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We investigate the thermal Casimir interaction between two magnetodielectric plates made of real materials.
On the basis of the Lifshitz theory, it is shown that for diamagnets and for paramagnets in the broad sense (with
exception of ferromagnets) the magnetic properties do not influence the magnitude of the Casimir force. For
ferromagnets, taking into account the realistic dependence of magnetic permeability on frequency, we conclude
that the impact of magnetic properties on the Casimir interaction arises entirely from the contribution of the
zero-frequency term in the Lifshitz formula. The computations of the Casimir free energy and pressure are
performed for the configurations of two plates made of ferromagnetic metals (Co and Fe), for one plate made
of ferromagnetic metal and the other of nonmagnetic metal (Au), for two ferromagnetic dielectric plates (on the
basis of polystyrene), and for a ferromagnetic dielectric plate near a nonmagnetic metal plate. The dielectric
permittivity of metals is described using both the Drude and the plasma model approaches. It is shown that the
Casimir repulsion through the vacuum gap can be realized in the configuration of a ferromagnetic dielectric
plate near a nonmagnetic metal plate described by the plasma model. In all cases considered, the respective
analytical results in the asymptotic limit of large separations between the plates are obtained. The impact of the
magnetic phase transition through the Curie temperature on the Casimir interaction is considered. In conclu-
sion, we propose several experiments allowing to determine whether the magnetic properties really influence
the Casimir interaction and to independently verify the Drude and plasma model approaches to the thermal

Casimir force.
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I. INTRODUCTION

At present physical phenomena caused by the zero-point
oscillations of quantized fields attract much experimental and
theoretical attention. One of the most prospective subjects in
this area is the Casimir effect,! i.e., the attractive force acting
between two neutral parallel ideal metal plates in vacuum
arising due to the existence of zero-point oscillations of the
electromagnetic field and thermal photons. The Casimir force
is a version of the van der Waals force in the case when the
separation distances between the interacting bodies are large
enough so that the relativistic effects contribute essentially.
Lifshitz?3 developed the general theory of the van der Waals
and Casimir forces for the case of two dielectric semispaces
separated with a gap of width a. The material of semispaces
was described by the frequency-dependent dielectric permit-
tivity (w). In recent years several reviews*~’ and books®!!
on different aspects of the Casimir effect have been pub-
lished. A new stage in the measurement of the Casimir force
was started by the two experiments.'>!3 During the last few
years significant progress has been made both in the mea-
surement of the Casimir force and in the development of new
calculational methods applicable to nontrivial geometries
and taking into account real-material properties of the inter-
acting bodies. This progress is reflected in the monograph.'

The seminal paper by Casimir! treated the configuration
of two parallel ideal metal plates, which do not posses mag-
netic properties and found that the force is always attractive.
The possibility to obtain the repulsive Casimir force has agi-
tated scientists for several decades. It is of high promise for
solving the problems of stiction and friction in microelectro-
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mechanical and nanoelectromechanical devices.'> Boyer!®!7

was the first who considered configurations of an ideal metal
spherical shell and of two parallel plates one of which is
made of an ideal metal and another one is infinitely perme-
able. In both cases the Casimir force was shown to be repul-
sive. The latter configuration which is better adapted for pos-
sible applications in microdevices was often discussed in the
literature as an unusual, hybrid, or mixed pair of plates.'3-20

The investigation of the influence of magnetic properties
on the Casimir force in the case of real materials requires the
generalization of the Lifshitz theory for magnetodielectric
media possessing frequency-dependent dielectric permittiv-
ity e(w) and magnetic permeability u(w). Such generaliza-
tion was performed by Richmond and Ninham?' and later
formulated for an arbitrary number of plane parallel layers of
magnetodielectrics.’>* As was remarked in the familiar
review,?* in most of cases the contribution of magnetic prop-
erties of the bodies into the van der Waals interaction is very
small. It was mentioned also that in some cases, for example,
for polarizable particles with both electric and magnetic
polarizabilities,> the inclusion of magnetic properties may
be interesting. This was confirmed in the investigation of the
impact of magnetic properties of both atoms and material of
the wall on atom-wall interactions including the case of
multiple walls.?>26-27

Calculation of the influence of magnetic properties of
plate materials on the Casimir interaction between two mag-
netodielectric plates was performed in Ref. 28 using the ap-
proximation of frequency-independent £ and u. Repulsive
forces were found in a wide range of parameters, and the
importance of this phenomenon for experimental study and
for nanomachinery applications was noted. It was shown,?
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however, that for real materials u is nearly equal to unity in
the range of frequencies, which gives major contribution to
the Casimir force. As a result, the magnitude of w is always
far away from the values needed to achieve the Casimir
repulsion.?

In this connection, Ref. 23 reconsidered this problem for
the configuration of one metal and one magnetodielectric
plate taking into account dependences of & and u on the
frequency. In so doing the metal (Au) was described by the
Drude dielectric permittivity and the permittivity and perme-
ability of a magnetodielectric was described by a simplified
model of the Drude-Lorentz type. It was shown that at zero
temperature there is a repulsive regime, but only at large
separations of about 15 um. At nonzero temperature the Ca-
simir force was found to be always attractive. It should be
taken into account, however, that at room temperature the
theoretical description of the Casimir force by means of the
Lifshitz theory combined with the Drude model is experi-
mentally excluded at high-confidence level.!*3%3! Some
authors,>? however, called for the reanalysis of electrostatic
calibrations in previous experiments on the Casimir force
basing on their measurements with by a factor of 200 larger
sphere radius. This call initiated a discussion in the
literature.*33* Further study may be needed here before the
situation will become well understood. Because of this, it is
worthwhile to analyze the problem by using different ap-
proaches to the theory of thermal Casimir force suggested in
the literature with allowance made for all existing types of
magnetodielectric materials.

In this paper we investigate the thermal Casimir force
between magnetodielectric plates with different magnetic
properties and also between a magnetodielectric and a metal
plate. As a magnetodielectric, both diamagnetic and para-
magnetic materials of the plate are considered taking into
account realistic dependence of their € and u on the
frequency.®37 It is shown that for all diamagnets and for
paramagnets in the broad sense (with exclusion of only fer-
romagnets) the influence of magnetic properties of plate ma-
terial on the thermal Casimir force is negligibly small. This
confirms the conclusion made in Ref. 24. Special attention is
paid to the case of Casimir plates made of ferromagnetic
materials. From the analysis of frequency dependence of
magnetic susceptibilities of ferromagnets, we arrive to the
conclusion that magnetic properties can influence the thermal
Casimir force only through the contribution of the zero-
frequency term of the Lifshitz formula.

For two similar plates made of ferromagnetic metal the
influence of magnetic properties on the magnitude of the
Casimir force strongly depends on the model of dielectric
permittivity used. Below we show that if &(w) is represented
within the Drude model approach,’® the magnitude of the
Casimir force in the high-temperature limit may increase in
two times owing to the account of magnetic properties. If the
plasma model approach’>#° is used, the magnitude of the
Casimir force at high temperature computed with account of
magnetic properties may be even smaller than in the case
when the magnetic properties are disregarded. For two simi-
lar plates made of ferromagnetic dielectric the thermal Ca-
simir force at high temperature is shown to be by a factor of
3 larger owing to the account of magnetic properties.
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The role of magnetic properties in the interaction of a
ferromagnetic plate with a nonmagnetic metal plate also
strongly depends on the model of a metal used. We demon-
strate that if the Drude model is used to describe the dielec-
tric properties of two metal plates one of which is ferromag-
netic and the other is nonmagnetic, the thermal Casimir force
is the same as for two nonmagnetic plates. If, however, both
ferromagnetic and nonmagnetic metal plates are described by
the plasma model, the inclusion of magnetic properties into
the Lifshitz theory leads to a decrease in the magnitude of
the Casimir force. For a ferromagnetic dielectric plate inter-
acting with a nonmagnetic metal plate described by the
Drude model we show that the magnetic properties do not
influence the Casimir force. If the nonmagnetic metal is de-
scribed be the plasma model, we find that the account of
magnetic properties of ferromagnetic dielectric leads to a de-
crease in force magnitude and may even reverse its sign by
changing attraction for repulsion. The use of different ap-
proaches to the description of dielectric properties of metal is
also shown to influence the behavior of the Casimir force as
a function of temperature in the vicinity of the Curie tem-
perature of the ferromagnet.

