical
value �c which characterizes the occurrence of undamped
spin waves. The different situations are depicted in Fig. 2.
Moreover, the correlation time � affects the damped spin
wave which can be observed in regions I and IV in the phase
diagram. If the parameters D and � changes within these
regions, an increasing � leads to an enhancement of the spin
wave damping, cf. Figure 4�a�. The influence of � on the
correlation functions is similar as shown in Figs. 5�a�–5�c�.
The study could be extended by the inclusion of finite wave
vectors and using an approach beyond the spin-wave ap-
proximation.
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