On the basis of the above listed results we propose several
experiments on the measurement of the Casimir force, which
should be capable to determine whether or not the magnetic
properties influence the force magnitude and which model of
the dielectric permittivity of metal is experimentally consis-
tent. The structure of the paper is the following. In Sec. IT we
briefly introduce the Lifshitz formulas for two dissimilar
magnetodielectric semispaces and provide necessary infor-
mation for the dielectric permittivity and magnetic perme-
ability as functions of frequency. Section III is devoted to
computations of the Casimir free energy per unit area and
pressure as functions of separation in the configurations of
two thick parallel plates made of ferromagnetic metals. Some
analytic results are also provided. In Sec. IV the configura-
tion of a ferromagnetic metal plate near a nonmagnetic metal
plate is considered and the Casimir free energy and pressure
are calculated. In Sec. V similar computations are performed
for the configurations where ferromagnetic metal plates are
replaced with ferromagnetic dielectric plates. The depen-
dence of the Casimir force on the temperature in the vicinity
of Curie temperature is considered in Sec. VI. Here we show
that the behavior of the Casimir force during the phase tran-
sition from the ferromagnetic to paramagnetic (in a narrow
sense) state also critically depends on the model of & of
metal plates. In Sec. VII we present our conclusions and
discussion. Specifically, we suggest a few experiments,
which could confirm or exclude the influence of magnetic
properties of plate materials on the Casimir force and help to
make a choice between different approaches to the theoreti-
cal description of the thermal Casimir force.

II. LIFSHITZ FORMULA AND REAL-MATERIAL
PROPERTIES OF MAGNETODIELECTRICS

We consider the configuration of two thick dissimilar
magnetodielectric plates (semispaces) separated by a gap of
width a at temperature 7 in thermal equilibrium with the
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environment. Then, assuming linear relations between the
electric field and electric displacement and magnetic field
and magnetic induction, i.e., D=¢E, B=uH, the Casimir
free energy per unit area of the plates is given by!'4?1-24

Fla T)__E f dekL{ln[l_r w(i&nk )
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Here, kg is the Boltzmann constant, &=2wkgTl/h with [
=0,1,2,... are the Matsubara frequencies, the prime near the
summation sign multiplies the term with /=0 by a factor of
172, k, is the modulus of the wave-vector projection on the
plate (i.e., perpendicular to the z axis) and
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The reflection coefficients for the two independent polariza-
tions of the electromagnetic field [transverse magnetic (TM)
and transverse electric (TE)] are given by
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dielectric permittivity and magnetic permeability of the first
and second plates, respectively, calculated at the imaginary
Matsubara frequencies, and
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Recently the Lifshitz formula (1) for magnetodielectric me-
dia was rigorously rederived*' under the same assumptions,
as formulated above, in the framework of quantum-field the-
oretical scattering approach.

The Casimir force per unit area of the plates (i.e., the
Casimir pressure) is obtained from Eq. (1) by the negative
differentiation with respect to a,

kT
P(a,T) =- 372 " gk dk,
=0 0
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We come now to the determination of the class of mate-
rials whose magnetic properties may influence the Casimir
force. It is common knowledge that all materials possess
diamagnetic polarization, i.e., they are magnetized in direc-
tion opposite to the applied magnetic field. For all substances
the magnetic permeability is represented in the form
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w(ié) = 1 +4mx(ié), (6)

where x(ié) is the magnetic susceptibility calculated along
the imaginary-frequency axis. The magnitude of x(i¢) is a
monotonously decreasing function of £ For diamagnets the
diamagnetic polarization determines their magnetic proper-
ties so that*>37 x(0)<0, w(0)<1, and |w(0)—1|~107>,
From this it follows that magnetic properties of diamagnets
cannot influence the Casimir force and one can put w;=1, [
=0,1,2,... in computations using Eqgs. (1) and (5). Typical
diamagnets are such materials as Au, Si, Cu, and Ag. It is
important that Au, Si, and Cu were used in experiments on
measuring the Casimir force [see, e.g., papers (Refs. 12, 30,
31, and 42-46) and review of all related experiments (Ref.
47)]. Thus, it is justified to omit magnetic properties of these
materials when comparing the experimental data with theory.

Materials possessing paramagnetic polarization are mag-
netized in the direction of an applied magnetic field. For
paramagnets in the broad sense y(0)>0 and u(0) > 1 and no
additional conditions on the character of the magnetic per-
meability apply.’” Paramagnetic effects, if they are present,
overpower the diamagnetic ones and determine the type of
the material. Paramagnets may consist of microparticles
which are paramagnetic magnetizable but have no intrinsic
magnetic moment (the Van Vleck polarization
paramagnetism*®). The respective x(0) is, however, negligi-
bly small. Because of this the magnetic properties of Van
Vleck paramagnets do not influence the Casimir force.

Paramagnets may also consist of microparticles possess-
ing an intrinsic (permanent) magnetic moment (the orienta-
tional paramagnetism®-37%), In the narrow sense, magnetic
materials with y(0) >0 are called paramagnets if the interac-
tion of magnetic moments of their constituent particles is
negligibly small. At sufficiently high temperature all para-
magnets are, in fact, paramagnets in the narrow sense. Their
magnetic susceptibility varies from about 1077 to 10~*. When
temperature decreases, there occurs a magnetic phase
transition.**! It happens at some critical temperature T,
specific for each material (for different materials 7., may
vary?374951 from a few kelvin to more than thousand
kelvin). However, for all paramagnets in the broad sense,
with exception of only ferromagnets, x(0) remains as small
as mentioned above and takes only a bit larger values in the
vicinity of absolute zero temperature, 7=0 K. This leads to
the conclusion that magnetic properties of paramagnets (with
the single exception of ferromagnets) cannot markedly affect
the Casimir force acting between macroscopic bodies. Thus,
when calculating the Casimir free energy [Eq. (1)] and pres-
sure [Eq. (5)] for these materials, one can put w;=1 in the
reflection coefficients [Eq. (3)] for all /=0.

The subdivision of paramagnetic materials called ferro-
magnets requires special attention with respect to the Ca-
simir force. For such materials w(0)>1 at T<T,,. In this
case the latter is referred to as the Curie temperature, T.,
=Tc. There is a lot of ferromagnetic materials with various
electric properties (both metals and dielectrics).’> They are
characterized by strong interaction between constituent mi-
croscopic magnetic moments which results in large values of
w at low frequencies and in the possibility of spontaneous
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magnetization (hard ferromagnetic materials). It is not rea-
sonable to consider parallel plates made of hard ferromag-
netic materials because the magnetic interaction between
such plates far exceeds any conceivable Casimir force. Be-
low we consider the so-called soft ferromagnetic materials,
which do not possess spontaneous magnetization. It is well
known that the magnetic permeability of ferromagnets de-
pends on the applied magnetic field.>37 As a result the re-
lation between B and H used in the derivation of Eq. (1)
becomes nonlinear and depends on the history of the material
(the so-called hysteresis). In the Casimir related problems,
however, no external magnetic field is applied to material
plates whereas the mean value of the fluctuating magnetic
field is equal to zero. Because of this, here we consider what
is often referred to as initial permeability, i.e., u(H=0). Thus
one can continue in using linear relation between B and H
and apply Eq. (1) to soft ferromagnetic materials (i.e., to
materials with u>1) as was done, for instance, in papers
(Refs. 23, 27-29, and 41). It is pertinent to note that more
theoretical work should be done in order to finally justify the
applicability of the Lifshitz formula to ferromagnetic mate-
rials with w> 1, especially to hard ferromagnets.

An important question arising in the calculation of the
Casimir force between ferromagnetic plates is how quickly
the initial magnetic permeability decreases with the increase
in frequency. The rate of decrease in w(i¢) with increasing &
depends on the value of electric resistance. The lower is the
resistance of a ferromagnetic material, the lower is the fre-
quency at which wu(ié) drops toward unity.33-37 Thus, for fer-
romagnetic metals w(i¢) becomes equal to unity at frequen-
cies above of order 10° Hz (see, e.g., Ref. 53) and for
ferromagnetic dielectrics at frequencies above of order
10° Hz (see, e.g., Ref. 54). The first Matsubara frequency £,
at T=300 K is of order 10'* Hz. Thus, & is much larger
than the frequencies where magnetic permeability of ferro-
magnets drops to unity. Because of this, in all applications of
the Lifshitz formulas (1) and (5) at room temperature (and
even at much lower temperatures) one can put u;=1 at all
[=1 and include ferromagnetic properties only in the zero-
frequency term with /=0. Keeping in mind that the contribu-
tion of the zero-frequency term (and thereby magnetic prop-
erties) increases with the increase in separation between the
plates, below we perform all computations in the region from
0.5 to 6 um. Near the left boundary of this interval the
contribution of the zero-frequency term is of order of a few
percent and at the right boundary this term determines the
total values of the Casimir free energy and pressure (at larger
separations the Casimir interaction becomes too small to be
measured).

In addition to the magnetic permeability, one needs to
know the frequency-dependent dielectric permittivity for the
materials under consideration in order to compute the Ca-
simir free energy and pressure. For metals, at separations
above 0.5 wm the contribution of the interband transitions
into the Casimir interaction is negligible. At such separations
interaction is completely determined by the role of free con-
duction electrons. Main approaches to the calculation of the
Casimir force between metal plates used in the literature de-
scribe conduction electrons by means of the Drude
model®!4383336 or the plasma model.!*3%404757 Within the
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Drude model approach the dielectric permittivity along the
imaginary frequency axis is given by

2

)
eplid) =1+ _—F—, (7)
’ &g+

where ), is the plasma frequency and v is the relaxation

parameter. The dielectric permittivity of the plasma model is
obtained from Eq. (7) by putting y=0,

2
o)
g (i) =1+ Eg
Both models lead to markedly different theoretical predic-
tions for the Casimir pressure between two metal plates. Pre-
dictions based on the Drude model have been experimentally
excluded at high confidence level in experiments using a
micromechanical torsional oscillator,!4-30-31:46.47.58  Belgw,
however, we consider both permittivities in Egs. (7) and (8)
on equal terms in order to obtain respective consequences on
the role of magnetic properties in the framework of the pro-
posed models. We will suggest new experimental tests,
which could shed additional light on the applicability of
these models in the theory of thermal Casimir force.
The permittivity of dielectric materials along the imagi-
nary frequency axis is described in the framework of the

oscillator model,

(8)

g(if) =1+ E + )
i+ E+ Y
where w; # 0 are the oscillator frequencies, g; are the oscil-
lator strengths, y; are the relaxation parameters, and K is the
number of oscillators.

I11. DISTANCE DEPENDENCE OF THE CASIMIR FORCE
FOR FERROMAGNETIC METALS

Here, we consider the Casimir interaction between two
similar parallel plates made of ferromagnetic metal. We per-
form computations in order to investigate the role of mag-
netic properties for both the Casimir free energy per unit area
and pressure. Keeping in mind the proximity force
approximation,'* this allows one to apply the obtained results
to the experimental configurations of a sphere above a plate
and of two parallel plates, respectively.

Let us consider the reflection coefficients in Eq. (3) for
two plates made of ferromagnetic metal at room temperature
T=300 K. In accordance with Sec. II, magnetic properties
may contribute only at zero frequency. For the TM polariza-
tion of the electromagnetic field we arrive at

A0k ) =1, (10)

where n=1,2, i.e., the same result as for ordinary (nonmag-
netic) metals. For the TE polarization we arrive at different
expressions depending on the model of dielectric permittivity
used. Thus, for the Drude model [Eq. (7)] from Eq. (3) one
obtains
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FIG. 1. (a) The relative Casimir free energy per unit area and (b)
pressure as functions of separation in the configuration of two par-
allel Co plates with account of magnetic properties (solid lines) and
with magnetic properties disregarded (dashed lines). Computations
are performed using the Drude model at 7=300 K.

" m0) -1
rTED(O k)= gFl%D(O) (0 )+1' (11)
Alternatively, for the plasma model [Eq. (8)] Eq. (3) leads to
[2,2 2
w(0)ck, — ek + pn(0)w
ri 0k ) = L (12)

T E——T
m(0)ck | + \rczkzL + u(0) a)ﬁ

The magnitude of this reflection coefficient depends on the
relationship between w(0) and w,.

First we present the computational results for the Casimir
interaction of two plates made of the ferromagnetic metal Co
with>? uc,(0)=70. Computations were performed at room
temperature using Eq. (1) (the Casimir free energy per unit
area of the plates) and Eq. (5) (the Casimir pressure). In all
terms of these equations with /=1 we put w(i§)=1 in ac-
cordance with the results of Sec. II. In the zero-frequency
terms, Egs. (10) and (11) or Eq. (12) have been used depend-
ing on the chosen model of & (Drude or plasma). For Co one
has® , ¢,=3.97 eV and y¢,=0.036 eV. Below the compu-
tational results are presented as ratios to the zero-temperature
Casimir energy per unit area and the Casimir pressure be-
tween two nonmagnetic parallel plates made of ideal metal,

w7 fic 7 fic

— — . 13
720 o 240 a* (13)

Ey(a) =~ Py(a) =~
In Fig. 1, the solid lines show the values of (a) F¢,/E
and (b) Pc,/ P, as functions of separation computed using

the dielectric permittivity of the Drude model [Eq. (7)]. In
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FIG. 2. (a) The relative Casimir free energy per unit area and (b)
pressure as functions of separation in the configuration of two par-
allel Co plates with account of magnetic properties (solid lines) and
with magnetic properties disregarded (dashed lines). Computations
are performed using the plasma model at 7=300 K.

the same figure, the dashed lines show the computational
results obtained with omitted magnetic properties of Co [i.e.,
with w(0)=1]. Quantitatively, the role of magnetic properties
can be characterized by the ratio

j_—sohd ashed

NFco= dshed (14)
Co

and by a similarly defined quantity 7p c,. With the increase
in separation distance from a=0.5 to 2 um and then to
6 um, 7/??00 varies from 17% to 63% and to 93%, respec-
tively. At the same separations 77P co takes the following re-
spective values: 12%, 44%, and 92%. This permits us to
conclude that when the Drude model is used to describe the
dielectric properties of a ferromagnetic metal, the magnetic
properties markedly (up to two times at large separations)
increase the magnitude of the Casimir free energy and
pressure.

In Figs. 2(a) and 2(b) similar results for two Co plates
described by the plasma model [Eq. (8)] are presented. The
same notation as in Fig. 1 is used. As is seen in Fig. 2, for
ferromagnetic metal described by the plasma model the im-
pact of magnetic properties on the Casimir interaction is not
so pronounced, as in Fig. 1. Quantitatively, from Fig. 2(a) it
follows that at separations 0.5, 2, and 6 um 7z, varies
from —8.9% to —17% and —10%, respectively. From Fig.
2(b) one finds that the values of 77 ¢, at the same separations
are —6%, —17%, and —14%. Thus if the plasma model is
used, the inclusion of magnetic properties decreases the mag-

104101-5



GEYER, KLIMCHITSKAYA, AND MOSTEPANENKO
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FIG. 3. (a) The relative Casimir free energy per unit area and (b)
pressure as functions of separation in the configuration of two par-
allel Fe plates with account of magnetic properties (solid lines) and
with magnetic properties disregarded (dashed lines). Computations
are performed using the Drude model at 7=300 K.

nitudes of the Casimir free energy and pressure. It is impor-
tant to note that the dashed lines in Figs. 2(a) and 2(b) are
very close to the solid lines in Figs. 1(a) and 1(b) (the rela-
tive differences are below 2.5%). This means that experi-
mentally it is hard to resolve between the case when the
metal of the plates is described by the Drude model and
magnetic properties influence the Casimir interaction and the
case when metal is described by the plasma model but mag-
netic properties have no impact on the Casimir interaction.
Another ferromagnetic metal is Fe. We consider the role
of magnetic interactions for two parallel plates made of Fe
with the parameters’® ug,(0)=10%, ®,=4.09 eV, and
Yre=0.018 eV. Numerical computations were performed as
described above using Egs. (1) and (5). The computational
results for (a) the Casimir free energy and (b) pressure ob-
tained on the basis of the Drude model approach at T
=300 K are presented in Fig. 3. As above, the solid lines are
computed taking into account the magnetic properties of Fe
and dashed lines with magnetic properties disregarded. As is
seen in Fig. 3, magnetic properties significantly increase the
magnitudes of the Casimir free energy and pressure. Thus, at
a=0.5,2,and 6 um the respective correction factors vary as
N7 p.=18%, 68%, and 100% and 7pp.=13%, 47%, and
99%. In Figs. 4(a) and 4(b) similar computational results for
the two Fe plates are presented when the plasma model is
used for the description of dielectric properties. It can be
seen that for Fe described by the plasma model the influence
of magnetic properties on the Casimir interaction is much
stronger than for Co using the same model. For separations
a=0.5,2, and 6 wm respective values of the correction fac-
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FIG. 4. (a) The relative Casimir free energy per unit area and (b)
pressure as functions of separation in the configuration of two par-
allel Fe plates with account of magnetic properties (solid lines) and
with magnetic properties disregarded (dashed lines). Computations
are performed using the plasma model at 7=300 K.

tors are: 7rp,=—3.5%, —31%, and —42% and 7 £,=0.21%,
—21%, and —45%.

In the limiting case of large separations the Casimir inter-
action between two plates made of ferromagnetic metal can
be found analytically. In this case the zero-frequency term
alone determines the total result. When dielectric properties
are described by the Drude model, both reflection coeffi-
cients at zero frequency [Egs. (10) and (11)] do not depend
on k. Substituting Egs. (10) and (11) into Egs. (1) and (5)
and preserving only the terms with /=0, one arrives at

kT | (10 -1}
Fola.)=- 167Ta2{§(3)+L13 (M(0)+1> H

kT | m(0)=1)?
PD(a,T)=—8wa3{§(3)+L13{(m) }}, (15)

where {(z) is the Riemann zeta function and Li,(z) is the
polylogarithm function. Note that at a=6 wm Eq. (15) leads
to the same values of the Casimir free energy and pressure as
those computed in Figs. 1 and 3. Using the equalities

lim Liy(z) = £(3), lim Lis(z) =0, (16)
z—1 z—0

we easily obtain from Eq. (15) the asymptotic results for the
case of very high magnetic permeability p(0)> 1,
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kgT kT

Fpla,T)=="5003), Ppla.T)=-——"5L3) (17)
8ma 4ma
and for nonmagnetic Drude metals
kgT kgT
Fpla,T)=- 3), PplaT)=- 3).
pla.T)==7-"3L03). Ppla.T)=-""3L03)
(18)

The equalities in Eq. (17) coincide with respective results
obtained for the nonmagnetic metals described by the plasma
model in the limit of large separations (the standard ideal-
metal results'#). Similar approximate equalities were noted
above on the basis of computations performed at shorter
separations. As to Eq. (18), it coincides with the prediction of
the Drude model approach for nonmagnetic metals at large
separations,®!43%3356 a5 it should be.

For plates made of ferromagnetic metal described by the
plasma model the asymptotic behavior of the Casimir inter-
action at large separations is a bit more cumbersome. For
brevity, we restrict ourselves by the calculation of the Ca-
simir free energy. Introducing the dimensionless variable y
=2ak , we can rearrange Eq. (12) to the form

~ (0)y =y + u(0)@,

w0y +\y* + w(0)@:

A ,(0.y) (19)

where the dimensionless plasma frequency is defined as

2aw,
3,= 2= (20)
w, c

The reflection coefficient in Eq. (19) can be expanded in
powers of small parameter,

<1, (21)

where & is the penetration depth of the electromagnetic os-
cillations into a metal described by the plasma model. Using
Eq. (21) the reflection coefficient in Eq. (19) can be repre-
sented as

-
) (0,y) = Day =1 22)
’ Vu(0)ay + 1

Substituting this into the term of Eq. (1) with /=0 rearranged
using the variable y, one obtains

kpT *
Fola,T)=—2 {3)+ f ydy

16ma® | 0

” — 2
><1n{1—(\,“ﬂ¢1) e‘~"] . (23)
Vu(0)ary + 1

Further simplification of Eq. (23) is possible under a con-
dition Vu(0)a<<1 readily satisfied at separations above
6 wm for nearly all magnetic materials. Expanding under the
integral in powers of the small parameter \u(0)a and pre-
serving only the first-order contribution, we arrive at
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kBT — “ y2
Fpla,T)= 5| =¢B) +2Vu(0)a | dy .
8ma o -1
(24)
After the integration in Eq. (24) is done, the result is
kgT 8
Fpla,T) =~ %m)[l - 2\#(0)—0] L (29)
8ma a

For nonmagnetic metals u(0)=1 and Eq. (25) coincides with
the previously obtained result for the high-temperature Ca-
simir free energy in the case of metals described by the
plasma model.'*#? As can be seen from Eq. (25), the account
of magnetic properties of a ferromagnetic metal described by
the plasma model decreases the magnitude of the Casimir
free energy, as was already shown above by means of nu-
merical computations. The values of F, at a=6 wm calcu-
lated using Eq. (25) coincide with those computed in Figs.
2(a) and 4(a).

IV. DISTANCE DEPENDENCE OF THE CASIMIR FORCE
FOR A FERROMAGNETIC METAL INTERACTING
WITH A NONMAGNETIC METAL

In this section we consider the configuration of two dis-
similar parallel plates one of which is made of ferromagnetic
metal and the other of nonmagnetic metal. Note that to de-
termine the role of magnetic properties it would be not in-
formative to consider the interaction of the first plate made
of ferromagnetic metal with the second plate made of an
ordinary (nonmagnetic) dielectric. The point is that, in accor-
dance with Egs. (10)—(12), magnetic properties contribute to
the Casimir interaction only through the transverse electric
mode at £=0. However, the substitution of Eq. (9) into Eq.
(3) leads to

P (0,k,) =0. (26)

As a result, the magnetic properties of a ferromagnetic metal
plate interacting with a plate made of nonmagnetic dielectric
do not contribute into the Lifshitz formula.

The reflection coefficients for the plate made of ferromag-
netic metal (Co or Fe) at zero frequency are given by Egs.
(10)=(12) with n=1 depending on the model of dielectric
permittivity used. At nonzero Matsubara frequencies the re-
flection coefficients for this plate are given by Eq. (3) with
n=1 and w”=1 (I=1,2,...). Equation (3) with n=2 and
,u,f):l for all /=0,1,2,... also determines the reflection co-
efficients for the plate made of an ordinary (nonmagnetic)
metal. As a nonmagnetic metal we use Au with the
parameters®*®! @), ,,=9.0 eV and y,,=0.035 eV. All nec-
essary parameters of Co are listed in Sec. III.

In Fig. 5 we present the computational results (the solid
lines) for (a) the Casimir free energy and (b) pressure as
functions of separation computed for the configuration of
Co-Au plates by Egs. (1) and (5) using the Drude model
approach. The same notation as in Figs. 1-4 is used. How-
ever, in this case the dashed lines, computed with the mag-
netic properties of Co disregarded, coincide with the solid
lines. The reason is that for Au described within the Drude
model it holds
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FIG. 5. (a) The relative Casimir free energy per unit area and (b)
pressure as functions of separation in the configuration of one plate
made of Co and the other plate made of Au. Computations are
performed using the Drude model at 7=300 K.

e p(0,k ) =0 (27)

[compare with Eq. (11) where w«(0)=1]. As a result, similar
to the case when the second plate is made of nonmagnetic
dielectric, the magnetic properties of Co do not contribute to
the Casimir free energy and pressure.

Another situation holds when metals are described by
means of the plasma model [Eq. (8)]. The computational
results at 7=300 K are shown in Fig. 6 for (a) the Casimir
free energy and (b) pressure. In the same way, as in Figs. 2
and 4, the dashed lines computed with the magnetic proper-
ties disregarded lie above the solid lines. However, quantita-
tively the role of magnetic properties is rather moderate.
Thus, at separations a=0.5, 2, and 6 um, #},CO_AU=—8.2%,
—11%, and —5.5%, respectively, whereas %,CO_AU=—6.9%,
—12%, and -7.9%, respectively. These relative differences
are, in fact, rather close to the relative differences between
the Casimir free energy per unit area and pressure in the
configuration of Co-Au plates computed using the Drude and
the plasma model approaches with magnetic properties of Co
disregarded (—12% for the free energy and —8.4% for the
pressure at the shortest separation a=0.5 um).

As one more configuration we consider the plate made of
ferromagnetic Fe interacting with the Au plate. When the
Drude model is used the computational results are presented
in Figs. 7(a) and 7(b) with the same notation as above (the
parameters of Fe are listed in Sec. III). Here, the magnetic
properties of Fe do not influence the results obtained. When
the plasma model is used in the computations, the impact of
the magnetic properties of Fe on the obtained results is rather
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FIG. 6. (a) The relative Casimir free energy per unit area and (b)
pressure as functions of separation in the configuration of one plate
made of Co and the other plate made of Au with account of mag-
netic properties (solid lines) and with magnetic properties disre-
garded (dashed lines). Computations are performed using the
plasma model at 7=300 K.

pronounced. In Fig. 8 (a) the Casimir free energy and (b)
pressure at 7=300 K are shown as functions of separation.
Here, the solid lines taking magnetic properties into account
deviate significantly from the dashed lines computed with
magnetic properties of Fe disregarded. At separations a
=0.5, 2, and 6 um the above quantitative characteristics of
the role of magnetic properties take the following values:
#}’Fe_ an=—19%, -46%, and -38%, respectively, and
Mp peau=—13%, —41%, and -48%, respectively. This is
larger in magnitude (or nearly equal for 7php. ., at a
=6 wm) than the relative differences in the Casimir free
energy and pressure in the configuration of Fe-Au plates
computed using the Drude and the plasma model approaches
with magnetic properties of Fe disregarded. The relevance of
the configuration of a ferromagnetic metal plate interacting
with a nonmagnetic metal plate for future experiments is
discussed below (see Sec. VII).

At large separation distances (¢=6 um) the analytical
representations for the Casimir free energy in the configura-
tion of a ferromagnetic metal plate near a nonmagnetic metal
plate can be obtained. When the Drude model is used, the
result is given by the TM contribution to the zero-frequency
term of Eq. (1) presented in Eq. (18). This is because the TE
contribution vanishes due to Eq. (27) valid for the plate made
of a nonmagnetic Drude metal. When the plasma model is
used, we can use expression (22) with n=1 and a=¢,
=1/&,p.=c/(2aw, ) for the TE reflection coefficient of
the plate made of ferromagnetic metal. Under the same con-
dition in Eq. (21) for a nonmagnetic metal (n=2), Eq. (22)
results in
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FIG. 7. (a) The relative Casimir free energy per unit area and (b)
pressure as functions of separation in the configuration of one plate
made of Fe and the other plate made of Au. Computations are
performed using the Drude model at 7=300 K.

A30.9) = = 1+2ayy, (28)

where a=a,=1/d, \,=c/(2aw), ).
Substituting Eq. (22) with n=1 and Eq. (28) into the zero-
frequency term of Eq. (1) with account of Eq. (27), we ob-

tain
kpT f“
-{33)+ d
Toma? {3) D

/—a —
Xlnll + (M>(1 —2a2y)e_y}

Vu(0)ayy +1

Fpla,T)=

(29)

Using also the condition yu(0)a; <1 and restricting our-
selves by the first-order perturbation theory in the small pa-
rameters \u(0); and a,, we arrive at the result

{IM] 0

kgT

FilaT)==5L0)
where &y, and &y, are the relative penetration depths of the
electromagnetic oscillations in the first and second plates,
respectively, defined in accordance with Eq. (21). From Egq.
(30) it is seen that the account of magnetic properties of the
ferromagnetic metal in the framework of the plasma model
makes the magnitude of the Casimir free energy smaller.
This is in accordance with the computational results in Figs.
6(a) and 8(a). The values of the Casimir free energy at a
=6 um calculated from Eq. (30) fit the respective computa-
tional results in Figs. 6(a) and 8(a).
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FIG. 8. (a) The relative Casimir free energy per unit area and (b)
pressure as functions of separation in the configuration of one plate
made of Fe and the other plate made of Au with account of mag-
netic properties (solid lines) and with magnetic properties disre-
garded (dashed lines). Computations are performed using the
plasma model at 7=300 K.

V. DISTANCE DEPENDENCE OF THE CASIMIR FORCE
FOR FERROMAGNETIC DIELECTRICS

Ferromagnetic dielectrics are very prospective for the in-
vestigation of the impact of magnetic properties on the Ca-
simir force. There are many materials which, while display-
ing physical properties characteristic for dielectrics,
demonstrate ferromagnetic behavior under the influence of
an external magnetic field (see, e.g., review, Ref. 62). Many
examples of such a substance are composite materials®>%*
obtained on the basis of a polymer compound with inclusion
of nanoparticles of ferromagnetic metals, different transition-
metal-doped oxides,® etc. In addition to numerous dielectric
materials displaying ferromagnetic properties listed in Ref.
62, one could mention the Chromium Bromide,®® films of
ZnO doped®” with magnetic ions of Mn and Co, and epitaxial
CeO, films doped by cobalt.®

Ferromagnetic dielectrics are widely used in different
magneto-optical devices. Numerical computations of the Ca-
simir interaction reported below are performed for the model
of composite material on the basis of polystyrene with the
volume fraction of ferromagnetic metal particles in the mix-
ture f=0.25. The magnetic permeability of such kind of ma-
terials may vary over a wide range.%> Below we use w(0)
=25. The dielectric permittivity of polystyrene &,(i&) is pre-
sented in the form (9) with K=4 oscillators. The parameters
of oscillators g;, w;, and v; are taken from Refs. 59 and 69.
Specifically, at zero frequency &4(0)=2.56. The dielectric
permittivity of the used ferromagnetic dielectric is obtained
2570
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FIG. 9. (a) The relative Casimir free energy per unit area and (b)
pressure as functions of separation at 7=300 K in the configuration
of two parallel plates made of ferromagnetic dielectric with account
of magnetic properties (solid lines) and with magnetic properties
disregarded (dashed lines).

3
ofi(i) = sdug)(l . ﬁ) (1)
which leads to s?f}(O):S.lZ. The value of f chosen above
belongs to the range of validity of this equation.®?

We start with the configuration of two similar plates
(n=1,2) made of the ferromagnetic dielectric with the pa-
rameters presented above. As in previous sections, the com-
putations are performed using Eqgs. (1) and (5) where the
magnetic properties are included in the zero-frequency term
(I=0) at T=300 K. In all terms with /=1 it is assumed that
m=1. At zero frequency the TM reflection coefficient for a
ferromagnetic dielectric plate is obtained from Eq. (3),

£"(0)-1

0k = RO = )

(32)
The TE reflection coefficient for a ferromagnetic dielectric
plate at £=0 coincides with that in Eq. (11) for a ferromag-
netic metal described by the Drude model [compare with Eq.
(26) for a nonmagnetic dielectric]. The computational results
for (a) the Casimir free energy and (b) pressure as functions
of separation are shown in Fig. 9. The solid lines are com-
puted with magnetic properties taken into account, the
dashed lines are obtained with magnetic properties disre-
garded (w;=1 at all /[=0,1,2,...). As can be seen in Fig. 9,
the influence of magnetic properties on the Casimir force
increases with the increase in separation. Thus, at separations
a=0.5, 2, and 6 wm the parameter introduced in Eq. (14)
takes the values 7z 1;=54%, 166%, and 203%, respectively.
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FIG. 10. (a) The relative Casimir free energy per unit area and
(b) pressure as functions of separation at 7=300 K in the configu-
ration of one plate made of ferromagnetic dielectric and the other
plate made of Au with account of magnetic properties (solid lines)
and with magnetic properties disregarded (dashed lines). Computa-
tions are performed using the plasma model for Au.

A similar situation holds for the Casimir pressure where
Np ga=36%, 133%, and 203% at the same respective separa-
tions.

As one more example, we consider the configuration of
one plate made of ferromagnetic dielectric (n=1) and the
other plate made of a nonmagnetic metal Au (n=2). Let the
dielectric permittivity of Au, &, 5,(i€), be described by the
plasma model [Eq. (8)] with ®,=9.0 eV. This choice is
caused by the fact that when one plate is made of a nonmag-
netic Drude metal the magnetic properties of the other plate
do not influence the Casimir interaction because of Eq. (27).
In addition, the computational results for the Au plate de-
scribed by the Drude model interacting with the ferromag-
netic dielectric plate are nearly coinciding with those when
Au is described by the plasma model and the magnetic prop-
erties of ferromagnetic dielectric are disregarded (see below).

The computational results are presented in Fig. 10 for (a)
the Casimir free energy and (b) pressure. The solid (dashed)
lines show the results computed using the plasma model for
the Au plate with magnetic properties of the ferromagnetic
dielectric plate included (disregarded). Note that if the Drude
model is used to describe the dielectric properties of the Au
plate, the obtained results nearly coincide with the dashed
line within the range of separations considered. The relative
deviation between the results obtained using both models is
equal to only 0.25% and 0.09% at separations a=0.5 wm
and 2 um, respectively, and continues to decrease with the
increase in separation.

As can be seen in Fig. 10, there is the profound effect of
magnetic properties of ferromagnetic dielectric on the Ca-
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simir interaction in this configuration if Au is described by
the plasma model. Thus, at separations of 0.5, 2, and 6 um
the respective values of npﬁfd_Au are equal to —22%, —82%,
and —111%. For the Casimir pressure at the same respective
separations one has 7 o, =—14%, —60%, and —110%.
What is more important, the Casimir free energy F changes
sign and becomes positive (we remind that E,<0) at sepa-
rations a>2.9 um [see Fig. 10(a)]. According to the prox-
imity force approximation, the Casimir force acting between
a sphere of radius R and a plate spaced at separation a <R
from each other are approximately equal™'* to 27RF(a,T).
This means that at separations a>2.9 um the Casimir force
acting between the sphere and the plate is repulsive.

A similar situation takes place for the Casimir pressure.
From Fig. 10(b) it follows that at separations a¢ >3.8 um the
Casimir pressure P changes its sign and becomes positive.
This means that the Casimir force acting between a ferro-
magnetic dielectric plate and Au plate described by the
plasma model becomes repulsive. We emphasize that the ef-
fect of repulsion for the two parallel plates interacting
through the vacuum gap found by us is not analogous to the
results”® discussed in introduction. The point is that the
paper?® used some idealized magnetodielectric materials of
the plates with frequency-independent & and u. As was
shown,? the values of magnetic permeabilities of real mate-
rials at characteristic frequencies contributing to the Casimir
force are much less than those required to obtain the effect of
repulsion because they quickly vanish with the increase in
frequency. In the asymptotic limit of very large separations,
where the zero-frequency € and u can be used, the repulsive
Casimir force was recently found*! in the configuration of an
ideal metal cylinder above a magnetodielectric plate. This
result was obtained under the assumption that temperature is
equal to zero. The Casimir repulsion was predicted for the
magnetic permeability of the plate u=100 and dielectric per-
mittivity £ <33 or u=10 and &£ <4. Thus in both cases the
materials of the plate are ferromagnetic dielectrics. In con-
trast to this, we consider a real ferromagnetic dielectric plate
interacting with an Au plate at room temperature and take
into account the dependence of their magnetic permeability
and dielectric permittivity on the frequency. Therefore the
effect of repulsion found by us can be used as an experimen-
tal test for the influence of magnetic properties on the Ca-
simir force and for the model of dielectric permittivity of a
metal plate (see Sec. VII).

Now we consider some analytical results that can be ob-
tained in the limiting case of large separations. For two simi-
lar plates made of ferromagnetic dielectric one can use the
reflection coefficient in Eq. (11) (as was noted above, this
one is the same as for a ferromagnetic metal described by the
Drude model) and Eq. (32). The resulting Casimir free en-
ergy per unit area is given by

kT ] 8(0)—1)2}
Fpla D)=~ 1677@2{L13[<8(0) +1

| (m(0)=1)?
+L13{<M<o>+1> ” 5y

where £(0), as defined in Eq. (31), and u(0) are the dielectric
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permittivity and magnetic permeability of the ferromagnetic
dielectric. If we have two dissimilar plates where one is
made of ferromagnetic dielectric and the other one of a non-
magnetic metal described by the Drude model, the Casimir
free energy per unit area is determined by the contribution of
the TM mode alone,

fD(a,T) = -

ksT 13[ £(0) - 1]' ”

167a? g(0)+1

For dissimilar plates where the metal plate is described by
the plasma model, with account of Egs. (10), (11), (28), and
(32), one obtains

kyT g(0)— 1
FrlaT)= 1657(12{_ Li3l sEO; +1 ]

“ 0)-1
+f0 ydy lnll +%(1 —2a2y)e_~":|}.

(35)

By performing integration with respect to y we arrive at
kgT 1 e(0)-1
> L13
167a g(0)+1

| 1= p(0) ( B @)
L13[1+,U~(0)]1 2a }, (36)

where the penetration depth of the electromagnetic oscilla-
tions into Au, &y, is defined in accordance with Eq. (21).

The Casimir free energy in Eq. (36) can be both negative
and positive leading to the attractive and repulsive Casimir
force, respectively, in the configuration of a sphere above a
plate used in most of recent experiments.'**’ Keeping in
mind that &y, <a, the Casimir free energy is negative if the
following condition is satisfied:

Fpla,T) =~

[ e(0)-1| 1 - (0) | 5
o L O PP LUV (1—2ﬂ). (37)
| £(0) +1 | L 1+ u(0) | a
If, on the opposite, it holds
[ e(0)-1| 1= (0) | 5
Lig| BO=1] | [ 122©@ (1-2ﬁ), (38)
Le(0)+1 | L 1+ 1(0) | a

then the Casimir free energy is positive and the Casimir force
acting in the sphere-plate configuration is repulsive.

In Fig. 11 we show the region of attraction (below the
solid line) and repulsion (above the solid line) in the
[€(0),u(0)] plane at separation distance a=6 um. For
points belonging to the solid line the Casimir force acting
between the sphere and the plate vanishes [for the coordi-
nates of these points the inequalities in Eqs. (37) and (38)
become equalities]. Keeping in mind that for ferromagnetic
dielectrics £(0) is typically not very small (for the material
discussed above it is equal to 5.12) the region of the repul-
sive Casimir force is rather restricted. This is connected with
the fact that the solid line in Fig. 11 has the vertical asymp-
tote £(0)=8.45. Thus, there is no repulsive Casimir force at
a=6 pum in the sphere-plate configuration for ferromagnetic
dielectrics possessing larger values of £(0). Note that al-
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FIG. 11. The regions of the Casimir repulsion (above the solid
line) and attraction (below the solid line) in the [£(0), «(0)] plane.
See text for further discussion.

though the analytic results in Egs. (37) and (38) can be used
only at sufficiently large separations (¢=6 wm), the results
of numerical computations presented in Fig. 10 show that the
Casimir repulsion due to magnetic properties of ferromag-
netic dielectric may exist at shorter separations as well.

VI. CASIMIR FORCE IN THE VICINITY OF CURIE
TEMPERATURE

As mentioned in Sec. II, at the Curie temperature T~ spe-
cific for each material ferromagnets undergo a magnetic
phase transition.’*>> At higher temperatures they become
paramagnets in the narrow sense which are characterized by
negligibly small magnetic properties with respect to the Ca-
simir force. In this section we consider the behavior of the
Casimir free energy and pressure under the magnetic phase
transition which occurs with the increase in temperature in
the configuration of two similar plates made of ferromag-
netic metals. As such a metal, here we use Gd. The reason is
that Co and Fe used in computations of Secs. III and IV
possess rather high Curie temperatures (1388 K and 1043 K,
respectively’!). Keeping in mind that it is hard to measure
the Casimir force at such high temperatures, we consider Gd
which Curie temperature is of about 290 K depending on the
treatment of a sample (see, e.g., Refs. 72 and 73). In the
literature, Gd is often discussed in connection with its ferro-
magnetic properties, and the admixtures of Gd atoms are
included in different materials (see, e.g., Refs. 74 and 75).
The Drude parameters of Gd are equal’® to w,g4=9.1 eV
and y54=0.58 eV.

Computations of the Casimir free energy and pressure in
the configuration of two Gd plates as functions of tempera-
ture in the vicinity of Curie temperature require respective
values of u(0) for Gd at T<T¢ [at T>T¢, ugqa(0)=1 to high
accuracy]. In Fig. 12, using the data,”> we model the approxi-
mate dependence of ugq(0) in the temperature region from
280 to 300 K. Then the Casimir free energy and pressure
were computed as functions of temperature using Egs. (1)
and (5) with above values of the Drude parameters. The
computational results for the Casimir free energy are pre-
sented in Fig. 13(a) and for the Casimir pressure in Fig.
13(b) at separation a=500 nm. In both figures (a) and (b) the
solid and dashed lines marked 1 and 2 indicate the results
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FIG. 12. The static magnetic permeability of Gd in the magnetic
phase transition as a function of temperature.

computed using the Drude and plasma model for the charac-
terization of the dielectric permittivity of Gd, respectively.
As in previous sections, the solid lines take into account the
magnetic properties of Gd. The dashed lines were computed
with magnetic properties disregarded. As can be seen in Figs.
13(a) and 13(b), at T> T the magnetic properties do not
influence the Casimir free energy and pressure. At the same
time, the Drude and plasma model approaches lead to results
differing for about —23.4% for the Casimir free energy and
—19.5% for the Casimir pressure.

The computational results at 7<< T are of special interest.
Here, the magnetic properties influence the Casimir free en-
ergy and pressure. Below of about 288 K this influence is

FIG. 13. (a) The relative Casimir free energy per unit area and
(b) pressure as functions of temperature in the configuration of two
parallel Gd plates at the separation a=0.5 wm. The solid and
dashed lines take into account and disregard the magnetic proper-
ties, respectively. The pairs of lines marked 1 and 2 indicate the
respective computational results obtained using the Drude and
plasma models.
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almost temperature independent. Quantitatively, at T
=280 K the relative influence of magnetic properties on the
Casimir free energy is n‘}‘Gdzllﬁ% if the Drude model is
used and 7z 4=-3.6% if computations are done by means
of the plasma model. Similar situation holds for the Casimir
pressure. Here, the relative influence of magnetic properties
is characterized by 7;,[3,6(1:7.4% for the Drude model and
Mp.ga=—3-3% for the plasma model. With account of mag-
netic properties, the relative difference between the predic-
tions of the Drude and plasma model approaches at T
=280 K is approximately equal to —6.2% for the Casimir
free energy and —7% for the Casimir pressure. Thus, the
magnetic phase transition provides additional opportunities
for the investigation of the impact of magnetic properties on
the Casimir force and for the selection between different the-
oretical approaches to the thermal Casimir force.

VII. CONCLUSIONS AND DISCUSSION

In the foregoing we have investigated the possible impact
of magnetic properties of real materials on the thermal Ca-
simir force in the configuration of two parallel plates. This
was done in the framework of the Lifshitz theory of disper-
sion forces generalized for magnetodielectric media de-
scribed by the frequency-dependent dielectric permittivity
and magnetic permeability. The dielectric permittivity of
metals was described in the framework of both the Drude
and the plasma model approaches suggested in the literature
for the calculation of the Casimir force at nonzero tempera-
ture.

It was concluded that magnetic properties of all diamag-
netic materials and of paramagnetic materials in the broad
sense with the single exception of ferromagnets do not influ-
ence on Casimir force. As to ferromagnets, the influence of
their magnetic properties on the Casimir force is performed
solely through the contribution of the zero-frequency term in
the Lifshitz formula. Detailed calculations of the thermal Ca-
simir force have been performed for the following configu-
rations: two ferromagnetic metal plates; one plate made of
ferromagnetic metal and the other plate made of nonmag-
netic metal; two plates made of ferromagnetic dielectric; one
plate made of ferromagnetic dielectric and the other plate
made of nonmagnetic metal. In some cases the relative dif-
ferences due to account of magnetic properties were shown
to achieve several tens and even hundreds of percent. It was
shown also that the impact of magnetic properties on the
Casimir force may be quite different (or even absent) de-
pending on whether the Drude or the plasma model descrip-
tion of the dielectric permittivity of metals is used.

The possible influence of magnetic properties of ferro-
magnets on the Casimir force may be considered somewhat
analogous to the proposed influence of real drift current of
conduction electrons. If it is assumed that the fluctuating
electromagnetic field can initiate such a current, we arrive to
the Drude model approach to the thermal Casimir force
which is considered as the most natural one by some of the
authors.383%36 This approach, however, was found to be in
drastic contradiction with the results of several precision
experiments.!+3%:3146:38 Because of this the problem arises
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whether the fluctuating electromagnetic field can lead to
magnetic effects in ferromagnets. This problem awaits for its
experimental resolution.

The possibility to obtain the effect of the Casimir repul-
sion between two magnetodielectric plates separated with a
vacuum gap was analyzed taking into account real-material
properties. It was shown that the model of magnetic materi-
als with frequency-independent & and u used in the literature
to obtain such a repulsion is inadequate. For real materials
with frequency-dependent € and w it is not possible to obtain
the Casimir repulsion in the configuration of two plates made
of ferromagnetic dielectrics or ferromagnetic metals de-
scribed by the Drude model. According to our results, a con-
figuration demonstrating the Casimir repulsion due to mag-
netic properties is the dissimilar pair of plates one of which
is made of ferromagnetic dielectric and the other one of non-
magnetic metal described by the plasma model. This was
shown both analytically and numerically. It would be inter-
esting to perform further numerical studies of Casimir forces
for different composite materials in order to investigate in
more detail the possibility of the Casimir repulsion.

We now turn our attention to the discussion of feasible
experiments, which could provide tests for the possible in-
fluence of magnetic properties of ferromagnetic materials on
the Casimir force and for the used model of the dielectric
permittivity of metal (Drude or plasma). It would be most
simple to admit that the Drude model approach has already
been excluded by previous measurements3*3146:38 and deal
with only the magnetic properties. Presently the most precise
measurements of the Casimir pressure at separations of
0.5 um are performed by means of micromechanical tor-
sional oscillator’®3! (the experiments using an atomic force
microscope'>!# have the highest precision at separations of
about 100 nm). Precise measurements of the Casimir inter-
action at separations of a few micron are not yet available.
From Fig. 2(b) the relative difference between the solid and
dashed lines at a=0.5 um is equal to 7p-,=—6.0%. We
keep in mind that in the experiment®' the relative half width
of the confidence interval for the difference between experi-
mental and theoretical Casimir pressure at a=0.5 um is
equal to 2.8% at a 95% confidence level. Thus, the experi-
mental precision is sufficient to exclude one of the possibili-
ties, i.e., that the magnetic properties influence (or do not
influence) the Casimir force.

It would be more interesting, however, to experimentally
verify both options (i.e., that the magnetic properties influ-
ence or do not influence the Casimir force and that the Drude
or, alternatively, the plasma model approach is adequate for
the description of the thermal Casimir force). In this case the
exclusion of the Drude model in the experiments3(:3!:46.58
would be independently verified. This aim, however, cannot
be achieved in one experiment with magnetic materials be-
cause, as was mentioned in Sec. III, the dashed lines in Figs.
2(a) and 2(b) are very close to the respective solid lines in
Figs. 1(a) and 1(b). This means that the role of magnetic
effects in the Drude model description nearly fully compen-
sates differences between the theoretical predictions using
the Drude and the plasma model with magnetic effects dis-
regarded. Similar situation holds for Figs. 3 and 4. For the
sake of definiteness, we discuss below the experiments with
Co plates.
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Let the result of the measurement of the Casimir pressure
between two Co plates be consistent with the solid line in
Fig. 1(b) and the dashed line in Fig. 2(b). This would mean
that either the metal of the bodies is described by the Drude
model and magnetic properties influence the Casimir pres-
sure or, alternatively, the metal is described by the plasma
model and its magnetic properties do not influence the Ca-
simir interaction. To choose between these two alternatives, a
second experiment is required. Let us consider the so-called
patterned plate one half of which is made of ferromagnetic
metal (Co) and the other half of nonmagnetic metal (Au). Let
a sphere coated with ferromagnetic metal (Co) oscillate in
the horizontal direction above different regions of the plate.
Thus, the sphere is subject to the difference Casimir force,
which can be measured using the static or dynamic
techniques.””’® If the first alternative is correct, there is a
measurable decrease in the force magnitude when the sphere
is moved from Co to Au, because the magnitude of the free
energy shown as the solid line in Fig. 1(a) is larger than in
Fig. 5(a) (remind that the force in a sphere-plate configura-
tion is proportional to the free energy between two parallel
plates). If, however, the second alternative is correct, the
difference force when the sphere moves from the Co to Au
regions takes the opposite sign. This is because w), s,
> w), o, and the dashed line in Fig. 2(a) lies lower than the
dashed line in Fig. 6(a) (if the ferromagnetic and nonmag-
netic metals were selected in such a way that their plasma
frequencies would be equal, the difference Casimir force
vanishes).

Let now the results of the measurement of the Casimir
pressure between two plates coated with Co be consistent
with the dashed line in Fig. 1(b) and the solid line in Fig.
2(b). This means that either the metal is described by the
Drude model but magnetic properties do not influence the
Casimir pressure or, alternatively, the metal is described by
the plasma model but there is the impact of magnetic prop-
erties on the pressure magnitude. The choice between these
alternatives can be performed by the results of a second ex-
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periment using the same patterned Co-Au plate, but with the
sphere coated with a nonmagnetic metal (Au). If the first
alternative is correct, there is only a minor increase in the
measured force (for about 10% at a=0.5 wm) when the
sphere is moved from the Co to Au regions, as can be seen
from the solid line in Fig. 5(a) and respective data for Au-Au
interaction.'* If the second alternative is correct, there would
be a large increase in the measured force (for about 20% at
a=0.5 um) in the same movement [see the solid line in Fig.
6(a) and respective data for Au-Au plates'#].

Thus, the proposed measurements of the Casimir force
between ferromagnetic metals allow one not only to confirm
or exclude the influence of magnetic properties on dispersion
interaction but also to shed additional light on the choice
between different theoretical approaches to the thermal Ca-
simir force. Additional possibilities are suggested by the use
of the test bodies made of ferromagnetic dielectrics. Here, in
the measurement using the two plates made of ferromagnetic
dielectrics, one can determine whether the magnetic proper-
ties influence the Casimir free energy and pressure (54% and
36% relative difference, respectively, at a=0.5 wum, as
shown in Fig. 9). In doing so one does not require to make
any assumptions concerning the use of the Drude or plasma
models. Promising potentialities for the new experiments are
also suggested by the magnetic phase transition in ferromag-
netic metal at Curie temperature. According to our results,
there are significant differences between the predictions of
the Drude and plasma model approaches to the thermal Ca-
simir force before and after the phase transition.
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